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Abstract
NaxCoO2 · yH2O has a rich phase diagram inclusive of spin density wave

(SDW) magnetic ordering at 0.68< x <0.75, exotic superconductivity in the water
intercalated compound at x ∼0.3 and antiferromagnetism (AFM) with a metal-
insulator transition (MIT) at x=0.5. The significance of this system in the un-
derstanding of superconductivity in the cuprates and thermopower in the related
system LixCoO2 (used commercially in battery cathodes) is unquestionable. The
structure comprises layers of CoO2 separated by Na channels, and produces strong
electron correlations that dominate the magnetic and superconducting properties.

The macroscopic properties in the sodium doping range of 0.5< x <0.72
are presented. SDW magnetic ordering is confirmed at x ∼0.7, via anomalies in
the magnetic, thermal and transport measurements, the properties of which are
anisotropic. The results indicate the material is intrinsically phase separated into
magnetic and non-magnetic subsystems, suggesting the SDW material exists as a
point compound. Further modifications to the magnetism occur at 10 and 4 K,
with the onset of ferrimagnetism and a glassy ground state. The AFM and MI
transitions of the x = 0.5 system are also discussed.

The crystal structure of NaxCoO2 is investigated by powder neutron diffrac-
tion. The predicted phase separation is identified; two systems exist with different
morphologies of NaO6 octahedra. A transfer of Na between the phases is seen at
temperatures at which anomalies occur in the heat capacity and transport data. An
orthorhombic Na ordering at x=0.5 is recorded, and a lattice contraction around
the MIT is observed. Bond valence calculations indicate static charge ordering on
the Co sites is not the origin of the insulating behaviour.

An investigation is made into the intra-planar magnetic excitations in the
half doped system using inelastic neutron scattering. Scattered intensity is visible
above an energy gap of 11.5(5) meV at points above the supercell ordering reflec-
tions. Preliminary investigations reveal the c-axis dispersion to be significant and
indicative of the three dimensional magnetism seen in the SDW phase.

Finally, magnetic and heat capacity studies on the superconducting com-
pound are presented. The system is proven to be an extreme type II supercon-
ductor, with weak flux pinning effects. Single crystal neutron diffraction confirms
the presence of supercell ordering due to short-ranged correlations between the
intercalated water molecules as predicted by powder diffraction studies.
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Chapter 1

Introduction

The physical properties of condensed matter materials depend strongly on the

behaviour of the electrons present in the system. The ability to conduct electricity

and heat, as well as to exhibit effects like magnetism and superconductivity is

fundamentally linked to the electronic dynamics and interactions with the atomic

nuclei and other electrons. Materials in which the latter interaction becomes

a sizable fraction of the former are called strongly correlated electron systems

(SCES). This chapter sets out the fundamental principles of the physics of SCES

and their interaction with neutrons, a common probe used in condensed matter.

The derivations of the equations presented below may be found in any standard

text on magnetism [1, 2], superconductivity [3] and neutron scattering theory [4, 5]

and the references included therein.

1.1 Theory of Magnetism

A magnetic moment originates from the angular momentum of a charged particle.

In quantum magnetism there are two components that make up the total angular

momentum J and define the magnetism: the orbital angular momentum L, whose

total magnitude is equal to h̄
√

l (l + 1), and the spin angular momentum S with a

magnitude of h̄
√

s (s + 1). The projection of L and S along the z-axis is h̄ml and

h̄ms respectively. The principal (n), angular (l), magnetic (ml), spin (s) and spin
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V(r)
r

Figure 1.1: A schematic diagram of the individual atomic potentials (grey) and the total
lattice potential (blue) according to the tight binding model. Free and bound electron
states are denoted by the dotted and dashed lines respectively.

magnetic (ms) quantum numbers define the quantum state of an electron; the

Pauli exclusion principle, which states that electrons occupying the same position

in space and time must differ by at least one quantum number, is one of the

characteristics that defines the electronic properties of solid state materials. The

sequence of occupation of localised electrons in an atom is governed by Hund’s

rules. They are as follows:

1. The lowest energy configuration is one in which the multiplicity (spin) is

maximised.

2. The subsequent configuration with the largest angular momentum has the

lowest energy.

3. If the shell (denoted by principal quantum number n) is less[more] than half

full, the lowest energy configuration has the smallest[largest] total momen-

tum J .

In a crystalline material the electrons are subject to strong periodic oscil-

lations of potential as a result of the Coulomb interaction with the lattice ions

and the periodicity of the localised electronic density. The total crystal poten-

tial constitutes a superposition of the independent atomic potentials as shown in

figure 1.1. The application of this periodic potential results in the splitting of indi-

vidual electronic energy levels into bands in k space. Depending on the particular
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characteristics of the ionic lattice potential, the electron orbitals may either be

localised or delocalised (itinerant) as indicated by the dashed and dotted lines in

the figure. Completely filled bands do not contribute to the angular momentum J

and thus do not exhibit a magnetic moment; consequently magnetism is found in

atoms with incomplete shells and therefore unpaired electrons. How the moment

responds to the presence of a magnetic field is described by a quantity known as

the magnetic susceptibility (χ) which depends on whether the band contributing

to the magnetic moment is localised or itinerant as well as the interaction between

it and other magnetic particles in the lattice.

1.1.1 The Magnetic Response to an External Field

Diamagnetism and paramagnetism describe two types of magnetic response to an

applied field and are characterised by negative and positive susceptibility respec-

tively. The first of these two effects results in the magnetic polarisation opposing

the applied field. It is explained in classical electrodynamics by Lenz’s rule. A

magnetic field induces circular currents in a material which creates a field that op-

poses the applied field. In quantum electrodynamics the same effect is described

by the Larmor theorem; electrons precess around the direction of their spin in the

presence of the magnetic field with a frequency equal to ωL = eH/2m where H

is the magnitude of the applied field, m is the mass of the electron and e the

electronic charge. The resulting negative susceptibility is:

χdia =
−µ0nZe2

6m

〈
r2
〉

(1.1)

where µ0 is the magnetic permeability of free space, n the number of magnetic

atoms in the sample, Z is the atomic number of the atom and 〈r2〉 the mean

square distance of the electron from the nucleus.

Paramagnetism is a consequence of the unordered moments already present

in the system aligning with the field, the cumulative effect serving to enhance

the external field. The paramagnetic susceptibility of a set of localised, weakly
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interacting moments is described by the Brillouin function and can be approximated

for low fields and moderate temperatures as:

χpara =
nµ0µ

2
eff

3kBT
(1.2)

where µeff is the effective magnetic moment on each of the n sites, kB is Boltz-

mann’s constant and T the temperature. This is known as Curie’s Law and enables

an estimate of the magnetic moment on each atom to be made from the experi-

mental magnetic susceptibility data. The effective magnetic moment is related to

the total angular momentum by:

µeff = gJµB

√
J (J + 1) (1.3)

where gJ is the Landé g-factor (discussed further in section 4.1.1), µB the Bohr

magneton and J the magnitude of the total angular momentum, equal to L ±

|S|. The paramagnetic susceptibility of itinerant electrons is derived from the free

electron gas model. It calculated to be:

χpauli = µ0µ
2
BN (ǫF ) (1.4)

where N (ǫF ) is the density of states (inversely related to the bandwidth of the

electronic energy bands) at the Fermi level; χpauli is therefore a temperature in-

dependent parameter. However, the free electron gas is not a good model for a

crystalline lattice, as mentioned above. A correction to χpauli needs to be made to

account for the periodic lattice potential which leads to the inclusion of a factor

of
(
1 − 1

3

(
m
m∗

)2
)
. This additional term in the Pauli paramagnetic susceptibility

therefore adds a diamagnetic contribution which includes the effective mass of the

conduction electrons (m∗) and consequently the band structure effects.

Generally, materials exhibit both diamagnetic and paramagnetic behaviour,

although the former is more often than not a far weaker effect than the latter.

In a real material, the magnetism is investigated by the measurement of the bulk

magnetisation M , defined as the number density of the magnetic dipole moments.
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Figure 1.2: A schematic diagram of the magnetic order (left) and the measured suscepti-
bility (right) of a ferromagnet (blue) and an antiferromagnet (green). The susceptibility
curve of a paramagnet (black) is shown for comparison. Inset: the x-axis intercept of
the inverse magnetic susceptibilities occurs at the Curie or Néel temperature (θ or −θ).

It is related to the external field (H) and the magnetic induction within the sample

(B) by:

B = µ0 (H + M ) (1.5)

with the magnetic susceptibility defined as χ = M/H . The paramagnetic mag-

netisation measured as a function of field should be linear at small H ; the inclu-

sion of higher order terms resulting in deviations from linearity are caused by spin

fluctuations and other excitation processes that are not treated correctly in the

mean-field approximation that was used to derive equation 1.2.

1.1.2 Magnetic Order

Some materials display finite magnetism in the absence of applied fields as a result

of strong interactions between the magnetic atoms. The most common ordering

patterns for the magnetic moments in a material are termed ferromagnetic (FM)

and antiferromagnetic (AFM). The former refers to the parallel alignment of all

the spins along a unique direction and the latter to two interpenetrating, counter-

oriented FM lattices which lead to a zero net magnetisation. The presence of

interactions between the moments in a material leads to a non-zero abscissa of
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2D Ising 3D Ising XY Heisenberg Mean Field
Spin dimensionality (d) 1 1 2 3 -
Crystal dimensionality (D) 2 3 3 3 -

β 0.125 0.326 0.345 0.367 0.5
γ 1.75 1.2378(6) 1.31(6) 1.3888(3) 1

Table 1.1: Critical exponents for a variety of magnetic models, after reference [1].

the inverse magnetisation at zero temperature (shown in figure 1.2). Below a

critical ordering temperature (termed the Curie temperature (TC) in FM and the

Néel temperature (TN) in AFM), the moments in the sample align as indicated in

the figure. Above these ordering temperatures the moments display no long range

order but may be aligned with an applied field according to the Curie-Weiss law:

χα
1

T − θ
(1.6)

where θ is equal to the Curie temperature or the negative of the Néel temperature.

Weiss attempted to explain these phenomena using classical thermodynamics by

the invention of an internal molecular field, strong enough to be capable of cre-

ating spontaneous magnetic order. The theorem explains phenomenologically the

appearance of magnetic order, however the calculated molecular fields for average

ferromagnets were unfeasibly large (for example ∼2×104 kOe in cobalt). The

problem was subsequently solved by Heisenberg by the introduction of a quantum

mechanical exchange interaction J. To first order it is an electrostatic interac-

tion and not magnetic. The magnetic dipole-dipole interaction varies as 1/r3;

the weakness of this type of interaction is the origin of the overestimation of the

magnetic molecular field proposed by Weiss. The Heisenberg model also differs

from the Weiss model in that it describes interactions between specific magnetic

sites in the system, rather than applying an averaged “mean field” approximation.

The theory describes excitations of the whole spin system and is discussed further

in section 1.1.4.
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SDWl

Figure 1.3: A schematic diagram of the magnetic ordering in A, C, E and G-type
antiferromagnets within the local moment model (top row). Spin density wave ordering
occurs in anisotropic itinerant systems and consists of a sinusoidal modulation of the
density of spins in the conduction bands.

Specific approximations to the Heisenberg model include the Ising model, in

which the spin vector operator is one dimensional and has only two states (“spin

up” and “spin down” aligned along a particular crystallographic direction) and

the XY model, in which the two dimensional spin operator allows the moments

to rotate in the (x, y) plane. The onset of magnetic order in any of these ap-

proximations may be estimated by examining the behaviour of the free energy

above and below the transition temperature. How a physical quantity of the

system varies around the critical temperature is defined by its critical exponent;

the exponents for the magnetisation M [and therefore magnetic order parameter

Ψ]
(
M [Ψ] α (TC − T )β

)
and the isothermal susceptibility

(
χα (T − TC)−γ

)
are

listed in table 1.1. A comparison with experimental data enables the determination

of the nature of the phase transition to be made.

1.1.3 Antiferromagnetic Order

As mentioned above, the AFM lattice can be considered as the sum of two inter-

penetrating FM lattices. Depending on the configuration of the crystal lattice and
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the symmetry breaking involved in the magnetic ordering transition, there may be

many different ways of arranging an equal number of up and down moments onto

a three dimensional set of magnetic atoms. Four types of ordering that are found

in orthorhombic crystal settings are shown in figure 1.3. The type of ordering

present in a real magnetic system depends on the exchange pathways and the

number of nearest neighbours. Below the Néel temperature, the magnetisation

depends on how the applied field is oriented with respect to the moments. If the

field is aligned perpendicular to the spin polarisation axis, the moments will tilt

towards H leading to a roughly temperature independent susceptibility. With the

field aligned along the magnetisation direction of one lattice (and hence antipar-

allel to the second lattice) the application of a field at zero temperature will have

no net effect resulting in zero magnetic susceptibility. Increasing the temperature

produces thermal agitations of the spins that will increase the magnetisation until

the temperature reaches an energy equal to the strength of the exchange integral

at TN .

The antiferromagnetic order discussed so far has referred to the spatial

orientation of localised spins on crystallographic sites. A common magnetic ground

state of AFM metals is the spin density wave (SDW), which consists of a spatially

dependent modulation of the density in the spins (and therefore of the overall

charge) of the conduction electrons in itinerant systems or alternatively a spatially

dependent modulation of the magnitude of the moment on each magnetic site

in localised materials. A schematic diagram of the former is presented in the

lower half of figure 1.3. The formation of a SDW is due to strong electron-

electron interactions and is frequently found in highly anisotropic materials that

have Fermi surfaces (FS) with parallel planes that enable nesting ; the inverse of

the reciprocal lattice vector spanning the nested FS sheets gives the modulation

of the SDW in real space and is therefore not necessarily commensurate with the

underlying crystal lattice. The formation of the SDW is also accompanied by the

opening of a gap in the single particle excitation spectrum at the Fermi level;
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extremely anisotropic systems may experience the complete removal of the FS at

the ordering temperature TSDW resulting in a metal to insulator (MI) transition.

The total moment in the system (in one dimension) is equal to :

M = 2 |S| gJµB cos (2kF x + ϕ) (1.7)

where kF is the (x-component of) the electron momentum at the Fermi level and ϕ

is a phase factor. Spin density waves are strongly affected by magnetic impurities.

The phase of the SDW couples directly to the impurity potentials within a sample

resulting in the destruction of long-range order and the introduction of finite phase

correlation lengths that are related to the mean free path between impurities.

1.1.4 Linear Spin Wave Theory

Static magnetic order of the kind represented in figure 1.3 exists only at zero

temperature. The addition of heat to a system results in perturbations on the

magnetic order, that may propagate through the crystal. The dynamics of these

magnetic excitations are determined by the type and strength of exchange cou-

pling between the spins which is described by the Heisenberg model. The general

Hamiltonian for a system of interacting magnetic moments is:

H = −2J
nn∑

<ij>

Si.Sj − 2Jα
nnn∑

<ij>

Si.Sj − D
∑

i

S2
iz (1.8)

where J is the exchange integral (negative for antiferromagnetic interactions and

positive for ferromagnetism) and Si[j] is the atomic spin at the ith[jth] site. The

exchange interaction is a direct result of the Pauli exclusion principal, which forbids

fermions (particles with half integer spin) with the same spin quantum number to

exist in the same position and time, and simple electrostatic Coulomb repulsion.

The exchange interaction requires the overlap of electron orbitals and is therefore

a short ranged effect. Exchange may be mediated through a diamagnetic atom,

such as oxygen, known as superexchange. Close examination of a crystal structure

is necessary for the successful formulation of a physically realistic Hamiltonian. In
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Figure 1.4: A schematic diagram of a linear antiferromagnetic ground state (black
arrows) and its excitation (green arrows).

any case, because the extent of such exchange pathways are limited, it is usual to

consider just nearest neighbour (nn) and possibly next nearest neighbour (nnn)

magnetic atoms in the summation. The parameter α therefore denotes the relative

strengths of the nn and nnn interactions. D describes the magnetic anisotropy,

modelling the tendency of spins to align in a particular plane or direction. In

equation 1.8 the moments are assumed to lie along the z-axis.

The propagation of the perturbation of the magnetic ground state is known

as a spin wave or magnon if its energy is quantised. A low energy excitation for

a linear antiferromagnetic chain is pictured schematically in figure 1.4; the spins

precess around the z axis with the phase of the rotation increasing as a function of

distance along the chain. The formalism for working out the energy dependence

of spin waves requires the spin vector operators to be written in terms of spin

creation and annihilation operators. These are transformed into reciprocal space

(the Fourier transform is taken) and related to the reciprocal crystal lattice. The

change of an individual state in real space (for example, the reversal of one spin

in an Ising system) can therefore be described by the sum of an infinite number

of spin waves in reciprocal space that have the periodicity of the crystal lattice.

In order to perform the transformation to the reciprocal space operators, only the

lowest terms in the expansion are used; the approximation gives its name to linear

spin wave theory. It remains valid for excitations that are small in comparison to

the total spin 2S. The full derivation of the theory, and its application to real

systems is outlined in appendix A.
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1.2 Introduction to Superconductivity

A superconducting phase transition exhibits itself in a material in two ways. Below

a critical temperature TC , the resistivity drops abruptly to zero and any external

magnetic fields are excluded from within the system. According to the second

of these two properties and equation 1.5, the magnetisation and applied fields

must be equal and opposite, in other words the material demonstrates perfect

diamagnetism with χ = M/H = −1. Superconductivity is destroyed by the

application of a large enough field (the critical field HC); the value of the field

needed to return a material to its normal resistive state varies as a function of

temperature:

HC (T ) ∼= HC (0)

[

1 −
(

T

TC

)2
]

(1.9)

Approximately forty years after the discovery of superconductivity a second type

of superconducting state was discovered, where the complete expulsion of the

magnetic flux density within a sample (known as the Meissner state) exists up to

a certain critical field HC1, above which discrete lines of magnetic flux (vortices

with normal state cores) may enter the bulk whilst the remainder of the sample

remains superconducting. As the field is increased further, more flux vortices enter

the sample till a critical flux density is reached at HC2, after which the normal

state is present once again. The behaviour of both types of superconductors as a

function of field is shown schematically in figure 1.5.

The ability of type I superconductors to expel magnetic flux was first ex-

plained by London and London in 1935. They assumed a two fluid model in which

normal and superconducting electrons exist simultaneously in varying fractions.

Magnetic flux is removed by circulating supercurrents with a density JS that flow

near the surface of the sample (within the London penetration depth λL); the fields

created by these supercurrents cancel the externally applied field, the magnitude

of which decays exponentially with distance into the material. The theoretical

framework of London and London may also be applied to the case of type II su-
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Figure 1.5: The temperature-field and magnetisation-field phase diagrams (top and
bottom respectively) for a type I (left) and type II (right) superconductor.

perconductors in the vortex (or mixed) state, since a vortex with a normal core

may be supported by supercurrents that circulate around it.

1.2.1 Theoretical Models of Superconductivity

The theory of superconductivity was advanced by Ginzburg and Landau, by the

introduction of a superconducting order parameter Ψ which increases from zero at

TC to a maximum value at 0 K, similar to the onset of magnetic order parameters

as described in section 1.1.2. Along with Ψ, another important parameter was

introduced: the coherence length of a superconductor describes the distance over

which the order parameter varies. Despite the advances made by both the London

and Ginzburg-Landau (GL) theories, an understanding of the origin of supercon-

ductivity was yet to be identified. Several empirical relations had been made that

hinted at the importance of the crystal lattice to superconductivity. Firstly, the

critical temperatures of type I superconductors and their room temperature resis-
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tivities are inversely related. In fact, superconductivity does not exist in some of

the best normal conductors such as Cu, Ag and Au. Secondly, TC is also made to

vary monotonically by changing the isotope of an element within a sample. Both

facts indicate that electronic coupling to the lattice is an important factor in the

superconducting phase transition. The nature of its relevance to superconductivity

was revealed by the theory of Bardeen, Cooper and Schriefer (BCS).

The BCS theory postulates that the superconducting state is comprised of

pairs of coupled electrons, known as Cooper pairs. The underlying electron pairing

mechanism is due to the electrostatic attraction between the electron and the

cations that comprise the crystal lattice. As an electron travels through the crystal

it distorts the lattice, creating a phonon that is absorbed by a second electron at

some later time. The difference in the speed of propagation between an electron

and a phonon (∼106ms−1 and ∼103ms−1 respectively) makes the electron-phonon

interaction possible and ensures that the mean distance between the two electrons

is large. The net result is that this interaction potential outweighs the screened

electronic Coulomb repulsion and hence the system is unstable to the formation

of Cooper pairs. Symmetry and energy considerations within BCS theory require

that the two electrons have opposite wavevectors (so that the total momentum in

the centre-of-mass frame is zero) and spins, and have energies within h̄ωD of the

Fermi energy EF , where ωD is the Debye frequency of the phonons, as discussed

further in chapter 4.

The onset of superconductivity is accompanied by the opening of a temper-

ature dependent energy gap 2∆ (T ) at the Fermi level; the energy cost from the

increase in kinetic energy that is associated with the occupation of states above

EF is also outweighed by the reduction in energy achieved by the formation of the

Cooper pairs. Therefore, 2∆ (T ) defines the amount of energy needed to break the

paired electron state. If kBT is smaller than the gap, the superconducting elec-

trons are not excited by thermal vibrations of the lattice. The presence of the gap

also provides an explanation as to why superconductivity is not seen in magnetic
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Figure 1.6: The crystal structure of YBCO. Superconductivity occurs within the cop-
per oxide planes (marked charge transport); the CuO2 planes are separated by charge
reservoir layers consisting of barium, yttrium and oxygen.

elements such as Fe or Co, and is strongly suppressed by the presence of magnetic

impurities within other superconducting materials, since the magnetic energy of

each electron in the Cooper pair is defined by its relative orientation to the local

magnetic field. If the difference in magnetic energy between the two electrons is

larger than 2∆ (T ), the superconductivity is destroyed and the magnetism is said

to be a pair breaking mechanism.

1.2.2 Exotic Superconductivity

The BCS theory adequately explains the properties of conventional type I and II

superconductors in which electron pair formation is mediated by phonons. The

strength of this coupling mechanism sets an upper limit on the critical tempera-

ture of approximately 40 K. Attempts were made to enhance the electron-phonon

coupling parameter by the Jahn-Teller effect in order to reach higher critical tem-

peratures which led to the discovery of the new class of high temperature su-

perconductors (HTSCs) in 1986. The HTSCs are made mostly all cuprates and
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have complex layered crystallography based on the perovskite structure that show

anisotropic magnetic and superconducting behaviour. The underlying mechanism

for Cooper pair formation in the HTSCs is not yet known, although a theory known

as the charge transfer model indicates the layered structure of the cuprates to be

the key to superconductivity. The crystal structure of one of the most famous

HTSCs, YBa2Cu3O7−δ (YBCO), is shown in figure 1.6. It is thought that the

superconductivity is confined to the CuO2 charge transport planes, which are iso-

lated from each other over large distances by charge reservoir layers, so called

because changing the chemical content in the unit cell in these rare earth oxide

layers results in a change in the valence state of the Cu in the charge transport

layers via the overlapping oxygen 2p orbitals. Therefore, the isolation planes not

only separate the conduction planes but provide charge carriers and possibly the

coupling mechanism for superconductivity.

The dominant theory of the pairing mechanism in the HTSCs is the spin

wave model, in which the formation of Cooper pairs, i.e. the electron-electron in-

teraction required to the screened Coulomb repulsion, is mediated by magnons that

have exchange energies typically four times the size of phonon energies, capable

of supporting the higher critical temperatures. In conventional BCS superconduc-

tors, the pairing wavefunction and the energy gap are spherically symmetric; it is

named s-wave pairing in analogy with the shape of atomic orbitals. The pair bind-

ing state in unconventional superconductors can either have a total spin of zero or

one, known as spin singlet and spin triplet pairing respectively. The fact that the

overall wavefunction is antisymmetric under particle exchange requires that the

singlet[triplet] pairing wavefunctions have an even[odd] orbital momentum num-

ber. The net effect is that the unconventional superconducting order parameter

has a more complicated structure that is a function of k. It is clear that the strong

electron correlations found in the cuprates and the enhanced Coulomb repulsion

that accompanies it favour pairing states with non-zero angular momentum.
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1.3 Neutron Scattering Theory

In order to understand the physical properties of crystalline systems, it is necessary

to obtain information on the positions of the atoms in a material as well as details

of the individual and collective dynamics in the system. Neutron scattering is a

useful tool used to obtain such information, although its use is not just confined

to the study of the structural and magnetic properties of crystals. The properties

of the neutron also make it a useful application to the fields of biology (for exam-

ple in determining the structure of proteins), physical chemistry (in the study of

polymers and gels), materials science (with the measurements of stresses, strains

and textures) and disordered materials (liquids and glasses).

1.3.1 Properties of the Neutron

A beam of neutrons with a single energy Ei, travelling in a direction defined by

the wavevector ki will either pass through a material undisturbed, be absorbed or

scattered. The scattering process involves a change in direction of the wavefunc-

tion (denoted by a final wavevector kf ) and/or a change in energy to Ef . The

purpose of neutron scattering is to link the characteristics of the scattered neu-

trons to the order and dynamics of the scattering atoms within the sample. This

is made possible using thermalised neutrons, which have four useful properties:

1. They have energies of the order of 300kB with corresponding wavelengths

λN of a few ångström, comparable to the interactomic distances of most

crystalline materials (the relative size of the wave and the scattering object

determines whether diffraction will occur). The energy of thermal neutrons

is also of the same order of magnitude as the typical excitation energies of

the scattering systems, enabling a strong coupling between the neutrons and

the excitation modes that allows the characteristics of the excitations to be

accurately determined.

2. The neutron itself carries no electrical charge and therefore does not exhibit
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any electrostatic interaction with the electron cloud of an atom in direct con-

trast to x-ray scattering in which the probability of scattering is proportional

to the square of the atomic number. Rather, the neutron interacts with the

atomic nucleus via the strong nuclear interaction, a very short ranged force.

Neutrons are therefore highly penetrating; measurements from the bulk of

the sample are obtainable, again in contrast to x-ray scattering which re-

quires very high energy x-rays to penetrate more than just the surface of a

material.

3. The strength of the nuclear force is determined by both the number of nucle-

ons present and the occupied energy levels within the nucleus. The neutron-

nucleus interaction strength as a function of atomic number has an irregular

profile and even varies dramatically between isotopes of the same element.

It is therefore possible to determine the positions of very light elements such

as hydrogen, which are almost invisible to x-rays.

4. The neutron is made from one up and two down quarks and hence has a total

spin sN = h̄/2. The magnetic moment associated with this spin couples to

the local fields of magnetic atoms that are created by the presence of unpaired

electrons. The theory of the magnetic interaction between a neutron and the

magnetic atom allows the study of magnetic order.

Typically, the characteristics of structural and/or magnetic order are determined

by using neutron diffraction (the process defined by Ei = Ef ) and the structural

and/or magnetic excitations are probed with inelastic scattering (in which Ei 6=
Ef ).

1.3.2 The Scattering Process

The interaction between a neutron and a scattering atom is defined by a quantity

known as the differential cross section, which is equal to the ratio of the number

of neutrons scattered per second (ΦS) into a particular solid angle (dΩ) and the
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Figure 1.7: A plane wave of incident neutrons (red) is scattered from a single, bound
nucleus; the outgoing wave (blue) is spherically symmetric. The difference between the
incoming and outgoing wavevectors (ki and kf ) as measured through an incremental
solid angle dΩ defines the momentum transfer vector q. Inset: The total scattering from
a set of N nuclei contains an isotropic incoherent (inc) term, coherent (coh) scattering
in Bragg directions and diffuse scattering around Bragg reflections that corresponds to
structural irregularities.

incident flux (Φ0):

dσ

dΩ
=

ΦS

Φ0

(1.10)

The scattering cross section defines the effective area perpendicular to the incident

beam that is “visible” to the neutron and hence the overall probability of a scat-

tering event taking place. dσ/dΩ has the dimensions of square metres accordingly,

although it is most frequently defined in barns where 1 barn = 10−24 cm2. The

analysis of this scattering function may also include the condition of the scattered

neutron having a final energy E ≥ Ef ≥ E + dE; the probability of scattering is

now termed the partial differential cross section:

d2σ

dΩdEf

=
ΦS

Φ0

(1.11)

The strong nuclear force has a range of approximately 10−15 m, small in com-

parison to the average nuclear radius (∼10−14 m) and tiny with respect to λN

(∼10−10 m); the interaction potential can therefore be represented as point-like,

and is known as the Fermi pseudo-potential. A neutron, with an incident plane

wave function oriented along z (i.e Ψinc = exp (ik.z)), that is scattered from a
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single bound nucleus has a scattered wavefunction which is isotropic within the

centre-of-mass system (known as s wave scattering since no orbital angular mo-

mentum is involved) equal to Ψsc = −b/r exp (ik.r) (shown in figure 1.7). The

scattering potential is defined by:

V̂N (r) =
2πh̄2

mN

biδ (r − Ri) (1.12)

where r is the position vector of the neutron, mN the neutron mass, bi the scatter-

ing length and Ri the position vector of the ith scatterer. The scattering length, in

analogy to the nuclear cross section, can be considered the effective distance within

which the neutron must pass to facilitate scattering. It is a complex number, the

real part of which is independent of the energy or wavevector of the incident neu-

tron. The real part relates to the strength of V̂N and may be positive or negative

(corresponding to an attractive or repulsive interaction respectively), whereas the

imaginary part relates to the probability that the neutron will be absorbed instead

of scattered.

1.3.3 Coherent and Incoherent Scattering

The incident flux is defined as Φ0 = v |Ψinc|2 where v is the neutron velocity. The

number of scattered neutrons passing through an elemental area dS is therefore

vdS |Ψsc|2 = vb2dΩ. From equation 1.10:

dσ

dΩ
=

vb2dΩ

vdΩ
= b2 (1.13)

Integrating over all angles gives a value of the total scattering cross section of

σ = 4πb2. This cross section is made from two constituent parts termed coherent

and incoherent i.e. σ = σcoh+σinc. If the sample is a crystal consisting of only one

non-magnetic element, with no isotopic variation, whose atoms are placed at the

nodes of a regular lattice, the resulting spherical scattered waves from each atom

will exhibit a definite phase relationship with one another and will be out of phase

with respect to the incoming plane wave by an amount proportional to the coherent
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scattering length bcoh. In certain directions the waves interfere constructively and

the amplitude of the outgoing wave in that direction contains a contribution from

all of the scatterers. In other words the scattered waves behave in a coherent

manner. This process is known as Bragg diffraction and discussed in further detail

in section 3.2. The number of neutrons scattered in a Bragg direction is known as

the coherent differential scattering cross section (dσcoh/dΩ) and is proportional to

the square of the amplitude of the scattered neutron wavefunction and therefore

b2
coh.

In reality, crystal systems may contain more than one constituent element

and different isotopes of each element. The system can be modelled by assuming

the scattering lengths fluctuate randomly around a mean value b:

bi = b + δbi (1.14)

where the incremental variations sum to zero over N lattice sites i.e.
∑N

i δbi = 0.

Each lattice site may therefore be represented as having two scatterers, one with a

scattering length of b ≡ bcoh and another with b = δbi, a value that varies randomly

and has no correlation between sites i and i + 1. Since the change in phase of

the scattered wave is proportional to b, as mentioned above, the scattered waves

from these second scatterers do not undergo coherent interference. Instead, the

resulting intensity in all directions is just the sum of the individual intensities from

each second scatterer; the overall intensity from this “incoherent” scattering is

therefore isotropic. The incoherent differential scattering cross section (dσinc/dΩ)

is proportional to:

N∑

i

δb2
i = N

[(
bi − b

)2
]

= N
[
b2

i − b
2
]

(1.15)

The incoherent scattering length per nucleus is therefore defined as binc =
√

b2
i − b

2
.

The variations in scattering lengths between different sites occur for two reasons.

As previously mentioned, the strong nuclear force is dependent on the number

of nucleons present and therefore varies between isotopes of the same element.
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Secondly, the interaction potential is dependent on the relative orientation of the

neutron spin sN and the nuclear spin I, if present. There are now two values for

the scattering lengths, b+ and b−, according to whether the spins are parallel (in

which case the total spin is I +1/2) or antiparallel (giving a total spin of I−1/2).

If the spins of neither the incident neutron beam, nor the nuclear moments are

aligned, the scattering by b+ or b− occurs randomly. Magnetic order within a crys-

tal defines the polarisation of the nuclear moments, the use of a polarised beam

of neutrons can consequently provide useful information on such order.

The variation in scattering lengths between sites is thus the result of chem-

ical and magnetic disorder which results in the isotropic background from the

incoherent scattering. Magnetic order, on the other hand, will change the symme-

try of the crystal structure and therefore add to the coherent scattering. Positional

disorder in the crystal structure modifies the coherent scattering and adds intensity

around the sharply defined Bragg peaks. This is described as diffuse scattering

and is shown in the inset of figure 1.7.

In summary, the total differential cross scattering values for both coherent

and incoherent scattering are:

σcoh = 4πb
2
, σinc = 4π

(
b2

i − b
2
)

(1.16)

The coherent scattering is dependent on the correlation between the positions of

the same nucleus at different times as well as correlations between the position of

different nuclei at different times. The incoherent scattering is dependent only on

correlations between the positions of the same nucleus at different times. These

ideas are best expressed in terms of pair correlation functions. The time pair

correlation function (G (r, t)) defines the probability of finding an atom at position

r and time t, given that there was an atom at the origin at t = 0:

G (r, t) =
(

1

2π

)3 ∫ ∑

ij

e−iq.r
〈
e−iq.rj(0)eiq.ri(t)

〉
dq (1.17)

The Fourier transform of G (r, t) determines the scattering function S (q, h̄ω), i.e.
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the quantity calculated from the measured cross sections during an experiment:

d2σ

dΩdEf

=
∑

ij

bibj
kf

ki

S (q, h̄ω)

where S (q, h̄ω) =
1

2πh̄

∫
G (r, t) ei(q.r−ωt)drdt (1.18)

Through the evaluation of the scattering function and its Fourier transform, a link

between the data measured in a neutron scattering experiment and the properties

of the physical system under study may be ascertained.
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Chapter 2

The Phase Diagram of Sodium

Cobaltate

In recent years, sodium cobaltate has become one of the most intensely investi-

gated strongly correlated electron systems due to its remarkable electronic prop-

erties. A cousin to the commercially used cathode material LixCoO2, its unusually

high thermopower and low resistivity [6] make it a potentially viable thermoelectric

material. Additionally, the surprise discovery of superconductivity in the hydrated

compound [7] in 2003 highlighted similarities to the high temperature supercon-

ductors and ignited a debate into the origin of the pairing mechanism. Experimen-

tal and theoretical studies undertaken during the last three years have unveiled a

complex phase diagram in which sodium doping is key to the magnetic and su-

perconducting properties. Understanding of the physics driving the extraordinary

properties in NaxCoO2 has been hampered by the difficulty in producing high qual-

ity samples and the misidentification of the doping concentration in many early

publications. The following chapter sets out the currently available experimental

data and theoretical concepts that define the present understanding of the phase

diagram.
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Figure 2.1: Left: The crystal struc-
ture of NaxCoO2 · yH2O. Sheets
of edge sharing CoO6 octahedra
(green and red) are separated by
layers of Na ions (blue) positioned
on three different sites. Right: In
the water intercalated compound,
four H2O or D2O molecules (yel-
low and red) per unit cell are po-
sitioned either side of the sodium
ions, which occupy only the 2c or
6h site for x ∼0.3, resulting in a
doubling of the c-axis lattice para-
meter. Structure reproduced from
ref. [8].

2.1 The Crystal Structure of Sodium Cobaltate

NaxCoO2 belongs to the general class of AxBO2 bronzes first identified by Jansen

and Hoppe [9]. It has a highly anisotropic structure, with two dimensional sheets

of CoO6 octahedra stacked along the c-axis and intermittent layers of sodium ions

(as shown in figure 2.1). There are three sites on which the sodium may reside;

the 2b site located directly above and below the cobalt atoms in the adjacent

layers, the 2c site situated equidistant between the six nearest neighbour cobalts

and the 6h site, a slightly displaced position from the higher symmetry 2c site.

The distance between the CoO6 layers [10] is larger than the ionic radius of sodium

(0.97 Å) which is therefore expected to be highly mobile along the basal planes

of the material. This mobility also permits a series of different crystallographic

stacking sequences of the cobalt oxide and sodium layers to be formed during the

crystal growth procedure. The different crystallographic phases were first identified

by Fouassier [11] who labelled each phase with a Greek letter and identified the

dependence of the stacking sequences on the total sodium concentration x and

reaction temperature TR. The phases are defined more formally by the letters P

and O, which describe the alkali ion environment (trigonal prismatic and octahedral

respectively) and by a figure denoting the number of cobalt oxide layers included
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x 0.55-0.60 0.75 0.90-1.00

Phase β (P3) if TR ≤650◦C α’ (O1) α (O3)
label γ (P2) if TR ≥650◦C

Table 2.1: The phases of sodium cobaltate and their dependence on the total sodium
concentration x, after reference [11]. Samples with a nominal x value in between the
values given above are deemed to be phase separated combinations of the α, α’, β or γ
phases.

in the crystallographic unit cell. The labels for each structure are recorded in

table 2.1. Fouassier suggested that samples with x values in the gaps between the

ranges he specified for the α, α’, β and γ phases were simply mixtures of the two

closest permitted phases in the correct ratio. The γ (P2) phase is described by

the space group P63/mmc, and is the phase under investigation in this work. The

other phases of sodium cobaltate exhibit characteristics similar to those described

in this thesis; confusion between these phases and the existence of intrinsic phase

separation between different x compositions within the same sample have led to

conflicting experimental reports in the literature, as discussed in section 4.6.

The crystallographic structure may host intercalated heavy water within

the NaO2 layers, as shown in the right hand side of figure 2.1. The amount of

intercalated water is variable; thermogravimetric analysis (TGA) [12] shows stable

phases exist with y = 0.1, 0.3, 0.6 and 1.4, where y represents the number of

water molecules per formula unit. Knowledge of the c-axis lattice parameters for

each hydrated phase enables the volume fraction of each phase in a sample to be

identified with x-ray or neutron diffraction. Within a given hydrated phase, the

structure supports a variable amount of sodium, x [13]. The exact coordination

of the water to the crystal structure is currently under debate, and is discussed in

chapter 7.
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2.2 The Magnetic and Superconducting Phase Diagram

The electronic structure of sodium cobaltate is dependent on the sodium concen-

tration. The properties of the 3d transition metal oxides are characterised by the

behaviour of the electrons in the crystal field split upper eg and lower t2g bands; the

latter are further split by a trigonal distortion of the cobalt oxide octahedra into an

upper a1g band and two lower e′g bands. In the simple ionic picture, the electronic

properties of NaxCoO2 are tuned by the addition of x sodium atoms which, via

a redox reaction in the oxygen 2p orbitals, is equivalent to doping (1 − x) holes

onto the cobalt triangular lattice by the removal of electrons from the upper, fully

occupied a1g band. This introduces a mixed valency to the cobalt system that

has a formula of NaxCo3+
x Co4+

1−xO2, where the trivalent cobalt is non-magnetic,

and the tetravalent cobalt may exist in its low spin
(
t52ge

0
g

)
, medium spin

(
t42ge

1
g

)

or high spin
(
t32ge

2
g

)
state. In reality, this doping model does not adequately de-

scribe the Co d orbitals, in which intra-atomic electron correlations and spin-orbit

coupling should be accounted for. However, direct measurements of the cobalt va-

lency as a function of doping by iodometric titration measurements [14] show that

the general relation between sodium doping and cobalt valence holds true, despite

an observed decrease in the total formal valence due to oxygen non-stoichiometry

within the samples.

The fully stoichiometric system is, as predicted, a non-magnetic band in-

sulator [15]. As the doping level decreases towards x = 1
2
, the system exhibits

Curie-Weiss paramagnetism, with reported values for the unordered moment clus-

tered around the expected moment for a (1 − x) fraction of low spin (S = 1
2
)

Co4+. At low temperatures, the system is magnetically ordered. Inelastic neu-

tron spectroscopy [16] has characterised the magnetic interactions and identified

the magnetic structure as A-type antiferromagnetism, however, the unexpectedly

small size of the total ordered moment of just 0.13(2) µB per Co [17] has made

the identification of the ordered structure by neutron diffraction problematic. The
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Figure 2.2: The magnetic phase diagram of NaxCoO2. The symbols on the right depict
the reported SDW transition temperatures (circles - powder samples, squares - single
crystals, diamonds - crystals in this work), set against the proposed dome shaped phase.
The half doped phase exhibits antiferromagnetic ordering at 88 K (pink) followed by a MI
transition at 53 K (red) and a second magnetic transition at ∼20 K (purple) of unknown
origin. At x ∼ 1

3 , superconductivity exists in the hydrated/deuterated compound.

magnetic coupling constants calculated from the neutron spectroscopy studies also

predict remarkably isotropic magnetic interactions for a system with such highly

anisotropic macroscopic properties. In fact the simple magnetic structure used

to simulate the spin wave dispersions required the sample to be phase separated

into areas of spin half Co4+ and non-magnetic Co3+, rendering the analysis of the

magnetic interactions somewhat in doubt. The authors acknowledge the possi-

ble need for a more itinerant model with a small charge disproportionation. The

question of itinerancy is also raised in the explanation of the large conductivity

that gives sodium cobaltate such a high thermopower, in comparison to the lo-

calised magnetic characteristics; the x > 1
2

system is therefore commonly referred

to as a “Curie-Weiss metal”. In all other investigations, the magnetic ordering

is ascribed to a spin density wave (SDW), with the polarisation vector along the

c-axis perpendicular to the propagation of the wave in the basal planes. The exact

details of the SDW transition as a function of doping are currently under debate.

The vast majority of experimental reports place the critical temperature at 22

K [18, 19, 20, 21, 22, 23] for the doping range around x ∼0.75. A few reports
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of different ordering temperatures of 20 K [24, 25] or 28 K [26] exist, although

early indications suggest these different magnetic ordering temperatures belong to

phases other than the P2 ’γ’ structure. The reported ordering temperatures as a

function of sodium concentration are included in the phase diagram in figure 2.2.

Despite any concrete evidence, the SDW phase was reported to be dome shaped

with respect to x [25, 27], though later evaluations of the phase diagram [10]

acknowledge the SDW phase as a point compound at x =0.75 and 22K.

Whatever the nature of the SDW ordering, most authors agree that it is

present down to a Na concentration of ∼0.65 where upon the system becomes

paramagnetic once more. At x = 1
2

a special state is realised and new type of

magnetic ordering presents itself at 88 K. It has recently been identified as G-type

AFM by neutron diffraction [28] although, once again, the measured moment is less

than predicted at just 0.13(1) µB per Co. The system undergoes a metal-insulator

transition at 53 K and angle dependent giant magnetoresistance (GMR) [29] that

indicates an unusually strong spin-charge coupling. At lower temperatures still, a

further modification to the magnetism is apparent at ∼20 K, although the origin

of this low temperature state has yet to be identified. It is known that there ex-

ists long-ranged ordering of the Na cations [30] into quasi one dimensional chains

along a, enabling the crystal structure to be reclassified into an orthorhombic

super-cell of dimensions
(
2a ×

√
3a × c

)
. In this crystal setting, there are now

two Co sites. This led to speculation that the above transitions were the results of

charge ordering (CO) in the CoO2 planes, probably due to the influence of charge

modulations in the Na layer. More recently, however, the notion of a charge or-

dered Mott-like transition has been disputed. Nuclear magnetic resonance (NMR)

measurements [31] did not deduce any large difference in charge state between

the two sites. Crystal structure determination by powder neutron diffraction [32]

also failed to find a significant difference between the Co-O hybrization on the two

sites. A clear picture of the role of spin and orbital ordering in Na 1

2

CoO2 has yet

to be defined.
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Below x = 1
2

electronic correlation effects are weaker and the system be-

comes Pauli paramagnetic. The interest in this section of the phase diagram is

generated by the presence of superconductivity in the hydrated or deuterated com-

pound at x ∼ 1
3
. Early indications show sodium cobalt oxyhydrate to be an extreme

type II superconductor [33, 34], with most reported Meissner screening fractions

in the range of 10-20% [7, 33, 35, 36] suggesting the material is non-BCS, the

measurement suffers from flux pinning and/or weak link effects or more simply,

just a fraction of the sample volume is exhibiting superconductivity due to sample

inhomogeneity. The average reported critical temperature is 4.5 K, although this

is dependent on both the sodium and water content. Superconductivity is found

in the y = 1.4 phase only, suggesting that two dimensionality in the CoO2 planes

is enhanced due to the water shielding the Coulomb potential in the Na layer, and

the increase in the c-axis lattice parameter is critical to the superconducting pair-

ing mechanism. Initial confusion over whether the superconducting phase diagram

was dome shaped [37] or constant [38] with respect to sodium concentration was

resolved by Milne et al. [36] and Sakurai et al. [39] who discovered the interca-

lation of water is accompanied by oxonium (H3O
+) ions. Acting as an additional

dopant, the correct chemical formula of the superconducting compound is written

Nax(H3O)zCoO2 · yH2O. The cobalt valence is determined not only by the sodium

content x, but by the ratio of oxonium to sodium z/x. The true superconducting

phase diagram is evidently complex and both dome shaped and constant doping

may be obtained via different projections of the x− z−T phase diagram onto the

x − T plane.

2.2.1 The Superconducting Pairing Mechanism

The origin of superconductivity in this system is a topic currently under debate.

At first sight, many analogies to the high TC cuprates may be drawn. Firstly, the

layered structure consisting of electronically active cobalt oxide layers separated

by the doping layer of Na ions merits the application of the charge-transfer model

29



to this system. The apparent existence of an optimal electronic doping that leads

to a maximum superconducting transition temperature also closely resembles the

physics of the HTSCs. The system differs however, in the arrangement of the

cobalt onto a triangular lattice rather than the nearly square lattice as found in

the cuprates and the fact that in this system, there are two bands intersecting the

Fermi surface, neither of which are half filled. The inclusion of oxonium doping into

the phase diagram, and careful measurements performed by redox titration [36]

placed the optimal cobalt valence at 3.3, rather than 3.7 as suggested by the simple

ionic model presented above. This is the doping phase at which the SDW magnetic

ordering is observed and has led to speculation that the superconductivity arises

from the presence of FM correlations found in the ab planes of the anhydrous

compound [40], as predicted by LDA calculations performed by Singh et al. [41],

suggesting a p-wave spin-triplet pairing mechanism. Alternatively, superconduc-

tivity may be achieved by modifications to the strong electronic correlations, also

found at x ∼0.7, during the hydration process.

Experimental studies designed to elucidate the nature of the pairing mech-

anism have produced conflicting results. Some muon spin relaxation (µSR), NMR

and nuclear quadrupole resonance (NQR) measurements found non-exponential

behaviour below TC , incompatible with a conventional s-wave, fully gapped state [42,

43]. Contrary to this, another study observed the coherence peak in the spin-lattice

relaxation curve below TC [44], absent in the previous two reports, which does

indicate a spin-singlet s-wave pairing mechanism. Conclusions based on low tem-

perature heat capacity data are also varied amongst different authors, with some

proposing a line-nodal order parameter [35, 45, 46] whilst others suggest spin sin-

glet pairing [47] and even two gap superconductivity as seen in MgB2 [48]. It is

evident that the real origin of the superconductivity in sodium cobalt oxyhydrate

currently remains elusive, with both experimental and theoretical investigations in

their infancy. The conflicting experimental evidence almost certainly results from

the sensitivity of the system to all three of the variable parameters in the doping
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Figure 2.3: Fermi surface reconstructions of NaxCoO2 with x = 0.74 (A), x = 0.51
(B), x = 0.38 (C) and the deuterated compound with x = 0.35 (D). The black lines
indicate the boundary of the first Brillouin zone.

phase diagram - x, z and y.

2.3 The Fermi Surface Topology

The majority of experimental reports deduce spin triplet pairing for the Cooper pair

formation mechanism. As discussed in section 1.2.2, the orbital angular momentum

must consequently take an odd value, with either p- or f -wave symmetry. All

the possible pairing states allowed by the hexagonal symmetry of the system are

discussed by Mazin et al. [49], who deduce f -wave pairing to be most likely from

the currently available experimental evidence. The Cooper pair attraction results

from an instability at the FS of the system, and hence a detailed knowledge of the

electronic structure is necessary. The predicted FS of sodium cobaltate [50, 51]

is characterised by a large hexagonal hole sheet centered around the Γ point with

predominantly a1g symmetry surrounded by six smaller elliptical e′g hole pockets

directed along the (110) or ΓK directions, for x values smaller than ∼0.6. Many

of the proposed theories on the nature of the superconductivity, rely heavily on

the existence of the e′g pockets as the nodes of possible nesting vectors, which

have hitherto not been detected despite numerous angle resolved photoemission

spectroscopy (ARPES) experiments [52, 53, 54, 55], casting doubt on the validity

of the previous LDA results. Several adaptations to the theoretical electronic

structure were made in order to understand the properties of sodium cobaltate in
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Figure 2.4: Left: A simulation of the boundaries of the Fermi surface (including the large
hexagonal sheet and the six small pockets). Right: A convolution of the experimental
resolution function with the simulated FS produces an occupational density map similar
to those presented in figure 2.3.

the absence of the hole pockets [56, 57], however, these studies acknowledge the

sensitivity of ARPES measurements to the surface state of a sample, including

possible relaxation of the CoO6 octahedral trigonal distortions and Na disorder,

that may destroy the e′g pockets altogether.

Figure 2.3 shows the experimentally obtained Fermi surface reconstruc-

tions made from the electron momentum distribution in both the anhydrous and

deuterated systems measured from single crystals produced at Warwick using the

technique of x-ray Compton scattering [58]. A Compton profile is a bulk mea-

surement and represents a one dimensional projection of the electron momentum

density. Given the hexagonal symmetry of the underlying crystallographic structure

and electronic properties, a reconstruction of the entire FS was made possible by

taking just five equally spaced measurements between ΓK and ΓM . The results

clearly show the distortion of the a1g sheet by the hole pockets for x ≤0.6 as

indicated by the convolution of the experimental resolution to the predicted FS

shown in figure 2.4. It is important to note that the hole pockets are still evident

in the deuterated compound and may well play a significant role in the formation

of the superconducting state.
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Chapter 3

Crystal Growth and Experimental

Techniques

3.1 Polycrystalline Sample Preparation

The NaxCoO2 material was synthesised in a polycrystalline form by means of a

solid state reaction of Na2CO3 and CoO mixed in a sodium to cobalt ratio of x:1.

The powders were calcined at 750◦C for 12 hours in an alumina crucible in an

oxygen atmosphere, i.e. heated to a temperature below that at which the reaction

takes place but high enough to decompose the carbonate:

Na2CO3 → Na2O + CO2 (3.1)

The resulting mixture, which is reground to ensure homogeneity, now contains the

correct starting compounds necessary to make sodium cobaltate. The powder was

heated in oxygen to 850◦C for 24 hours, during which time the following reaction

takes place:
(

x

2

)
Na2O + CoO +

(
1 − x

2

)
O → NaxCoO2 (3.2)

As discussed in section 2.1, these materials were first made by Fouassier et al. [11],

who noted that this reaction is stable only for x ≥ 0.6. Indeed, attempts to

make samples with lower sodium content produced a powder containing an x ∼0.7

sodium cobaltate phase and cobalt oxide impurity made from the remainder of the
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Figure 3.1: The diffraction process in real (left) and reciprocal (right) space. Parallel,
monochromatic x-rays (red) are incident on planes of atoms (purple spheres). The
scattered rays that are in phase with one another are shown in blue. In reciprocal space,
planes of atoms are denoted by points (pink spheres). Only those reciprocal lattice points
that are intersected by the Ewald sphere (yellow spheres) satisfy the Bragg condition.

Co in the starting material. All powders were therefore synthesised with x ∼= 0.75

and the sodium removed at a later time, as described in section 3.5.

Compounds containing sodium are very volatile and the bulk sodium con-

tent is lowered during both the above procedures. To minimize the amount of

Na lost, the powders were placed in the furnace after the temperature set point

had been reached. Since the composition of the product is non-stoichiometric, the

exact amount of sodium lost is not important as the concentration can be mea-

sured after the manufacturing process (see section 3.6). It is necessary therefore

to start with excess sodium carbonate; typically a starting mixture with x = 0.77

will produce powder with a sodium level of ∼0.75.

3.2 X-ray Characterisation

If a sample is bathed in a parallel beam of monochromatic x-rays, the incident

rays will scatter isotropically from the atoms in the sample. If the sample also

exhibits crystalline order, the x-rays scattered in certain directions will be in phase,

reinforcing one another to produce a measurable signal. Consider a set of parallel

atomic planes, on which a beam of x-rays is incident at an angle θ as shown in

figure 3.1. The x-rays hit atoms A and B and scatter in all directions. The path
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difference between the trajectories of the two waves that hit A and B that are

reflected at the same angle (as shown by the blue lines) is equal to:

qB − rA = AB cos θ − AB cos θ = 0 (3.3)

and so the top two “blue” x-rays will be in phase with each other and interfere

constructively. In fact, rays scattered by all the atoms in the first plane that are

parallel to the blue rays will have a zero path length difference and so contribute to

the diffracted beam. Path length differences for rays between the first and second

layers will be equal to:

sC + Ct = D sin θ + D sin θ (3.4)

and will also contribute to the total diffracted beam intensity, so long as the

quantity in equation 3.4 is equal to a whole number of wavelengths, i.e. nλ, where

n is an integer. Therefore diffracted x-rays from a periodic array of atoms have

definite phase relations between them. Higher order reflections (i.e. n >1) can

be considered as a first order reflection from planes (real or imaginary) spaced at

distances of 1/n times the original spacing D. The relation derived in equation 3.4

can therefore be expressed as:

λ = 2d sin θ (3.5)

where d = D/n. This is known as Bragg’s law and is the essential condition which

must be met if diffraction is to occur. This is true of any scattering mechanism,

be it light, x-rays or neutrons.

The diffraction process is neatly described using the Fourier transform of

the real space lattice. Planes of atoms in real space are described by points in

reciprocal space at a distance of 1/d from the origin in a direction perpendicular to

the original reflecting planes. If the incident beam is plotted in a direction parallel

to its real space equivalent, with a length of 1/λ Å
−1

, terminating at the origin

of the reciprocal crystal lattice, the three dimensional locus of vectors with the

same length and origin as ki will indicate all the possible configurations of kf for
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Figure 3.2: Panel A: The scattering (blue ray) of an incident x-ray (red) from a set
of reflecting planes in a crystallite (grey). Random orientations of the polycrystalline
particles within the sample result in cones of diffracted rays. The resulting intensity
versus 2θ curve is shown in the inset. Panel B: The experimental set up of a powder
diffraction experiment. Both the x-ray source and the detector are scanned through
values of θ.

elastic scattering. This is known as the Ewald sphere construction and is shown

(in two dimensions) on the right hand side of figure 3.1. Only the reciprocal lattice

points that intersect with the Ewald sphere will be capable of satisfying the Bragg

condition and contributing to the coherent scattering.

It is clear therefore, that diffraction provides a technique for determining

the spacing between lattice planes in a crystalline sample, from which the crystal

symmetry and lattice constants may be deduced. There are several laboratory

techniques for measuring x-ray diffraction, corresponding to the variation of the

two independent parameters in equation 3.5. In powder x-ray diffraction, the

wavelength of the radiation is kept constant and the diffraction angle 2θ is varied.

A polycrystalline powder sample consists of small crystallites, aligned randomly

with respect to one another. Consider panel A in figure 3.2. The incident (red) and

reflected (blue) rays are coplanar with the vector normal to the diffracting planes

in the sample; the random alignment of the many micro-grains circumscribe all

the possible orientations of the blue x-ray onto the surface of a cone. The process

measured in this experiment is that of elastic scattering and hence the red and blue

vectors must be of equal magnitude. Therefore planes with larger d spacings will
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produce cones with smaller solid angles. The detector is scanned from the straight

through beam with increasing values of 2θ; a peak is observed each time the

camera intersects one of these scattering cones. The measurements are carried

out in a Bruker D5005 diffractometer using a rotating anode source with a Cu

target and a scintillation counter detector. Both the x-ray source and the detector

are rotated during the measurement. Information of powder diffraction data for

most compounds can be obtained from The International Centre for Diffraction

Data (ICDD) Powder Diffraction File (PDF) database. A program searches the

sample diffraction pattern for a list of peaks, which is compared to the PDF library.

The purity of the sample under study can then be ascertained; a calculation of

the volume fraction of any impurities is made possible by comparing the intensity

ratios of the strongest peaks in the diffraction patterns. Signal to noise ratios for

typical measurements enable impurity levels of greater than ∼2% to be identified.

3.3 Single Crystal Production - The Floating Zone Method

The powders were isostatically pressed into cylindrical rods 1 cm in diameter and

7 cm in length. A previously grown crystal (or another polycrystalline rod) was

mounted directly underneath and used as a growth “seed”. The two rods were

then enclosed within a quartz tube that was pressurised to 2.5 atmospheres of O2

in order to suppress the loss of sodium. The furnaces make use of the heat of IR

emitting halogen lamps, the rays of which are focused on the ends of the rods by

the use of ellipsoidal mirrors, which produce enough heat to melt the sample. Chen

et al. [38] determined this temperature to be ∼1100◦C using thermogravimetric

analysis. Direct temperature measurement in the image furnace by pyrometry is

not possible since, by definition, all viewing axes inside the mirrors are focused

on the image of the lamps. It is therefore the lamp temperature, rather than the

sample temperature that is probed. The two molten rods are brought together,

whilst rotating in opposite directions at 30 rpm to ensure a homogeneous mix of
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material and stability of the molten crystal. This “floating zone” is then scanned

along the entire length of the polycrystalline rod. At first, the crystal growth rate

was set at the high value of 10 mm hr−1 to minimise the loss of sodium from the

sample. After the growth, the quartz tube was covered in a film of white powder,

identified as Na2O by x-ray powder diffraction analysis1. Later crystal growths

were done in two stages. The powder rod was first solidified with a “fast scan” of

the zone at 30 mm hr−1 in order to densify the crystal starting material. This rod

was then inverted and scanned at much slower rate of 2 mm hr−1. Measurement

of the masses before and after growth revealed that the maximum sodium loss in

both the fast and slow methods was ∼1% and must occur as the material is being

heated rather than as a function of time whilst molten. The resulting crystal

boule was usually oriented with a∗ along the length of the crystal and with c∗

perpendicular to the growth axis which could be identified by the visible facets on

the boule surface. Single crystals were cut by taking slices along the boule with a

circular diamond saw and cleaving perpendicular to c∗ with a razor. The resulting

crystals were rectangular in habit with dimensions as large as 8 × 12 mm2 in the

ab plane and 2 mm along c. The edges of the crystal boules usually contained

volumes of crystal domains that were misaligned along c and hence a large volume

of crystal had to be produced in order to collect a reasonable mass of single crystal

that could be used in the experiments described in this thesis. A total of 18 crystal

boules were therefore made over the course of two and half years.

Cleaved crystals were examined in a JEOL 6100 scanning electron micro-

scope (SEM) with the incoming electron beam oriented perpendicular to the crys-

tallographic c-axis. The backscattered electron density measures electrons that

have direct collisions with atoms and can thus differentiate between atoms of

different atomic species since the number of scattered electrons is proportional

to the size of the electron cloud of the atom. Analysis of the images taken in

1The diffraction pattern was identified as that of Na2CO3 by comparison to ICDD powder diffraction
file 19-1130. No carbonate impurity existed in the crystal precursor material or in the furnace atmosphere
and it is therefore assumed that sodium oxide is produced during the crystal growth which then reacts
with carbon dioxide once the furnace is opened.
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100 mm 10 mm

Figure 3.3: Two SEM pictures of a Na0.7CoO2 crystal. The image on the left shows
an inclusion of misaligned crystallites with planar spacings of ∼3 µm. The second
image shows a dislocation in the ab plane with hexagonal symmetry. Microcrystals, also
identified to be NaxCoO2 are visible on the surface.

backscattered mode reveal the crystal surface to be single phased with no evi-

dence of impurities. The SEM was then switched to secondary electron mode with

an incident electron energy of 22 kV. Secondary electrons occur when an incident

electron passes near enough to an atom to impart some of its energy to an atomic

electron. This results in a slight change in direction of the original electron and

the ionisation of the bound electron state, the secondary electron. These electrons

have very small energies and hence only those within ∼10 nm of the surface of the

sample can escape and be detected. Any feature of the surface that is larger than

10 nm will change the yield of secondary electrons so that the surface morphology

can be imaged. Whilst the majority of the crystal surface is mostly featureless,

occasionally crystal growth faults are visible. Images of two such faults are shown

in figure 3.3. Inclusions of misaligned crystallites are most likely a result of the fast

growth rates used. Dislocations in the basal planes are more common and show up

the hexagonal symmetry of the underlying crystal structure. These dislocations, if

they persist through the depth of the crystal, are probably the cause of the multiple

domains seen in the neutron scattering study in chapter 6 and will also have an

effect on the value of the resistance measurements reported in chapter 4.

X-rays are also emitted when an outer electron recombines with the hole
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Figure 3.4: A schematic diagram of an x-ray Laue experiment. A white beam of x-
rays illuminates a crystalline sample and the diffracted beams are visible as a series
of spots on a photographic film or CCD camera. The method pictured above utilises
back-scattering geometry; measurements may also be taken in transmission.

produced by the creation of the secondary electron. The energy of these x-rays

are specific to the energy levels of each atom and therefore permit quantitative

analysis of the chemistry of the sample under study. This process is known as

energy dispersive x-ray analysis (EDX) and was used to determine the amount of

sodium in the crystal, discussed in section 3.6.

3.4 X-ray Laue photography

The complementary x-ray diffraction technique to that described in section 3.2,

used for the characterisation of single crystal samples, is x-ray Laue photography.

A white beam of x-rays is incident on a crystal, having passed through a hole in

a photographic film or CCD camera, and diffracted rays are emitted in all direc-

tions in three dimensions in which the Bragg condition is satisfied. The incident

beam contains a continuum of wavelengths; in reciprocal space this conforms to

a continuous distribution of Ewald spheres so that many diffracting planes satisfy

Bragg’s law simultaneously. An alternative way of viewing the process is that θ

is fixed for every diffracting plane, each one selects the particular wavelength for

Bragg diffraction producing a spot on the photographic film. The spots on any one
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Figure 3.5: Two Laue photographs of Na0.7CoO2 taken with a voltage of 40 kV, a
current of 100 mA and 10 minutes exposure time. Pictures A and B relate to two
different orientations of the crystal to the incident beam. Knowledge of the space group,
lattice parameters and reciprocal lattice directions of the crystal enable simulations to be
made for comparison. Note: The images are electronic copies of photographic film, and
whilst the image colours have been inverted to improve clarity, the high colour contrast
makes it difficult to appreciate the full range of visible spots.

curve, as shown in figure 3.4, belong to the same zone (for example [00l]) since

these reflections lie on the surface of an imaginary cone whose zone axis is coin-

cident with the cone axis. The symmetry of the pattern of spots depends on the

symmetry of the crystal as viewed down the camera axis. Analysis of the patterns

allows the crystallographic axes of the sample to be identified. Two such patterns

from a NaxCoO2 crystal are shown in figure 3.5, along with simulated patterns

using the crystallographic indexing software “OrientExpress” [59]. In panel A, the

x-ray beam was oriented along the c axis of the crystal; the hexagonal symmetry

of the lattice in the ab plane is evident in the diffraction pattern. Panel B shows

an image taken with the crystal rotated through 90◦. The sharp array of spots in

the pattern, and the good match to the simulation, show that the crystal has clear,

long-ranged order. However, x-rays penetrate only the surface of the material. To

ensure the sample is a single crystal throughout, images must be taken along the

length of the sample and along equivalent directions.
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3.5 Sodium Deintercalation Technique

In order to access a large portion of the magnetic phase diagram, sodium was re-

moved from the Na0.75CoO2 materials using a chemical deintercalation technique.

Crystals were immersed in solutions of either Br2:CH3CN or I2:CH3CN. The use of

halogens to oxidise metals (producing halides as a byproduct) is a relatively simple

laboratory technique, however bromine and iodine are both toxic and caustic ma-

terials, and care must be taken when handling the chemicals. The deintercalation

process is described by:

NaxCoO2 +
1

2
Br2/I2 → Na(x−y)CoO2 + yNaBr/I (3.6)

Full deintercalation to a stoichiometry of x = 0 is theoretically made possi-

ble by using a Br/I concentration of y = x. With knowledge of the starting com-

position x, the mass of the crystal and the molecular masses of the compounds in

equation 3.6, the amount of Br/I needed to achieve a new sodium concentration

of (x − y) is easily computed. In reality a much stronger concentration is neces-

sary as the majority of the halogen remains in the acetonitrile (CH3CN) solution

without reacting with the sodium cobaltate. The deintercalation technique was

optimsed using I2 as an oxidising agent and an empirical relation was found where

a 1:1 mass ratio of Na0.75CoO2 to I2 produces a change in sodium concentration

of (x − y) = 0.2. The addition of acetonitrile was necessary to dissolve the iodine

and provide a solution for the deposition of the sodium halide. The exact amount

used is unimportant, but was kept constant at ∼40 ml per gram of NaxCoO2.

The kinetics of the sodium removal process is still unclear. Initial exper-

imental results using powders reported deintercalation processes taking between

one and five days [10]. The equivalent process for single crystal samples was

estimated to have deintercalation times an order of magnitude greater. In fact,

the large spacing between the CoO2 layers enables high ionic mobility within the

(hk0) planes. Typical deintercalation times for single crystal samples reported in

42



0 50 100 150 200
0

1

2

3

4

5

 sample 1
 sample 2

 

 

M
as

s 
lo

ss
 (

%
)

Hours in I
2

Figure 3.6: The mass lost from two large single crystal samples placed in two different
strengths of iodine-acetonitrile solutions are plotted as a function of time. The percent
reduction in the total crystal mass decreases with increasing time; the entire process is
complete after just one week. The black line is a fit to the data, the dashed line is a
copy of the first fit, scaled to the relative strength of the new solution.

the literature are of the order of one or two weeks [25]. To test this, two large

(3.2 g and 4.6 g) crystal boules were placed in I2:CH3CN solution with the aim of

changing x from 0.75 to 0.50, and the amount of sodium removed was monitored

by measuring the mass lost from the sample (see section 3.6) at regular intervals.

The mass loss (ML) with respect to time (t), shown in figure 3.6, fitted an inverse

exponential decay law ML = ML0 + Aexp (−t/τ) where ML0 is the mass loss

related to the value of (x − y), A is a constant and τ a characteristic timescale.

The deintercalation process is predicted to be complete after ∼165 hours, in good

agreement with the reported values. However, after 100 hours the crystals were

placed in a new I2:CH3CN solution with just one third of the iodine mass used

previously, in order to attain ∼5% total mass loss in accordance with a value of

(x − y) = 0.25. The data from the fit obtained previously was scaled along ML

by a factor of a third, and the origin of the curve translated to the last measured

values of (ML, t). The mass loss was monitored for a further 100 hours; the data

for both samples fit remarkably well to the empirical fit.

A second technique for the removal of sodium in NaxCoO2 is described
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in reference [60]. The process uses the sodium cobaltate crystal as an anode in

an electrochemical cell with NaOH as the electrolyte solution, with a Pt cathode

and a Ag/AgCl reference electrode. Sodium is deintercalated through the reaction

NaxCoO2 + δ (OH)− → Nax−δCoO2 + δ (NaOH) + δe− by the application of

small voltage across the NaxCoO2-Pt circuit.

3.6 Doping Level Monitoring Techniques

The magnetic properties of sodium cobaltate are highly sensitive to the exact level

of sodium within the system. An accurate determination of x for each sample

is imperative for the characterisation of the magnetic phase diagram. The lack

of clarity in the determination of the exact sodium content of a sample is almost

certainly the origin of the large number of conflicting results in experimental reports

on studies of samples with nominal x values, as discussed in chapter 2. There are

two main techniques used to measure x that are used widely in the literature.

The first is Inductively Coupled Plasma Atomic Emission Spectroscopy

(ICP-AES). The samples are dissolved in nitric acid to produce an aqueous so-

lution, before being introduced into the core of an inductively coupled plasma

(usually argon at >8000◦C). The thermal excitation of each element in the sam-

ple results in the emission of light at characteristic wavelengths. The full spectrum

is passed through a diffraction grating so that a profile of light intensity as a func-

tion of λ may be obtained. The relative intensities for each element produce a mass

ratio for all the elements in the sample, when calibrated with a sample of known

elemental concentration. The necessary equipment to carry out this procedure

is not readily available to the Superconductivity & Magnetism Group and so the

samples were analysed by Warwick Analytical Services [61]. A series of samples,

both polycrystalline and single crystal, were sent for analysis in order to determine

the characteristics of the sodium deintercalation process. The process suffers from

several drawbacks. Firstly, this is a destructive measurement technique; it is more
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useful to determine x before the measurements are made rather than afterwards.

Secondly, although the technique is relatively precise (with an error in x of just

5%) the absolute accuracy depends on a calibration to a standard sample. During

the powder reaction processes, an unknown quantity of sodium is lost, and so the

production of a standard to calibrate the other measurements against is difficult.

Thirdly, the process describes the bulk measurement of the elemental concentra-

tions for the whole sample: any information about ∆x across the sample is lost.

Finally, the subcontracting of measurements to a private company is both costly

and time consuming.

The second technique, energy dispersive x-ray analysis (EDX), was de-

scribed in section 3.3. Although time consuming, this process provides a measure

of the elemental mass ratios in an area localised to the finite size of the x-ray

beam. The spread in sodium concentration across the surface of a sample can

therefore be measured. Typically distributions in sodium content were found to be

of the order of ∆x = 0.01. EDX probes just the sample surface. In order to verify

the crystals were single phased throughout the layers, several samples were cleaved

in half. The stoichiometry of the freshly cleaved phases was found to agree well

with the value measured for the outside of the crystal.

Several other techniques for estimating x were developed throughout the

course of this thesis work. The first relies on the rather obvious fact that as sodium

is removed from the sample, the mass decreases. This enables the deintercalation

process to be monitored as a function of time, as shown in diagram 3.6. The

change in mass (∆m) can be related to the change in sodium content (x − y)

with knowledge of the molar masses of Na, Co and O:

y =
1

m (Na)
[∆m xm (Na) + (∆m − 1) m (CoO2)] (3.7)

Again, this technique relies on knowledge of the starting composition x, and the

results therefore must be calibrated against other measurements. For instance,

if a large group of samples (∼15) are subject to deintercalation with a range
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Figure 3.7: Panel A: The relationship between the c-axis lattice parameter and the
sodium content x; reproduced from Huang et al.[10] and Foo et al. [25]. Panel B:
Measurements of x on a set of crystals deintercalated in increasing strengths of I2:CH3CN
solution (M denotes the amount of I2 theoretically needed to remove all the sodium).

of strengths of Br2/I2 solutions, the magnetic susceptibility of each one can be

measured and the sample with the largest indication of the magnetic ordering

found at x = 1
2

assigned to that particular stoichiometry.

The final technique used to determine the sodium content of samples makes

use of the well characterised variation of the c-axis lattice parameter as a function

of x. It is known that the reduction in sodium content produces an increase in the

NaO2 layer because of a reduced interlayer Coulomb attraction that is not offset by

the small decrease in the CoO2 layer caused by the decrease in the cobalt valence.

Using the results of neutron and x-ray powder diffraction [10, 25] a calibration

curve of c versus x may be produced (as shown in panel A of figure 3.7). The

c-axis reflections are measured using the diffractometer described in section 3.2,

from which c and therefore x may be determined.

Panel B of figure 3.7 shows results obtained for a set of crystals placed

in increasing strengths of I2:CH3CN solutions, where 1M denotes the amount of

I2 theoretically needed to remove all of the sodium in the sample (equivalent to

y = x in equation 3.6), left for sufficient time for the full deintercalation process

to take place. Measurements of x were obtained by measuring the change in mass,

EDX measurements and c-axis lattice parameter measurements. It is clear that
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gram of a SQuID magnetome-
ter (not to scale). The sam-
ple is scanned along z through
the pick-up coils. The change
in current within the detec-
tion system is measured by the
SQuID sensor, which is located
inside a superconducting shield
(not shown). The measured
voltage response curve is fitted
and a value of the magnetisa-
tion computed.

all three techniques give results generally in good agreement with one another.

It is through the crystal characterisation using these three techniques that the

relationship between iodine concentration and change in x, as stated in section 3.5,

was obtained. The deintercalation process as a function of I2 concentration was

repeated a further two times, with identical results obtained showing that the

process is repeatable and sample independent.

3.7 Magnetisation Measurements

3.7.1 The SQuID Magnetometer

A magnetometer uses the principle of Faraday’s Law of electromagnetic induc-

tion in order to measure the magnetisation of a sample using a set of pick-up

coils. The detection coil is superconducting itself, and wound in the formation

of a second-derivative gradiometer. The sample is step-scanned through the gra-

diometer, the change of magnetic flux associated with this movement produces a

change in the persistent current. These pick-up coils are inductively coupled via

a set of superconducting wires to a Superconducting Quantum Interference De-

vice (SQuID) located inside a magnetic shield below the sample space. A SQuID

consists of a superconducting ring with two Josephson junctions in parallel; vari-

ations in the current in the detection coils result in proportional variations in the
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Figure 3.9: The components of the Mcell10 hydrostatic pressure cell, reproduced from
reference [62].

SQuID output voltage. The calibration of this voltage response curve to a sample

of known mass and magnetic susceptibility enables the measurement of magnetic

moments in other samples. The SQuID essentially acts as an extremely sensitive

flux-to-current-to-voltage converter and is capable of resolving moments as small

as 5×10−7 emu. The measurements may be taken over a temperature range of

1.8 - 400 K, with an externally applied field of up to 50 kOe.

3.7.2 Magnetisation Measurements Under Pressure

Magnetisation measurements made under external pressures of up to 10 kbar were

made using the easyLab Technologies’ Mcell 10 hydrostatic pressure cell [62]. The

cell is designed for use with the Quantum Design MPMS SQuID magnetometer

as described in section 3.7.1, a schematic diagram of the equipment is shown in

figure 3.9. The sample is loaded in a PTFE capsule filled with Daphne oil (the pres-

sure transmitting medium). Pressure is applied to the capsule via the two ceramic

pistons using a hydraulic press, and maintained by tightening the end locking nuts.

The pressure is measured in situ via the use of a Sn manometer placed alongside

the sample, using knowledge of the variation in the superconducting critical tem-

48



perature of tin as a function of pressure. The method of data collection makes use

of the automatic background subtraction feature of the MPMS magnetometer, in

which the voltage response curves for the empty cell are recorded at the relevant

temperatures and fields and then subtracted from the total voltage response from

the cell plus the sample. The fit of the difference curve therefore gives the value

of the moment in the sample. In order to carry out this subtraction procedure

effectively a dummy capsule, shorter in length than the real capsule, is used in the

background measurements in order to mimic the change in length with applied

pressure. Using this method, magnetic moments as low as 1×10−5 emu may be

measured.

3.7.3 The Vibrating Sample Magnetometer

In the Vibrating Sample Magnetometer (VSM), the sample is mounted equidistant

between two pick-up coils wound in opposite senses, and vibrated about this central

position with a known frequency (usually in the audio range). The induced a.c.

voltages in each coil are added together and the signal amplified and recorded.

The use of a heavy frame ensures the vibrating motor and the pick-up coils are

vibrationally isolated from one another and the whole system is mounted on a

concrete platform so that external vibrations are also strongly damped. Calibration

of the voltage to a sample of known mass and magnetisation enables the output

of magnetic moments for the sample under study to an accuracy of 5×10−6 emu.

As in the SQuID magnetometer, a superconducting solenoid is placed outside of

the pick-up coils and produces a vertical field of up to 120 kOe. The temperature

control system facilitates the taking of measurements between 1.4 and 300 K.

3.7.4 χac Magnetometry

ac magnetic susceptibility was measured using a standard mutual inductance tech-

nique. A primary coil provides an alternating field in a frequency range of 20-

20000 Hz with typical excitation fields of a few oersted. Inside the primary coil lies
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a secondary (pick-up) coil, which consists of two coils wound in opposite senses.

The sample is placed inside the first area of the pick-up coil and the voltage mea-

sured. It is then moved to the second area and the voltage measured once more.

The difference between these two measurements is equal to twice the voltage in-

duced in the pick-up coil from the sample alone and enables the background signal

to be eliminated.

It is the dynamics of the magnetisation that are under investigation in a χac

measurement; the measurement is sensitive to dM/dH rather than the absolute

value of M(H) so that small changes in the magnetisation are apparent. Both the

magnitude of the susceptibility and the phase shift relative to the driving frequency

are measured, yielding both the real and imaginary parts to χac. The second of

these two quantities describes the dissipation of the moments within the sample

and is therefore an important measurement in systems such as spin glasses.

3.8 Heat Capacity Measurements

The measurement procedure employed in the Physical Properties Measurement

System (PPMS) is a pulse-relaxation calorimetry technique. The sample is mounted

on a platform (using Apeizon H or N grease to ensure good thermal contact) to

which a heater and thermometer are attached. The platform is suspended from

the sample puck by wires, which supply the heating power as well as providing

thermal contact to the cryogenic bath (the puck). Heat is applied to the platform

at a constant rate until T has increased by a designated proportion of the set point

(typically 1%). The heating power is then removed and the sample and platform

temperature relaxes exponentially back to the set point. The measurement of

the temperature versus time can then be fitted using a two-tau relaxation model.

The exponential decay consists of two decay modes, one related to the thermal

conductivity between the platform and the puck and another proportional to the

heat capacity of the sample. The first quantity is estimated from a background
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Figure 3.10: Experimental arrangements for anisotropic resistivity measurements, with
the current flowing in the ab planes (left) and along the c-axis (right).

measurement of the platform and Apeizon grease under the same conditions as the

actual measurement. The sample heat capacity can then be calculated. This mea-

surement technique relies on the presence of a good vacuum (less than 1 mTorr)

to ensure no thermal link to the bath exists through residual helium in the sample

space. The thermal diffusion time in the sample must be small in comparison

to the time constant; i.e. the platform-sample system must be capable of reach-

ing thermal equilibrium quickly since the presence of persistent high temperature

gradients within the sample results in inaccurate measurements.

Measurements made using the PPMS may be obtained over a temperature

range of 400 mK to 400 K using both a standard 4He system and a 3He insert.

The magnet is capable of providing external fields of up to 90 kOe and measure-

ments may be taken with the sample oriented with the c-axis either parallel or

perpendicular to H.

3.9 Transport Measurements

Measurements of the dc resistivity (ρdc) were made in a Quantum Design PPMS

under applied fields of up to 90 kOe and a temperature range of 1.8 - 400 K.

Current densities in the range of 0.2 - 2 A cm−2 were applied to single crystal

samples through fine silver wires attached to the sample with silver epoxy. A

standard four probe geometry was used for the measurements of ρ in the ab plane.
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Measurements along the c-axis were made with the current (I) contacts attached

to the ab planes of the crystals and the voltage leads also on the ab faces (as shown

in figure 3.10). Measurements were made with the field oriented both parallel and

perpendicular to c, in order to probe the nature of the magnetoresistance (MR) in

NaxCoO2.

3.10 Constant Wavelength Neutron Diffraction

Neutrons are produced in two different ways, through the fission of 235U in a

nuclear reactor (as used at the Institut Laue Langevin (ILL) and the Laboratoire

Léon Brillouin (LLB) in France) or through a spallation process which involves

the collision of high energy protons that have been accelerated in a synchrotron

with a heavy metal target (as at ISIS in the UK or the Paul Scherrer Institut

(PSI) in Switzerland). Both processes require the use of a room-temperature

moderator, in which the neutrons are slowed to thermal velocities via collisions

with light atoms such as deuterium. The resulting neutron flux has a Maxwellian

distribution of energies, the central energy value corresponding to the temperature

of the moderator. For diffraction experiments, as is the case for the x-ray diffraction

measurements described in section 3.2, the wavelength should be kept constant

whilst the diffraction angle is varied. The beams are therefore monochromated

by diffraction from high quality crystals or a mechanical rotating device known

as a chopper, which permits neutrons that are travelling at the correct velocities

to pass through a small window. In the first case, higher order diffraction with

wavelengths of λN/n also occurs. These secondary wavelengths must be removed

by filters, but monochromation of this kind results in a continuous beam and is

the method used at PSI. The second method, used at ISIS, results in a pulsed

neutron beam with an error in λN related to the width of the chopper window. A

pulsed neutron beam necessitates an analysis method known as time-of-flight. In

the detector system of the instrument, the neutrons are counted both as a function
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of position and time. The time taken (t) for the neutron to travel a distance L

from the chopper to the sample to the detector can be used to determine the

magnitude of kf via the relation |kf | = mNL/h̄t.

Any sections of the sample environment or mounting through which the

incident and scattered neutron beams must pass are made from aluminium which

has a negligible absorption and incoherent scattering cross section. Any sections of

the sample mounting equipment which the experimenter wishes to remain “hidden”

from the neutron beam are wrapped in cadmium, which has an exceptionally high

absorption cross section. The detectors in all of the neutron scattering instruments

used in this thesis work were position sensitive 3He detectors (PSD). When a

neutron enters the detector, the helium gas inside the chamber is ionised via the

following reaction:

3
2He + n →3

1 H + p + 0.77 MeV (3.8)

If a voltage is applied across the gas chamber, the emitted charged He ions result

in a measurable electrical pulse.

In a powder neutron diffraction experiment, an array of 3He detectors are

placed on an arc, each one equidistant from the sample. Rather than scanning a

detector through a range of 2θ values, data at each angle are collected simultane-

ously. In a single crystal diffraction experiment, the sample is rotated through the

Bragg condition and a plot of neutron counts versus rotation angle is recorded.

The resulting curve is fitted to a Gaussian or Lorentzian distribution and the in-

tegrated area used to determine a quantity known as the nuclear structure factor,

defined as:

FN (q) =
∑

i

bie
iq.Ri−Wi(q) (3.9)

where Ri represents the position vector of atom i within the unit cell and the

last term in the exponential is known as the Debye-Waller factor which accounts

for the thermally induced displacements of the atoms around their mean position.
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The structure factor is related to the coherent elastic differential cross section via:

(
d2σ

dΩ

)

=
(2π)3

V0

∑

τ

|FN (q)|2 δ (q − G) (3.10)

where V0 is the volume of the crystallographic unit cell and G a reciprocal lattice

vector. The delta function in the above equation is a restatement of the Bragg

condition that diffraction may only occur when the momentum transfer vector

equals a reciprocal lattice vector. Of course, in reality a Bragg reflection does not

correspond to a delta function. The Bragg peaks are finite in two dimensional

space due to factors such as crystal mosaic spread and instrumental resolution

(due to an error in the incident neutron wavelength and/or imperfect collimation).

In three dimensions, the Bragg reflection is contained within a resolution ellipsoid.

It is for this reason that the reflection is measured and integrated over an extended

range to measure the total intensity of each reflection (Ihkl). The structure factors

are calculated thus:

Ihkl =
Nhklω

Φ0

=
λ3V

V 2
0

|Fhkl|2 (3.11)

where N is the number of diffracted neutrons, V the sample volume and ω the

rotational angular velocity. Several corrections need to be made to the data.

Firstly, as mentioned above, thermal agitation of the crystal structure is accounted

for via the Debye-Waller factor. Secondly, if the sample is highly absorbing a

correction for Φ0 as a function of sample thickness needs to be made. Thirdly an

effect known as extinction should be accounted for. Primary extinction produces

a similar effect to absorption; if a large proportion of the incoming neutrons are

diffracted by the first part of a crystal, the incident flux further into the crystal is

significantly reduced. Secondary extinction relates to the diffraction of beams by

misaligned domains within the crystal. Finally, the Lorentz factor incorporates the

effect due to the angular rotation of the crystal. Since the Ewald sphere is centred

on the origin of ki and not the reciprocal lattice, a constant speed of rotation in

real space causes different points in reciprocal space to pass through the Ewald

sphere with different velocities; each reciprocal lattice point therefore obtains a
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different period of time with which to satisfy the Bragg condition leading to an

alteration in the measured values of Ihkl.

3.11 Least-Squares Structure Refinement

Least-squares refinement techniques applied to crystal structure refinements fit

into two main categories. Firstly, the Rietveld technique for the analysis of powder

data uses the entire intensity versus 2θ profile function to fit calculated profiles

to the observed data points. Secondly, a list of observed structure factors |Fhkl|O
are compared to calculated structure factors |Fhkl|C , in a similar process using

the refinement of parameters in the structural model to minimise the difference

between |Fhkl|O and |Fhkl|C . This second technique can be used for the analysis

of either single crystal or powder samples.

The work presented in chapter 5 of this thesis utilises the Rietveld refine-

ment method. An intensity profile as a function of scattering angle is measured

and the peaks in the pattern indexed to a particular space-group, from which

an accurate determination of the unit cell parameters can be made. Diffraction

patterns from structures with large unit cell volumes and relatively low symmetry

contain a large number of reflections, the intensities of which may overlap de-

pending on the diffractometer resolution function and the quality of the sample.

In other words, the intensity at any one particular step in 2θ is likely to contain

contributions from several Bragg reflections. This, combined with an unknown

error in the measured values of 2θ, makes the process of assigning Miller indices

to every reflection a difficult task. The Rietveld method overcomes this problem

by fitting the diffraction as a whole (Ii), rather than a set of individual (Ihkl)

reflections, with a least-squares fit to each value of intensity in the pattern car-

ried out simultaneously. A review of Rietveld refinement method can be found in

reference [63]; a general overview of the process is presented below.

Let yio be the observed intensity of the ith data point and yic the intensity
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calculated from the structural model. This model is refined by minimising the

quantity Sy:

Sy =
∑

i

wi (yio − yic)
2 (3.12)

where (wi)
−1 = σ2

i = σ2
ip +σ2

ib is the weighting factor for each intensity, σip is the

standard deviation associated with the peak value (Poissonian counting statistics)

and σib is the standard deviation associated with the background measurement.

As mentioned above each value of yic is equal to the sum of contributions from

neighbouring Bragg reflections plus a value from the background. The calculated

intensities are determined from the |Fhkl|2 values obtained from the structural

model. Specifically:

yic = s
∑

hkl

Lhkl |Fhkl|2 G (∆θi) PhklA + yib (3.13)

where s is a scale factor, Lhkl contains the Lorentz, polarisation and multiplicity

factors for reflection (hkl), Fhkl is the structure factor for reflection (hkl), ∆θi is

the 2θ value corrected for the zero-point shift of the detector, G (∆θi) a reflection

profile function, Phkl the preferred orientation function, A an absorption factor

and yib the background intensity at the ith step. The reflection profile function

is dependent on many factors including the nature of the source of radiation,

the distribution of wavelengths in the incident beam (perhaps due to the finite

mosaic spread of a crystal monochromator), the beam collimation and the detector

system. As such, Rietveld refinement programs usually contain many different

choices of profile function shapes. The correct function, and the values of the

refinable parameters within it, should be previously determined by the analysis of

a standard sample, usually Si. For the analysis of the data presented in chapter 5,

a triple pseudo-Voigt function was used. The pseudo-Voigt function pV (x) is a

linear combination of a Lorentzian L′ (x) and a Gaussian G′ (x) distribution, i.e.

pV (x) = ηL′ (x) + (1 − η) G′ (x) where η is a constant between 0 and 1. The

triple pseudo-Voigt profile is defined as:

G (x) = XpV (x − D) + (1 − X − Y ) pV (x) + Y pV (x + D) (3.14)
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where D = S/d cos θ and X, Y and S are refinable constants. The full width half

maximum (FWHM) of the peaks varies with scattering angle:

(FWHM)G′(x) =
(
U tan θ2 + V tan θ − W

)1/2

(FWHM)L′(x) = X tan θ +
Y

cos θ
(3.15)

where U and V are also refinable parameters. The background term in equation

3.13 arises from factors such as diffuse scattering, noise in the detector system

and insufficient shielding. It is usually refined to a polynomial function:

yib =
∑

n

bn (2θi)
n (3.16)

where bn are refinable coefficients.

A successful profile refinement relies on the knowledge of a reasonably accu-

rate crystal structure and profile parameters. The second of these two quantities,

as mentioned above, may be obtained from the fitting of data from a sample

where the crystal structure is already accurately known. If this information is not

available the “Le Bail” refinement process may be used, where the calculated in-

tensities are adjusted to fit the observed intensities in order to obtain initial values

for the profile parameters, before the refinement of the crystal structure is at-

tempted. The refinable parameters for each phase in the crystal structure include

the lattice parameters, the (xi, yi, zi) atomic positions of each site (unless con-

strained to high symmetry positions), the atomic thermal parameters Bi and the

site occupancies ni. Multiple phases may be refined simultaneously and the whole

procedure repeated for patterns taken at different temperatures, magnetic fields

and/or pressures in order to characterise the structural (and possibly magnetic)

properties of a material across its phase diagram.

There are several measures of the accuracy of the refinement. The most

useful of these are the weighted profile Rwp = [Sy/
∑

i wiy
2
io]

1/2
and the ex-

pected profile RE = [(n − p) /
∑

i wiy
2
io]

1/2
(where n and p are the number of

data points in the profile and the number of refined parameters respectively).
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Figure 3.11: The scattering triangle for neutrons with incident and final wavevectors ki

and kf .

The square of the ratio of these two values is equal to the reduced chi-squared

value (χ2). Another useful indication of the goodness of fit is the Bragg factor

RB =
∑

hkl |IO hkl − IC hkl| /
∑

hkl IO hkl as this depends on the fit of the structural

parameters more than on the fit to the profile.

3.12 Neutron Spectroscopy

Neutron diffraction describes the elastic scattering of a neutron from an atom

and provides information for determining the crystal structure. Neutrons are also

inelastically scattered from atoms, either losing or gaining energy during the colli-

sion. A diffraction experiment counts neutrons that satisfy the Bragg condition of

the crystal i.e. when |ki| = |kf |, the scattering processes when this condition is

not met are measured in inelastic neutron spectroscopy (INS) and give information

on the time dependence of atomic motions. The scattering vector q is defined as

the difference between the incident and final wavevectors q = ki − kf . Applying

the cosine rule to the wavevector configuration (shown in figure 3.11) gives:

q2 = k2
i + k2

f − 2 |ki| |kf | cos θ (3.17)

58



Written in terms of the neutron energy:

h̄2q2

2mN

= Ei + Ef − 2
√

EiEf cos θ (3.18)

The neutron transfers both energy (h̄ω) and momentum (q) to the sample; an in-

elastic scattering experiment therefore counts neutrons that satisfy equation 3.17

and maps out the scattering function S(q, h̄ω). The scattering function at non-

zero energy contains both inelastically scattered neutrons and quasielastic scat-

tering - scattering due to non-periodic motions of atoms that results in nearly

elastic scattering at q values between Bragg reflections. The coherent part of

this scattering is also known as diffuse scattering as mentioned in section 1.3.2,

which characterises the deviation of the system from perfect (spatial or temporal)

periodic order, and results in a broadening of the elastic line into both positive and

negative energy transfer (see figure 3.13).

The techniques for measuring INS are split into two categories, direct and

indirect geometry spectrometers. Direct geometry instruments monochromate the

incident neutron beam. Aligning the crystal along a direction of interest with the

neutron beam defines ki in terms of the reciprocal lattice of the system under study.

The neutron scatters from the sample, changing in both energy and momentum

and then kf is measured. Indirect geometry spectrometers make use of a white

beam of neutrons (either by taking the incident beam at a spallation source, or

by inserting a chopper into the beam on a steady state reactor source). A crystal

analyser then selects the final neutron energy. Further to this, direct geometry

spectrometers are divided into two categories, time of flight spectrometers and

triple axis spectrometers.

3.12.1 Time-of-Flight Spectroscopy

As described above, the incident neutron energy and direction with respect to the

crystal are fixed by the experimenter. The neutron transfers both momentum and

energy to the sample and the direction and time of the scattered neutron is then
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Figure 3.12: The range of (q, h̄ω) space available to a set of detectors that lie in an
arc with scattering angles between 0 and θ. The plane that describes scattering in all
available directions with a constant and finite positive energy transfer is outlined in pale
blue.

measured. Consider a detector that is situated at an angle θ to the incoming

beam. Expressing equation 3.17 in terms of the scattering vectors gives h̄ω =

h̄2

2m

(
|ki|2 − |kf |2

)
, i.e. the difference of the magnitude of the scattering vectors

in quadrature is equal to the energy transferred from neutron to sample. For

the given scattering angle θ there exists a set of kf s and qs that will close the

scattering triangle, the energy transfer corresponding to each set will be parabolic

in form, as shown in figure 3.12. A line of such detectors, all at the same distance

from the sample, will therefore produce a scattering plane in (q, h̄ω) space in

the form of a paraboloid. This technique requires judicious choice of q‖ and q⊥

when aligning the crystal since the third component of q is integrated over in the

measurement.

The energy resolution of a direct geometry TOF instrument is related to the

width of the pulse from the moderator (∆tm) and the opening time of the chopper

(∆tch). The total energy resolution is a summation of the two error terms:

(
∆ǫ

Ei

)2

=
(

∆ǫm

Ei

)2

+
(

∆ǫch

Ei

)2

(
∆ǫm[ch]

Ei

)

= 2

(
∆tm[ch]

tm[ch]

)[

1 +
lm[ch]

l

(
1 − ǫ

Ei

)3/2
]

(3.19)
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Figure 3.13: The scattering plane in a TAS measurement in real (left) and reciprocal
(right) space. The elastic channel (black - not drawn to scale) at h̄ω = 0 is made up of
Bragg reflections, incoherent and diffuse scattering. A magnetic excitation (green) at
finite energy transfer is also plotted. The TAS method employs two modes of operation:
constant q scans (blue) and constant h̄ω scans (red). An excitation is mapped by
locating the peaks on both types of scans.

where ∆tm[ch] is the pulse width from the moderator [opening time of the chopper],

tm[ch] is the time-of-flight from the moderator to the chopper [moderator to the

sample], lm[ch] is the distance from moderator to the chopper [moderator to sample]

and l is the distance from the sample to the detector. The form of these equations

dictate that the instrument has its best resolution at highest energy transfers.

3.12.2 Triple Axis Spectroscopy

A TOF spectrometer “sees” an area of reciprocal space during one measurement.

In triple axis spectrometry, the instrument is set up to travel through paths of

reciprocal space and energy as defined by the experimentalist and therefore requires

prior knowledge of the nature of the excitations under study. There are three axes

of rotation on the instrument as shown in figure 3.13. The first rotation (α) sets

the monochromator crystal to the Bragg angle that selects the ki required by the

user. The second axis (2θ) is centered on the sample itself, which is oriented

to the point in q space under study. The final rotation (β) refers to another

monochromating crystal, the analyser, which positions the detector at the correct

angle to intercept neutrons with the required final energy. Each configuration of
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the spectrometer corresponds to a well-defined point in (q, h̄ω) space, and there

are many possible ways (many possible scattering triangles) to reach a particular q

and h̄ω. The actual values used for α, 2θ and β used will be a compromise between

intensity and resolution as well as the physical limitations of the instrument itself.

The sample may be placed on a 4-circle Eulerian cradle, allowing full access to the

reciprocal space of the crystal, however the use of conventional cryostats is more

common, requiring greater thought as to the orientation of the sample. Magnetic

neutron scattering cross sections are dependent on a quantity Q (q), known as

the magnetic interaction vector. It is defined as:

Q(q) = q × M̃ (q) × q (3.20)

where M̃ (q) is the magnetic structure factor, the Fourier transform of the spin

density function of the magnetic ordering in real space. Q (q) therefore projects

the magnetic structure factor onto the plane perpendicular to the momentum

transfer q. As a consequence, only the components of the magnetic moments

perpendicular to q contribute to the magnetic scattering cross section and the

sample must therefore be oriented with q coplanar to the flight path of the neutron

in the instrument and with the magnetic moments perpendicular.

There are two modes of operation in TAS, constant q scans and constant h̄ω

scans, as illustrated in the right hand side of figure 3.13. A typical TAS experiment

will employ both modes of scanning to map the dispersion under study. In constant

h̄ω scans, the direction in q through which the spectrometer is scanned must

be chosen carefully in order to measure the correct line-width of the dispersion.

The intensity in an inelastic neutron experiment is not measured at each infinitely

small point in reciprocal space, but is a convolution between the scattering function

S (q, h̄ω) and the resolution volume of the spectrometer. The intensity of neutrons

in the detector is given by:

I(q, h̄ω) = N
∫

J(ki,kf )dkidkf (3.21)

where the function J(ki,kf ) multiplies the scattering function with the spectrum
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of the source (i.e. the finite spread of neutron energies in the incoming beam)

and the transmission functions of both the monochromator and the analyser. The

size and shape of the resolution ellipsoid can be computed with knowledge of the

analysing crystal used and the angular divergences of the beam after each colli-

mation; the direction with the best resolution for scanning can then be identified.

63



Chapter 4

Magnetism in NaxCoO2

The properties relating to the two different types of magnetic ordering found

in sodium cobaltate are discussed in this chapter. Firstly, in section 4.1, the

effects of the spin density wave ordering (found at higher sodium concentrations

(x > 0.65)) are reported through magnetic susceptibility, heat capacity, transport

and pressure measurements. The magnetic anisotropy of the system is discussed.

A SDW is antiferromagnetic in nature, with the application of large fields it is

possible to force the moments through a metamagnetic transition, discussed in

section 4.2. Below TSDW = 22 K, there exist significant modifications to the

magnetic ordering. At a temperature of ∼10 K, a small ferromagnetic moment is

observed, described in section 4.3. At the lowest temperatures, the SDW is pinned

to the structural lattice, resulting in a glassy ground state. Evidence for this is

presented in section 4.4. Finally, the antiferromagnetic ordering of the x = 1
2

system, and the metal-insulator transition, is discussed in section 4.5.

4.1 The Spin Density Wave

4.1.1 Magnetic Susceptibility

The dc susceptibility (χdc) was measured using the SQuID magnetometer between

temperatures of 1.8 and 400 K for crystals with varying x. For x = 0.71 (figure 4.1)

χdc is anisotropic with the measured value for H ‖ ab typically 4
3

times larger than
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Figure 4.1: The dc susceptibility of Na0.71CoO2 measured in an applied field of 1 kOe.
The data are anisotropic with χab = 4

3 χc and exhibit Curie-Weiss behaviour above ∼60
K (fitted solid curves). The inverse χdc with the constant van Vleck term removed is
shown in the inset. The anisotropic gradients are indicative of the anisotropic nature of
the g-factor.

that for H ‖ c and a changeover in anisotropy at ∼6 K. The data can be fitted to

a Curie-Weiss term plus a constant χ0 of 5.0(2)×10−5 emu mol−1 for H ‖ c and

1.1(2)×10−5 emu mol−1 for H ‖ ab. This temperature independent term com-

prises a small (∼4×10−5 emu mol−1) diamagnetic contribution from the localised

core electrons1, a significant contribution from orbital paramagnetism analogous to

van Vleck paramagnetic susceptibility plus a Pauli paramagnetic component arising

from the s electrons. After subtraction of χ0, the inverse susceptibilities (inset of

figure 4.1) are linear and can be fitted to the standard Curie-Weiss equation:

χ − χ0 =
CCW

T − θ
(4.1)

where the constant CCW , as stated in section 1.1.2, is related to the moment µ on

each Co site equalling nµ2/3kB and θ, the Curie-Weiss temperature, represents

the magnitude and sign of the coupling between the moments. Assuming an

isotropic free electron value of the Landé g-factor, this yields values for the Co4+

effective moment of 2.05(5) and 2.56(4) µB for H ‖ c and H ⊥ c respectively.

1This is calculated using Pascal’s constants: χ =
∑

i
xiχi where xi is the number of atoms of type

i per formula unit and χi the value of Pascal’s constant for atom i [64].
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Assuming the moments are localised, the ground state of Co4+, which has an

electronic configuration of 3d5 can be characterised using Hund’s rules as stated

in section 1.1. The spin angular momentum is maximised by putting one electron

in each of the five bands i.e. in the arrangement t32ge
2
g. The 3d shell is exactly half

full with all spins aligned so that there is no net contribution to the orbital angular

momentum. The three angular momentum quantum numbers are therefore S = 5
2
,

L = 0 and J = 5
2
. The Landé g-factor is then calculated as:

gJ =
J(J + 1) + S(S + 1) − L(L + 1)

2J(J + 1)
= 2 (4.2)

giving an effective moment of µ = gJµB

√
J(J + 1) = 5.92 µB. The application of

Hund’s rules requires that the two most significant energy terms are the Coulombic

and spin-orbit interactions. In the transition metals, the crystal field environment

is often much stronger than the spin-orbit coupling leading to a situation in which

the system has zero L for all S = J . This phenomenon is known as orbital

quenching. The Landé g-factor is equal to 2 as before and the effective moment is

dependent only on the spin angular momentum i.e. µ = gJµB

√
S(S + 1). There

are now three possible spin arrangements for Co4+ with similar energies: t32ge
2
g with

µ = 5.93 µB as discussed above, t42ge
1
g with µ = 3.87 µB and t52ge

0
g with µ = 1.73

µB labelled as high spin (HS), medium spin (MS) and low spin (LS) respectively.

The degree of orbital quenching depends on the relative energy of the crystal

field and spin-orbit interactions. If the latter cannot be completely disregarded it

should be included as a perturbation on the system, which introduces non-zero

angular momentum states into the atomic ground state. The crystal field itself is

anisotropic, due to trigonal distortion in the CoO6, resulting in anisotropic values

of the g-factor and hence the inequivalent values of the moment µ measured

along the two different crystallographic directions. The magnetic susceptibility of a

paramagnet can be described by the Brillouin function as described in section 1.1.1,

which can be approximated to χ ≈ nµ0µ
2/3kBT in the limit of small magnetic

fields. The moment appears in quadrature and therefore contains the square of
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the Landé g-factor. Following the notation adopted by Chou et al. [18], the total

magnetic susceptibility can be written as χ (T ) = χ0 + g2f (T ). Resolving along

both crystallographic directions and eliminating f (T ) we get:

(
gab

gc

)2

=
χab (T ) − χab

0

χc (T ) − χc
0

(4.3)

It is not possible to determine both gab and gc from the magnetisation measure-

ments alone, however, their ratio can be calculated by plotting χab versus χc. For

this sodium concentration the value of (gab/gc) is 1.225(1) which agrees well with

the data published in reference [18]. A direct measurement of the g-factors is

possible with a technique known as electron spin resonance (ESR). The sample

is placed inside a high Q resonant cavity and microwave radiation is fed to the

system via a waveguide at a fixed frequency ω. An increasing external field B

is then applied, lifting the degeneracy of the spin states via the Zeeman effect.

When the field reaches a value where the gap between two energy levels is equal

to h̄ω, transitions between the spin levels are induced by the radiation and a peak

is seen in the absorption spectrum. Crystal field splitting and hyperfine coupling

complicates the picture somewhat, but to a first approximation the increase in ab-

sorption occurs when h̄ω = gJµB. Measurements with the field aligned along the

two different crystallographic directions would define both gab and gc. ESR mea-

surements were attempted, however the experiment suffered due to the skin depth

effect, where the microwave radiation is confined to a small layer at the surface

of the sample. The value of the skin depth is calculated as δ =
√

ρ/µ0ω where

ρ is the electrical resistance in the sample. Sodium cobaltate, at x = 0.7, is a

good conductor and so the skin depth is estimated to be very small, approximately

10−3cm at a Q range frequency of 30 GHz. Consequently the absorption signal

is very weak. The total widths of the absorption bands in both directions were

found to be extremely broad, and therefore the measurements (which were taken

at a temperature of 15 K) do not provide any useful information in interpreting

the magnetic susceptibility.
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Figure 4.2: Low temperature dc susceptibility versus temperature data for Na0.71CoO2.
Panel A: the SDW transition is clearly visible in low fields as a step in χdc and as a cusp
in higher fields with the field oriented along c. Panel B: χdc data collected over the
same temperature range with the field oriented along the ab planes. No features that
can be associated with the SDW are observed.

In low fields at TSDW = 22 K, a shoulder in the magnetisation is visible

in data measured along the c-axis (figure 4.2) with no corresponding feature dis-

cernible in the ab plane. The susceptibility data can be explained on the basis

of the establishment of an antiferromagnetic spin density wave within the cobalt

oxide layers whose moments are aligned antiferromagnetically along c ; in contrast

to the case for other published data [22] there is no evidence for a canting of

the moments into the ab plane. A similar behaviour has also been observed in

the related layered cobaltate Ca3Co4O9, where the spin density wave can only be

distinguished in the c plane susceptibility [65]. The step in χdc at TSDW can be

observed even in very low fields of 10 Oe; with an increase in applied magnetic

field the step becomes more distinct. At the highest fields the transition is quali-

tatively different and more reminiscent of an antiferromagnetic cusp, accentuating

the fact that the principal magnetic interaction in this system is AFM in nature.

Because of the lack of any significant impurity levels in the samples, as measured

by powder x-ray diffraction, the upturn in χdc at low T cannot be attributed to

magnetic impurities. The magnitude of the Curie constant in the low temperature

data corresponds to the contribution of all of the Co4+ spins in the sample; the

possibility of a Curie tail arising from free spins at the ends of broken spin chains
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Figure 4.3: Magnetic susceptibility versus temperature of NaxCoO2 with the applied
field of 1kOe parallel to the c-axis. For 0.68≤ x ≤0.72 the transition temperature
TSDW is invariant with x. The signature of magnetic order disappears altogether at a
doping level of x =0.65 and leads to a rapid increase in χdc, followed by a decrease to
an almost T independent susceptibility at x =0.60.

can therefore be ruled out. Although the upturn is suppressed at high fields, this

cannot be due to saturation of free moments, since M(H) does not saturate even

in fields as high as 120 kOe (see section 4.2). The transition temperature is inde-

pendent of the applied field and does not display hysteretic behaviour, indicating

that it is a second-order magnetic phase transition. Figure 4.3 shows the dc mag-

netic susceptibility versus temperature dependence with H = 1 kOe applied parallel

to the c-axis for a sequence of NaxCoO2 materials with varying Na content. As

the sodium level is reduced, TSDW remains constant. Any signature of magnetic

ordering disappears abruptly at x =0.65. The degree of hysteresis between the

zero field cooled (ZFC - lower curve) and field cooled (FC - upper curve) data

reaches a maximum at x =0.70. The removal of Na and the eventual suppression

of magnetic order is accompanied by an increase in the overall magnitude of the

magnetic susceptibility. This is due to the increasing number of Co spins that

are successively decoupled from the antiferromagnetic SDW; an increase in the

paramagnetic signal is consistent with an increase in uncompensated moments.

This is followed by a rapid reduction in χdc to an almost T independent signal for

x =0.60.
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Figure 4.4: The low temperature heat capacity data for a Na0.7CoO2 single crystal. The
data in panel A contain just the magnetic and electronic contribution to the specific
heat, the phonon contribution having been estimated from the total specific heat of an
isostructural non-magnetic compound KxCoO2 (shown in panel B).

One of the crystal boules produced by the method described in section 3.3,

showed magnetic ordering, identical to that described above at a temperature

of 28 K. Deintercalating increasing amounts of sodium from crystals cut from

the same boule, it was possible to produce samples with ordering temperatures

of both 22 and 20 K, as plotted in figure 2.2. As discussed in chapter 2, the

difference is most likely due to the change in Na-O coordination due to the gliding

of the CoO2 layers during the chemical deintercalation process. Such changes in

ordering temperature with reduced sodium content has been described by previous

authors [66].

4.1.2 Heat Capacity

The specific heat of a substance is defined as the quantity of heat (Q) required to

raise a unit mass of the system by a temperature (T ) of 1 K:

Ci =

(
dQ

dT

)

i

(4.4)

where the subscript i denotes the parameter kept constant during the measurement

such as pressure, volume or applied magnetic field. The heat capacity at constant
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volume (CV ) can be written in terms of the system’s entropy:

CV = T

(
∂S

∂T

)

V

(4.5)

and is described by the Debye approximation to the specific heat. The crystal is

defined as an array of quantum oscillators whose vibrations (phonons) are char-

acterised by a frequency spectrum up to a maximum frequency ω3
D = 6π2ν2N/V

where ν is the velocity of sound in the crystal, N the number of acoustic phonon

modes and V the crystal volume. The specific heat is calculated by differentiating

the total phonon energy with respect to temperature and is given as:

CD
V =

3V h̄2

2π2ν3kBT 2

∫ ωD

0

ω4eh̄ω/kBT

(eh̄ω/kBT − 1)
2dω (4.6)

The Einstein model treats the same oscillators as having a single, fixed frequency

ωE resulting in an expression for the specific heat that fits well at high temper-

atures but fails to reproduce the experimentally observed T 3 dependence at low

temperatures:

CE
V = NkBT

(
h̄ωE

kBT

)2
eh̄ωE/kBT

(eh̄ωE/kBT − 1)
2 (4.7)

The derivations of both theories can be found in any solid state text book such

as Kittel [67]. Two characteristic energy scales present themselves in both formu-

lations: θD is related to the maximum phonon frequency h̄ωD/kB and θE to the

fundamental vibrational frequency h̄ωE/kB. The failure of the Debye model to fit

to some experimental data usually indicates that a few atoms in the unit cell are

not participating fully in the acoustic vibrations perhaps as a result of a mismatch

in atomic masses. In this case, the inclusion of an Einstein mode, which gives a

good description of the optical phonons within a system, may correct the problem.

The data collected using the measurement technique described in sec-

tion 3.8 are the heat capacity at constant pressure. Consider the entropy of one

mole of a sample at a temperature T and pressure P :

dS =

(
∂S

∂T

)

P

dT +

(
∂S

∂P

)

T

dP

⇒
(

∂S

∂T

)

V

=

(
∂S

∂T

)

P

+

(
∂S

∂P

)

T

(
∂P

∂T

)

V

(4.8)
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Multiplying both sides of equation 4.8 by T :

T

(
∂S

∂T

)

V

= T

(
∂S

∂T

)

P

+ T

(
∂S

∂P

)

T

(
∂P

∂T

)

V

⇒ CV = CP + T

(
∂S

∂P

)

T

(
∂P

∂T

)

V

(4.9)

Using the Maxwell relation (∂S/∂P )T = − (∂V/∂T )P and a similar argument to

that presented in equation 4.8 for a process at constant volume as a function of

P and T which leads to the relation (∂P/∂T )V = − (∂V/∂T )V / (∂V/∂P )T :

CP − CV = −T

(
∂V

∂T

)2

P

(
∂V

∂T

)−1

T

(4.10)

The heat capacity at constant pressure, as measured, can therefore be related

to the calculated heat capacity at constant volume by two parameters: the tem-

perature coefficient of volume expansion β = V −1 (∂V/∂T )P and the isothermal

compressibility κT = −V −1 (∂V/∂P )T :

CP − CV =
β2

κT

V T (4.11)

The isothermal compressibility is always positive and so CP is always the greater

of the two quantities. At low temperatures the difference in equation 4.11 is

very small and can be neglected when analysing the data. Corrections for higher

temperatures are not easily made due to a lack of knowledge of β and κT as a

function of temperature and are therefore usually ignored.

The specific heat capacity at constant pressure of a Na0.7CoO2 single crystal

was measured from 400 mK to 400 K, the low temperature data is plotted in

figure 4.4. To analyse the data, both the Debye and Einstein models for heat

capacity were used. Over the whole temperature range studied, the Na0.7CoO2

data cannot be fitted using a single Debye expression. A satisfactory fit can be

obtained using a combined Debye-Einstein function giving a θD of ∼410 K and θE

of ∼820 K weighted in the ratio 4:5; the fit is plotted against the data in figure 4.5.

This appears to be consistent with a mixture of acoustic and optical modes as

expected from a combination of light and heavy elements. The Einstein energy,
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Figure 4.5: The high temperature heat capacity data for a Na0.7CoO2 single crystal
(black squares) and the corresponding Debye-Einstein fit (blue line).

when converted into units of reciprocal space equals 571 cm−1 which correlates

well with the value for the a1g phonon modes, that are related to vibrational

modes of the oxygen atoms only, identified by Lemmens et al. [68] using Raman

spectroscopy.

In a limited temperature range of 22 - 30 K the data can be explained by

assuming that C comprises two terms, an electronic term and a phonon compo-

nent, which in the low temperature limit can be characterized using the Debye

model, giving:

CD
low T = γT + βT 3 (4.12)

A linear fit to the data plotted as C/T vs. T 2 gives γ = 30.9(7) mJ mol−1 K−2

and β = 0.0385(8) mJ mol−1 K−4. From this a low temperature value for θD can

be estimated as:

θD =

[(
12

5

)
NRπ4

β

]1/3

(4.13)

where N is the number of modes per formula unit and R the molar gas constant.

This gives a value of θD = 396(3) K in line with the previous estimate even though

the number of modes was estimated as 3 × the number of atoms per formula unit,

which only holds true for atoms of similar masses. Using these values we find that

above 40 K the experimental data deviate substantially from the Debye theory.
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This is consistent with the low T approximation which is only accurate below

temperatures of ∼ θD/10. We find [C(400K)/NR]measured =0.9, the expected

ratio as calculated by the Debye theory.

There is a lambda-like anomaly at 22 K indicating the onset of magnetic

ordering. The transition is rather broad, extending over at least 7 K, whereas the

minimum sample heat pulse used around the transition was 0.1 K. This feature

occurs at the same temperature in heating and cooling runs with no discernible

hysteresis to within the experimental accuracy of the technique used, again indi-

cating that this is a second-order phase transition2. The jump at TSDW is ∼0.4 J

mol−1 K−1 which corresponds to 25% of the signal at this temperature. Using the

standard BCS expression ∆C/TSDW = 1.43γ gives γ ≈ 13 mJ mol−1 K−1. This is

consistent with the reduction in γ as seen at low temperatures. An extrapolation

of the data below TSDW produces a value of 15(1) mJ mol−1 K−2. These values

agree well with those of Bayrakci et al. [24] who calculated γ for a x = 0.82 sam-

ple from the data below 22 K. It is interesting that the γ value below the SDW

transition also agrees with estimates for γ made for the superconducting material

Na 1

3

CoO2 · 4
3
H2O [33, 60, 69]. Assuming that the γ term arises solely from charge

carriers we can use:

γ =

(
π2

3

)

k2
BN (EF ) (4.14)

to calculate the free electron density of states. N (EF ) is calculated to be

5.3(1)×1024 eV−1 mol−1 just above TSDW , reducing to 2.6(2) ×1024 eV−1 mol−1.

The ratio of γ above and below the transition suggests that 50-60% of the Fermi

surface is removed on the opening up of a gap at TSDW .

The entropy associated with this feature can be obtained by subtracting

from the total specific heat, C, an estimate of the background specific heat, C ′,

made from the measured specific heat of an isostructural non-magnetic sample.

KxCoO2 crystallises in the same space group as sodium cobaltate with similar lat-

2Note that during both warming and cooling runs, the sample is heated by a certain percentage of
the set point for data collection.
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tice parameters of a = 2.85 Å and c = 12.42 Å [70], and can be manufactured in

a fashion akin to that described in section 3.1. A powder sample of x = 0.75 was

produced; x-ray diffraction analysis confirms the crystal structure and the absence

of impurities down to a volume fraction of 2%. The magnetic susceptibility was

measured in the SQuID magnetometer and is paramagnetic in nature (compris-

ing Pauli and van Vleck contributions [71] and showing no evidence of magnetic

impurities). The heat capacity data also show no sign of long ranged magnetic

ordering. By adapting the temperature values of the K0.75CoO2 data an estimate

of the phonon contribution to the specific heat of sodium cobaltate can be made

defining the magnetic contribution to C. In order to correct for the differences in

the formula masses the ratio of the Debye temperatures must be considered. The

potassium sample was fitted to the same Debye-Einstein function as before (over

a temperature range of 2 - 300 K) giving values of θD ∼ 260 K and θE ∼ 690 K.

The ratio r = θNa
D /θK

D = 1.6 should map the two specific heat curves onto each

other. However, this scaling law applies to systems that fit the Debye approxima-

tion to the specific heat. Both NaxCoO2 and K2CoO2 contain contributions from

optical phonon modes that do not fit the scaling law and so a more accurate r

must be obtained from the low temperature data only. Fitting the potassium data

to equation 4.12 gives γK = 9.1(2) mJ mol−1 K−2 and βK = 0.196(1) mJ mol−1

K−4 (shown in panel B of figure 4.4). As defined in equation 4.13 the ratio r of

the Debye temperatures will now be proportional to the inverse of the cubed root

of the ratio of the β terms giving r = 1.72(1). The temperature data for the

K0.75CoO2 sample were modified by this value of r and a difference curve taken.

The entropy associated with the anomaly alone (i.e. from T = 14 to 22

K) amounts to 0.065 J mol−1 K−1 and corresponds to only 4% of the magnetic

entropy expected for a x = 0.7 sample with a Co3+ (spin 0)/Co4+ (spin 1
2
) system

in the ratio of 7:3 i.e.
(

3
10

R ln (2S + 1)
)

= 1.73 J mol−1 K−1. Including the

excess entropy down to 0.4 K (the origin of which is discussed in section 4.4),

this value rises to 0.16 J mol−1 K−1. The value compares well with estimates
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Figure 4.6: C/T versus T 2 curves at different doping levels (without phonon subtrac-
tion). The size of the anomaly remains constant for 0.70≤ x ≤0.72 and then decreases
with decreasing sodium content whilst the transition temperature TSDW remains con-
stant. No transition is evident for x ≤0.65.

made in other reports [24, 20] and is consistent with previous reports for SDW

compounds (see section 4.6). According to the lattice background subtraction,

significant magnetic entropy exists to high temperatures, a subtraction over the

whole data range indicates that Cmag will tend to zero at around 420 K (∼ θNa
D ). In

low dimensional magnetic systems it is not unexpected that the magnetic entropy

around the ordering temperature is just a fraction of the total, however the sum

of the magnetic entropy up to the highest temperatures measured is ∼15 J mol−1

K−1, an order of magnitude higher than the value expected (1.73 J mol−1 K−1).

This is most likely because the scaling factor used for the KxCoO2 data was based

on an approximation valid only at low temperatures. Above the SDW transition,

the subtracted data remain at a constant value of ∼27 mJ mol−1 K−2, in reasonable

agreement with the electronic contribution γ calculated previously.

The dependence of the specific heat on sodium concentration (figure 4.6)

agrees well with the observations from the magnetic susceptibility data. The data

contain the same lambda-like anomaly at 22 K that is present in all materials down

to x = 0.68. The magnitude of the anomaly (∼0.4 J mol−1 K−1) remains fixed for

0.70≤ x ≤0.72, but then gradually diminishes before disappearing at x = 0.65.
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Figure 4.7: Heat capacity of Na0.7CoO2 in various magnetic fields applied parallel to
the c-axis of the crystal. The temperature of both the peak and the midpoint of the
transition are reduced in field indicating a broadening with applied field, however the
onset temperature remains constant.

At low T , the temperature dependence of C varies enormously; γ increases from 8

mJ mol−1 K−2 at x = 0.72 to approach 50 mJ mol−1 K−2 at x = 0.65. As men-

tioned previously, the onset of magnetic ordering is accompanied by the removal of

approximately half the Fermi surface. The destruction of this magnetically ordered

state for lower x may leave us with a system of highly correlated electrons with an

enhanced γ. Alternatively, the increase in C/T versus T at low T for x = 0.65

may be the result of a Schottky anomaly [72, 73].

Figure 4.7 shows the specific heat capacity versus temperature data col-

lected for a x = 0.70 sample in fields of 0, 20 , 50 and 90 kOe applied parallel to

the c-axis. The application of an external field leaves the temperature at which the

onset of the magnetic ordering is observed unchanged. The transition is progres-

sively broadened and the magnitude of the anomaly around TSDW is considerably

reduced as the applied field is increased.

4.1.3 Electronic Transport

The values of the resistivity for a x = 0.71 sample at room temperature, in both the

ab and c directions, are of the order of 1-10 mΩ cm (shown in figure 4.8). These
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Figure 4.8: The resistivity of Na0.71CoO2 as a function of temperature. No evidence of
the SDW transition is visible in the I‖c data, whereas the resistivity is seen to drop in
the ab plane in the magnetically ordered state. The derivative of the in-plane resistivity
is shown in the inset, clearly indicating the transition at 22 K.

values are in reasonable agreement with several other reports of resistivity mea-

surements made on either polycrystalline or single-crystal samples of Na0.7CoO2

in the ab plane [6, 20, 24, 25]. At room temperature the resistivity is only slightly

anisotropic with ρc ≈ 2ρab and a crossover in anisotropy at ∼60 K. The resistance

ratios (R300K/R2K) along ab and c are 15 and 150 respectively. In both directions

the resistivity between 150 K and 300 K varies almost linearly with temperature

with dρ/dT = 13.2(2) and 31.4(2) µΩ cm K−1 for the ab and c directions respec-

tively. A significant reduction in ρab below 22 K marks the SDW transition. No

corresponding feature is seen in ρc. The reduction in ρ suggests that the opening

up of a gap associated with the SDW leads to a decrease in the total scattering

within the ab plane while the conduction along c is unaffected.

4.1.4 Modifications to the SDW with Externally Applied Pressure

The structure of NaxCoO2, as will be discussed in chapter 5, depends strongly

on x, the details of which depend on how the sodium ions are arranged in the

charge reservoir layer and how the CoO2 layers respond structurally to changes in

the electron count and the Na ion distribution. As x increases up to ∼0.75, the
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Figure 4.9: Panel A: The variation of TSDW for two Na0.7CoO2 crystals. A clear increase
in TSDW is seen with increasing pressure. The solid line is a guide to the eye. Panel
B: The raw magnetic susceptibility data showing the variation in TSDW at five different
applied pressures. The data are offset vertically from each other by 2×10−5 emu mol−1

so that the shift of TSDW to higher temperatures (as indicated by the arrow) is visible.

c-axis lattice parameter decreases as a result of a decrease in the thickness of the

NaO2 layer that is not offset by an increase in the CoO2 layer thickness (and the

Co-O bond lengths, which leads to a slight increase in a). Above x ∼0.75 both

c and a continue to vary as before, although the decrease[increase] with x in the

NaO2[CoO2] layers is more pronounced. The application of external pressure is

known to reduce both the lattice parameters, although the compressibility along

c is an order of magnitude higher than that along a [74]. Since it is c that

varies the most with Na content, the application of external pressure, to a first

approximation, should be equivalent to the chemical pressure achieved by doping.

The difference between the two pressures is the variation of the absolute valence

state of the Co and will be discussed in section 4.6.

Figure 4.9 shows the pressure dependence on TSDW for two single crystal

samples of x = 0.70. Data were collected in three separate runs in magnetic fields

of 50 kOe with both increasing and decreasing pressure. The raw magnetisation

data for one of the crystals is shown in panel B. The signature of magnetic order is

seen at TSDW = 22.0(2) K at 1 bar and initially increases at a rate ∂TSDW /∂P =

+0.44(3) K bar−1. This increase begins to saturate at higher pressures with TSDW

reaching 25.4(2) K at 10 kbar. For similar measurements on a x = 0.65 sample
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(i.e. a composition for which there are no features in either the magnetisation or

the heat capacity data that can be associated with the onset of the SDW) the

application of pressures of up to 10 kbar does not induce any features in the M

versus T data that indicate that pressure can restore the magnetic order.

4.2 Observation of the Metamagnetic Transition in High

Fields

In magnetic systems exhibiting antiferromagnetic ordering, the application of an

external field will alter the orientation of the spins within the two sublattices. If H

is applied perpendicular to the magnetic easy axis, the application of the field will

slowly rotate the moments along the field as the magnitude of H is increased. If,

however, the field applied is parallel to the crystal magnetisation, the total energy

of the system can be written as:

E = −µH [cos (θ) + cos (ϕ)] + Jcµ
2 cos (θ + ϕ) − 1

2
D
[
cos 2(θ) + cos 2(ϕ)

]

(4.15)

where the first term describes the interaction of the moments with the field H,

the second term relates the exchange between two spins along c and the last term

includes the magnetic anisotropy which quantifies the preference of the moments

(µ) to lie along the c-axis. The constants have been labelled according to the

definitions in section 6.5 and the angles are defined in figure 4.10. For the AFM

system, with spins on each sublattice aligned antiparallel and along the easy axis

(i.e. θ = 0 and ϕ = π), equation 4.15 reduces to E = − (Jcµ
2 + D), independent

of the applied field. If H becomes large enough, the system will reconfigure the

alignment of its spins as shown in panel A of figure 4.10, known as a “spin-flop”

transition. Now θ = ϕ and the total energy is defined as:

E = −2µH cos (θ) + Jcµ
2 cos (2θ) − D cos 2(θ) (4.16)

The minimum energy of the spin-flopped system occurs at an angle of cos (θ) =
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Figure 4.10: Panel A: The application of a field along c forces the spins to flip from an
antiferromagnetic to a ferrimagnetic arrangement. Panel B: The magnetic susceptibility
χc as a function of temperature; a sharp increase is observed at the metamagnetic
transition .The field Hsf , defined as ∂2M

∂H2 =0, increases monotonically with temperature
as shown in the inset.

(Hsf ) / (2Jcµ − D/µ), the system will “flop” once the field reaches the critical

value as defined by this relation. The magnetisation should show a jump at Hsf

and saturate once the field has forced all the spins to align with θ = 0. The mag-

netisation with H ‖ c is shown in panel B of figure 4.10. The measurements were

taken using the VSM described in section 3.7.3, except for the data plotted in open

squares, which were acquired at the Grenoble High Magnetic Field Laboratory at

the CNRS Grenoble. The Bitter magnet used in the study is resistive and requires

high volumes of coolant pumped through the system to keep it operational. The

magnetometer, which operates with a standard extraction technique as used in

the SQuID (described in section 3.7.1), therefore suffers from noise induced from

the vibrations of the cooling system and thus has a precision of 10−3 emu, four

orders of magnitude less than the VSM or SQuID which employ superconduct-

ing magnets to apply the external field. Given the small value of the ordered

moment in Na0.7CoO2, and the limitation imposed on the sample volume by the

diameter of the magnet bore, the measurements obtained were on the limit of

instrumental resolution. It is clear however, that even in fields as high as 220 kOe,

the magnetisation has not reached saturation. In the spin-flop system, with all

the moments aligned perpendicular to H, the expected moment (as calculated in
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Figure 4.11: Magnetisation versus field measurements for a Na0.71CoO2 crystal. Panel
A: High field magnetisation at temperatures above and below the SDW transition and
with the field aligned along c and ab. Panel B: The low field hysteresis as measured
with H‖c. The remanent magnetisation clearly visible at 2 K has disappeared by 11 K;
the magnitude of this ferromagnetic component is plotted as a function of temperature
in the inset.

section 4.1 for a system containing 30% spin half cobalt ions) is 0.52 µB mol−1.

Calculating the molecular weight of Na0.7CoO2 and substituting for the value of

one Bohr magneton in electromagnetic units gives a total saturation moment of

27.1 emu g−1. The measured moment at 220 kOe is ∼1.5 emu g−1 suggesting

the spins are far from aligning collinear to the field, but θ is actually ∼ 87◦. Just

after the metamagnetic transition θ is calculated to be ∼89 ◦. This is in excellent

agreement with Helme et al. [75] who confirmed the spin arrangement detailed in

figure 4.10 by neutron diffraction and calculated θ = 87.8(5) ◦ at Hsf from the

exchange constants measured from spin wave dispersions. If M continues to vary

linearly with H, a total applied field of 3500(100) kOe will be necessary to obtain

ferromagnetically aligned moments.

4.3 Onset of a Low Temperature Ferrimagnetic State

Magnetisation data as a function of applied field were collected above and below

TSDW and are shown in figure 4.11. Once again, Mab > Mc and the anisotropy

in the highest measured fields is independent of temperature at ∼1.4, which is

in line with the χdc versus T results. At the lowest temperatures the loops ex-
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hibit considerable curvature, which disappears above 10 K. At 2 K the value of

the magnetisation at 10 kOe corresponds to moments of only ∼0.016 µB/Co and

∼0.011 µB/Co along ab and c respectively. At low fields the data have hysteretic

behaviour, which disappears above a temperature of ∼10 K. The remanent mag-

netisation at 2 K is extremely small, corresponding to just 0.0001 µB/Co along c

and an order of magnitude smaller along ab. The appearance of this low temper-

ature ferromagnetic component has been noted by previous authors [20] although

it was reported to occur below TSDW , whereas these data indicate a lower temper-

ature transition. Anomalies in the magnetic susceptibility data below TSDW have

also been observed by Sakurai et al. [21] and attributed to modifications to the

magnetic ground state. The transition is also visible in the χdc data in this study

(figure 4.3). The upturn in susceptibility persists in samples with lower sodium

concentrations where the SDW transition is absent, suggesting that this magnetic

ordering is independent of the SDW. The coexistence of a ferrimagnetic ground

state with a SDW state (with different ordering temperatures) has previously been

seen in the related material Ca3Co4O9 [65] as well as several other SDW systems,

e.g. UNi2Si2 [76]. In these materials the small ferromagnetic component arose

from magnetic anisotropy, from modifications to the geometry of the Fermi sur-

face as a function of temperature below TSDW and from the structure, which leads

to differences between the inter-layer and intra-layer coupling. In NaxCoO2, the

ferrimagnetism may be due to a combination of any of these effects, especially

since a structural change in the cobalt oxide octahedra occurs below TSDW , as

discussed in chapter 5.

4.3.1 Positive Magnetoresistance Coexisting with the FiM

Magnetoresistance (MR) is defined as the percentage difference between the re-

sistivity at an applied field H and the zero field resistivity, or (ρH − ρ0) /ρ0. The

MR effect in metals can easily be explained if two types of charge carriers, with

different drift velocities, are present in the material. The application of a trans-
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Figure 4.12: The magnetoresistance of a Na0.71CoO2 crystal was measured in both trans-
verse (a) and longitudinal (b) geometries. The magnitude of the MR was comparable
in both geometries, the value at 70 kOe is plotted in panel (c).

verse field produces a Hall current for both charge populations. In a normal metal,

the transverse Hall field builds up until there is no net transverse current. For the

two types of charge carriers, there is no one value of the transverse E field that

will satisfy the Hall condition for both charge populations. Combining the effect

of the Lorentz force from the external field and the force from the Hall field that

overcompensates the Lorentz force for one set of charge carriers and undercom-

pensates for the other, transverse currents are produced in opposite directions for

the two charge types. A second Hall effect occurs for the transverse field, turning

the current of one type of charge against the original current I and the other

along I. The net effect of these additional currents that flow with and against

the main current always opposes I, since it is the second charge carrier population

with the weaker transverse voltage that flowed in the opposite sense to the con-

ventional Hall current. The magnitude of the transverse Hall field is proportional

to the applied field; in this situation two transverse fields are set up, requiring

the magnetoresistance to be proportional to H2. This is known as Kohler’s rule,

which predicts a quadratic dependence of the MR at low fields, saturating to a

constant value with higher applied fields. The MR effect also occurs when the field

is applied parallel to the current; transverse components of the velocities cause the

electrons to spiral along I, the scattering associated with the spiralling electrons
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Figure 4.13: Low temperature ac susceptibility of Na0.71CoO2. No feature associated
with the spin density wave transition is visible, however, the cusp at 4 K indicates that
the break up of the SDW has resulted in a glassy ground state.

creates a resistance that is also proportional to the square of the applied field.

MR was found to exist in the ab plane resistivity data, and was absent for

I ‖ c. The effect (shown in figure 4.12) is large (∼40%) and positive, which

classifies the material as having Giant Magnetoresistance (GMR). The resistivity

was measured with the field in both transverse and longitudinal geometry and found

to be of similar magnitude in both experiments. The MR obeys Kohler’s rule (with

no indication of saturation up to the maximum measured field of 70 kOe) and is

removed by raising the temperature above ∼10 K. It is interesting to note that

this correlates well with the temperature at which the spontaneous magnetisation

present in the χ (H) data disappears. The onset of the ferrimagnetism may be

associated with a change in the morphology of the Fermi surface as mentioned

previously. The creation of a second type of charge carrier, with different effective

mass and velocity, could originate from such a change in the FS.

4.4 Evidence of a glassy ground state

Low temperature ac susceptibility measurements on a x =0.71 sample were taken

with the driving field oriented along the c-axis and in the ab plane and are shown in
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Figure 4.14: Low temperature ac susceptibility of Na0.71CoO2 measured at different
driving field frequencies. Panel A: the position of the peak maximum shifts with in-
creasing frequency (the line is a guide to the eye). Panel B: Raw magnetisation data for
the seven different frequencies. The data have been offset from each other for clarity.

figure 4.13. χac displays the same anisotropy and low temperature crossover as χdc.

Curiously, no magnetic features were visible at TSDW . A peak at 4 K is visible

for fields applied along both ab and c, which has previously been reported [77]

and attributed to antiferromagnetic ordering. This low temperature feature is

reminiscent of the susceptibility cusps found in spin glasses. Investigations of the

frequency dependence show an increase in the cusp temperature with increasing

frequency (figure 4.14), which is consistent with the varying dynamic response

expected from a glassy ground state. The peak also broadens with increasing

frequency and, given the very small magnetic signal, it is difficult to determine

the temperature of the onset of the glassy phase at the highest frequencies. The

peak temperature, however, appears to saturate at Tpeak = 4.5 K. The origin of

this state is likely to be a consequence of the incoherency of the SDW with the

periodicity of the lattice. It is plausible that the density wave may become pinned

to the underlying Co lattice with decreasing temperature which would result in

low T “glassy” behaviour. Other materials in which a spin density wave state has

been observed, for example the organic salt (TMTSF2)PF6 [78], also exhibit low

temperature glassy states for this very reason.

The freezing of the SDW on cooling also adds to the magnetic entropy
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A B

Figure 4.15: Panel A: Magnetic susceptibility of Na 1

2

CoO2 with the field aligned in

different directions at high and low fields. The magnetic transition at TM is not apparent
in the data for H ‖ c. Panel B: The magnetisation as a function of field. In contrast to
the higher doped system, there is no metamagnetic transition in fields of up to 115 kOe.

of the system and is therefore visible in the heat capacity data. The additional

component to C is visible as a broad bump (extending from 4 to 15 K) in panel

A of figure 4.4. The low temperature nodule is also consistent with the notion of

a glassy state.

4.5 Magnetic Ordering in the Half Doped System

4.5.1 Antiferromagnetism in Na 1

2

CoO2

The dc magnetic susceptibility at x = 1
2

is of the same magnitude as that found in

the non-magnetically ordered x = 0.60 phase, however two transitions are visible

as shoulders in the magnetisation at TMI = 53 K and TM = 88 K, as shown in

figure 4.15. A downturn in susceptibility occurs at both critical temperatures, in-

dicating antiferromagnetic ordering at TM which is modified at TMI . At the lowest

temperatures there is a general upturn in susceptibility, which is suppressed by the

application of large fields. The most likely origin of this Curie tail is the presence

of a magnetic impurity, namely Co3O4. This phase of cobalt oxide magnetically

orders at 35 K, the magnetic susceptibility of Co3O4 powder is detailed in the inset

of panel B. The peak at the ordering temperature is evident in the susceptibility

curves in panel A, especially with the field oriented along c. From the relative
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Figure 4.16: The high temperature magnetic susceptibility of a Na 1

2

CoO2 single crystal

with a field of 50 kOe applied along the ab planes.

magnitudes of the susceptibilities at the ordering temperature of Co3O4 we may

infer that the impurity level in this sample is ∼2%. Co3O4 is absent in the parent

single crystals and so it has most likely originated during the chemical deinterca-

lation process as described in section 3.5. Curie tails in the low T susceptibiltiy

data are a common feature in many Na 1

2

CoO2 publications [28, 31].

The transition at 88 K, in direct contrast to higher doped system, is visible

only with the field aligned in the ab plane, indicative of magnetic ordering in

which the moments align within the basal planes. Neither transition shifts with

applied fields within experimental error (∼0.1 K), however, close examination of

the derivative of χab reveals that the MI transition is broadened by 1 K in a field

of 115 kOe. The magnetisation as a function of field was also investigated and is

plotted in panel B. χ is less anisotropic than at x = 0.7 with χab = 1.1χc. It is

interesting to note that χ does not exhibit the Curie-Weiss-like character as seen in

the SDW material but increases with increasing temperature reaching a maximum

at ∼370 K (shown in figure 4.16): there is no signature of charge locality from the

macroscopic measurements. No metamagnetic transition is visible in the in-plane

data, suggesting that the coupling between spins is much stronger at this doping

level. The magnetisation at 120 kOe corresponds to 0.022µB/Co4+, just 2.5% of

the value expected at saturation, assuming an equal population of Co3+ and Co4+.
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Figure 4.17: Panel A: The diffracted intensity of the magnetic Bragg peak (1
211) in

Na 1

2

CoO2 measured as a function of temperature. A fit to the magnetic order parameter

is shown in dark blue. Panel B: The measured intensity of the magnetic Bragg peak
scanning along h. The line is a guide to the eye.

The magnetic ordering in Na 1

2

CoO2 has been the subject of two neutron dif-

fraction experiments [28, 79]. Both studies found magnetic Bragg peaks occurring

at
(

1
2

1
2
lodd

)
. During the inelastic neutron scattering experiment to measure the

magnetic excitations, as described in chapter 6, the crystal was oriented with spec-

trometer parameters that satisfied the (1
2
11) Bragg condition and measurements

made as a function of temperature, plotted in figure 4.17. A large background

was removed from the data in order to do this analysis (corresponding to the large

sloping background in the raw data shown in panel B), in fact the magnitude of

the magnetic scattering at base temperature is just 12% of the background sig-

nal. The intensity of the magnetic peak increases below the ordering temperature

TM and the data are fitted to 〈M〉2 α (TM − T )β with TM = 88.0(2)K and β

= 0.30(4). The value of the critical exponent is in good agreement with that

expected for Ising models (D = 3, d = 1 as stated in table 1.1) suggesting the

dimensionality of the magnetic ordering is one.

The notion of low dimensional magnetism in this system is further strength-

ened by the fact that the measured specific heat is continuous at all temperatures:

there are no anomalies at either TM or TMI (shown in figure 4.18). The heat

capacity is related to the entropy (S) of the system by C = T (∂S/∂T ), the en-
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Figure 4.18: The specific heat of a Na 1

2

CoO2 single crystal in zero applied field. The blue

lines mark the temperatures of the two transitions as seen in the magnetic susceptibility;
within experimental error, C is continuous through both temperatures.

tropy itself is the negative of the first temperature derivate of the Helmholtz free

energy, F . A change of state produces a change in F which is detectable by a

discontinuity in S. It should be noted that the “pulse” method of heat capacity

measurement as employed in the PPMS is not always suitable for measuring phase

transitions that occur over a very small temperature range dT ; if the heat pulse

applied is larger than dT the expected increase in heat capacity may be missed.

However, the density of measurements around each temperature of interest was

high (every 0.2 K) with small increases in temperature made at each measurement

(∼0.5 K). There are other methods of measuring the heat capacity, in which the

system is thermally isolated and small pulses of heat are added to the sample.

Heat capacity data in the published literature is notable by its absence, suggesting

that no large jumps in C occur at the phase transition temperatures no matter

what the experimental method. The absence of observable features around TM

and TMI essentially means that there is little change in magnetic entropy at either

transition. It is not uncommon in low dimensional magnetic systems that magnetic

correlations may build up faster in one crystallographic direction than another, due

to a mismatch in the magnitudes of the magnetic exchange parameters. In this

particular case, it may be that in-plane correlations build up slowly with decreas-
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Figure 4.19: Panel A: The zero field resistivity of Na 1

2

CoO2 with the current parallel

to the ab and c planes. The resistivity is anisotropic with ρc ≈ 2.5ρab at 2 K and a
crossover in anisotropy at ∼65 K. The MI transition is clearly visible at 53 K along with
a further increase in ρ at ∼20 K. Panel B: The magnetoresistance at 90 kOe in the ab
and c directions with the field oriented both parallel and perpendicular to the current.
The magnetic transition at 20 K strongly affects the MR.

ing temperature before locking in-phase along c at TM . A recent NMR study [31]

suggested that both transitions could be attributed to spin density waves, i.e.

Fermi surface nesting effects, in which case the transition at TMI would involve

only modest modifications to the spin order, again producing little measurable

magnetic entropy. The neutron diffraction study mentioned above [28], did not

measure any large change in the spin order below TMI , citing a maximum reori-

entation in the spin direction of 10◦. They produced a model for the magnetism

which involves chains of magnetically ordered Co atoms running along a; provided

these chains are sufficiently decoupled along c this model may explain the two

dimensionality as suggested by the macroscopic measurements. This is discussed

further in chapter 6.

4.5.2 Metal-Insulating Transition

The resistivity was measured with the current flowing through the ab plane and

along the c-axis as a function of temperature and field, as detailed in figure 4.19.

The resistivity in zero field is plotted in panel A; both curves increase slowly

with decreasing temperature before a rapid upturn at TMI . There is a further
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modification to the resistivity at ∼20 K, however there is no feature in the resistivity

that can be associated with the magnetic ordering at 88 K. The shape of the

resistivity is reminiscent of a standard Mott metal-insulator transition, and the

total value of ρab increases by a factor of 26 along c and 10 along ab between TMI

and 2 K. The datasets as presented in panel A were retaken in applied fields of 90

kOe in directions both parallel and perpendicular to the current. The resistance

contacts were removed and swapped in orientation in order to check the validity of

the collected results, which were found to be repeatable except for measurements

made around TMI indicating possible hysteretic behaviour. The MR as presented

in panel B is connected with the MI transition and is evidently complex: an applied

field in the basal planes suppresses the resistance to a maximum value of ∼ 2.5%

at 20 K before tending to zero at base temperature. For a perpendicularly applied

field, there appears to be no effect with the current aligned with the field, but a

small positive MR for currents along ab which is suppressed by the 20 K magnetic

transition before reappearing once more at lower temperatures.

The absolute values of the in-plane resistivities agree well with other pub-

lished data however the anisotropy falls far short of other reported values in the

range of 200-2500 [29, 80]. It should be noted however, that these references

report measurements made from flux grown crystals that typically have plate-like

habits and therefore very small dimensions along c, an order of magnitude smaller

than those produced by the floating zone method. In fact, only reports of ρab

measurements are available for floating zone crystals [28, 30]. It may be the case

that the flux grown crystal provide better measurements of the bulk resistive prop-

erties if the floating zone crystals have many dislocations within the basal planes

or inclusions of misaligned crystals, as described previously in section 3.3. In the

imperfect crystals, a nominal c-axis measurement may determine the resistance

of paths through the ab plane joined by sections of misaligned crystals. Although

this explanation readily resolves the contradiction between the magnitudes of ρab

and ρc, the fact that features such as the SDW transition in the x = 0.7 samples
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Figure 4.20: Panel A: The increase in TMI as a function of pressure. Panel B: The raw
magnetisation data at several pressures. TM remains unchanged in pressures up to the
maximum measured P of 9.5 kbar, however TMI is shifted to higher temperatures along
with a general decrease in the magnetisation.

and the anisotropic MR results at both x = 0.7 and 0.5 are different with the

current aligned along different directions is less well understood. The anisotropy

found in the magnetoresistance matches the results of Wang et al. [29] for some

directions and not others. Importantly, the results in this reference show only the

isothermal MR measurements as a function of field for just temperatures of 2 K

and 20 K, the temperature at which the in-plane MR is suppressed for H//c and

a maximum for H//ab. The authors suggest the magnetic stripe ordering found

at this doping level is necessary in order to produce the complicated angular MR

dependence.

4.5.3 Modifications to the Magnetic Order Under Pressure

The magnetic susceptibility was investigated as a function of pressure as in sec-

tion 4.1.4. M(T ) measurements were made on two different crystals with Hab =

50 kOe in isostatic pressures up to 9.5 kbar, shown in figure 4.20. The critical

temperature of the magnetic ordering TM was found to be invariant with applied

pressures in this range, whereas the MI transition temperature increased linearly

from 52.5(2) K to 55.1(2) K at a rate of 0.26(2) K/kbar. The increase in TMI

with pressure supports the proposal of Bobroff et al. [31] that this transition is due
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to the formation of a SDW state as a consequence of FS nesting effects; as seen

at the higher doping level, the application of pressure distorts the FS topology

with direct consequences on the magnetic ordering temperature. It is interesting

to note that a general decrease in magnetisation is brought about by the increase

in pressure; the data in panel B of figure 4.20 have not been offset from each

other.

4.6 Discussion

In summary, the magnetic, thermal and electrical properties of NaxCoO2 single

crystals samples have been measured at a range of different doping levels as a

function of temperature T and applied field H, oriented parallel and perpendicular

to the stacking planes of the crystal. At higher doping levels, an AFM SDW

transition is observed at 22 K. TSDW is independent of both x and H, however

may be increased to higher temperatures by the application of external pressure.

The pressure measurements were made in order to fully investigate the proposed

dome shaped dependence of TSDW with x, as discussed in section 2.2. We must

first consider whether there is any equivalence between the pressures applied here

and the effects of doping. There are few studies of the pressure dependence of

the structure of NaxCoO2. Rivadulla et al. [74] have measured the change in the

room temperature lattice parameters with pressures up to 45 kbar for a powder

sample of x=0.57 crushed from single crystals. The structure remained unchanged,

with a first order phase transition at 35 kbar separating a highly compressible

low-pressure phase from a high-pressure phase which is less compressible. The

c-axis initially decreases from 10.99 Å at ambient pressure to 10.88 Å at 10 kbar

(∂c/∂P = −0.012Å/kbar) whilst a decreases from 2.8293 to 2.8193 Å (∂a/∂P =

−0.001Å/kbar) over the same pressure range. Assuming a similar behaviour across

the NaxCoO2 series we can use the data of Huang et al. [10] to estimate that a

reduction in x from x=0.71 to x=0.63 brings about a change in c[a] that could
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be induced by the application of a positive[negative] pressure of around 11 kbar[7

kbar]. This suggests that the magnitude of any chemical pressure induced through

doping should be comparable with our maximum externally applied hydrostatic

pressure of 10 kbar, although doping will also alter the nature of the electronic

configurations within the system.

There have been suggestions that over the range of x considered here,

NaxCoO2 phase segregates into magnetic and non magnetic regions [81]. This

may explain the gradual reduction in the magnitude of the jump at TSDW seen in

the C(T ) data and if there is a non magnetic phase, why the application of pressure

is unable to restore the magnetic order. Whether this is the case or not, it is clear

that the application of moderate pressure modifies the exchange pathways within

the magnetically ordered phase sufficiently to strongly influence the magnetic order.

We must therefore consider how this may occur and what consequences this has for

our understanding of the nature of the magnetic order in this material. How does

the observed behaviour compare with that of well characterised SDW systems? In

both the 1D Bechgaard salts [82] and the 2D (ET)2X organic conductors [83], an

almost perfect nesting of the Fermi surface stabilises a SDW state. The application

of pressure increases the deviation from perfect nesting and suppresses the SDW.

In other words, pressure increases the dimensionality of the system, which destroys

the Fermi surface topology necessary to support the SDW ground state. For

a perfect nesting case [84], the application of a magnetic field also decreases

the SDW transition temperature; in contrast, for imperfect nesting, the SDW

ordering temperature increases in an applied field. The behaviour of the magnetic

ordering temperatures plotted in figure 4.9 and 4.20 evidently agree with the

scenario of imperfect nesting being enhanced by the application of pressure. In

order to fully ascertain the link between hydrostatic pressure and the effects of Na

doping, detailed measurements of the crystal structure as a function of pressure

are necessary. It is known that at room temperature the thickness of the CoO2

layer and the Co-O distance remain almost constant for 0.7< x <0.76, while the
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thickness of the NaO2 layer increases [10]. If it is principally the thickness of

the CoO2 layer that controls the magnetism, this may explain why TSDW remains

constant within this range of x and why the application of pressure leads to an

increase in TSDW . However, given that the CoO2 layer thickness continues to

decrease with x for x <0.7 while the signature of magnetic order disappears, we

must assume that the thickness of the NaO2 layer or other factors also play a role.

Recent calculations [85] of the exchange pathways within this material suggest that

superexchange via direct O-O hopping and/or through intermediate Na atoms (i.e.

Co-O-Na-O-Co) are important and that the exchange integrals are rather more

two dimensional than suggested by the neutron scattering data [16, 17]. This

interplanar Co-Co AFM coupling, whether mediated through the Na orbitals or not,

will undoubtedly rely on the Na occupation level. Since superexchange depends

more strongly on distance in comparison to the in-plane FM double exchange

interactions, a decrease in c caused by applying external pressure will result in a

marked change in inter-planar hopping distances without altering the number of

superexchange pathways.

In the SDW phase, the hysteresis observed in M(H) loops below 10 K

indicates that the magnetic order has a small ferromagnetic component. A large,

positive magnetoresistance coexists with this FM state. The magnitude of the

observed hysteresis along with the nearly linear M(H) behaviour and the peak

in χdc (T ) seen at higher fields, underline the fact that whilst ferromagnetic cor-

relations play a role in this system, the SDW is predominantly antiferromagnetic

in nature. At the lowest temperatures both the heat capacity and the χac data

suggest that a significant portion of the SDW state is pinned, producing a glassy

ground state. This is not uncommon among SDW materials.

It is clear that electronic correlations play an important role in the physical

properties of sodium cobaltate across the phase diagram. It has been suggested

for NaxCoO2 that the two sections of the Fermi surface (i.e. the narrow a1g and

the broader a1g + e′g) bands play different roles. The magnetic susceptibility, χ,
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Figure 4.21: The dependence of x on the Debye and Einstein fits to the heat capacity
data. Inset: the relative weighting of the Debye and Einstein functions to the total heat
capacity where the units represent strength of the Einstein fit compared to a value for
the Debye fit of unity.

and the electronic component of the heat capacity, γ , depend (to lowest order)

on the density of states which is determined by the large Fermi surface with a1g

symmetry. The carriers in the a1g +e′g band are mobile because the band is spread

in the ab plane. The a1g band is unstable to the formation of the SDW leading to

modifications in χ and γ. The reduction in electron-electron scattering resulting

from the formation of the SDW leads to an increase in conductivity along ab,

despite the expected reduction in the number of charge carriers.

The layered structure of the NaxCoO2 system is reflected in the mag-

netic susceptibility data where both the temperature independent susceptibility

and Landé g-factor are anisotropic, a feature common to other cobalt based oxide

materials. The transport properties are also anisotropic. This anisotropy appears

to increase with decreasing x (towards x = 1
2
). Other features also appear to

depend sensitively on doping levels. For instance, both the Debye and Einstein

temperatures in the fits to the heat capacity data decrease monotonically with

decreasing x, indicating a lowering of acoustic velocities in the system due to the

decoupling of CoO2 layers when sodium is removed. An increase in two dimen-

sionality with reduction in x is also visible in the transport measurements with a

general increase in ρc as the sodium level is reduced.
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Finally, the magnetic ordering in the half doped system has been inves-

tigated. The macroscopic measurements quantitatively agree with the proposed

AFM ordering at TM = 88 K, where the moments are aligned within the ab plane.

This is followed at TMI = 53 K by a MI transition and complex, angle-dependent

MR, that is significantly modified by a yet another transition at approximately

20 K. The origin of the low temperature transition has yet to be identified with

claims of magnetic transitions occuring at all three temperatures TM , TMI and

∼20 K in µSR studies [19, 86], disputed by neutron diffraction measurements [28]

in which the magnetic order established at TM is apparently invariant down to the

lowest measured temperatures.
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Chapter 5

Ionic Ordering in NaxCoO2

The macroscopic properties of NaxCoO2, as presented in the previous chapter, are

clearly intimately linked to the effect of sodium doping on the electronic structure.

In order to fully understand the nature of the electronic coupling of the sodium to

the cobalt oxide planes, precise knowledge of the crystallographic structure across

the phase diagram is necessary. Sodium cobaltate has been the topic of several

powder neutron scattering studies [8, 30, 87] and its average crystal structure has

been determined at room temperature. The trigonal distortion in the cobalt oxide

octahedra is found to depend sensitively on the distribution of the sodium in the

charge reservoir layers, and in particular on which crystallographic sites within the

structure are occupied or vacant.

Figure 5.1 reproduces the crystal structure presented in figure 2.1 viewed

down the c-axis, and depicts the crystallographic positions available to the sodium

ions. The spheres drawn in the figure have been scaled down by five and a half

times; due to its large ionic radius, not all of the sodium sites may be simultaneously

occupied. According to the study undertaken by Huang et al.[10], materials with

x <0.75 have 6h and 2b sites occupied in a ratio of 1:1.6. Above x = 0.75, one

half of the sodium atoms preferentially occupy the higher symmetry 2c site whilst

the remaining x − 1/2 atoms reside on the 2b site. It is possible for a sample to

contain phase separated combinations of both of these structural arrangements,

99



a

b

2b

6h

2c

Figure 5.1: The three different crystallographic sites occupied by the sodium atoms.

with the x = 0.75 sample in the Huang et al. [10] study comprising a 30% weight

fraction of the first phase of partially occupied 6h and 2b sodium sites, and a 70%

fraction of the second phase with the 2c and 2b atomic sites occupied. These two

phases are subsequently labelled 6h and 2c after the respective Wykoff positions

of the first sodium site. The transition between the phases is driven not only by

changes in the total sodium content of the sample, but may also be thermally

induced [88]. A systematic study of the crystal structure of sodium cobaltate is

presented in the following sections, determined as a function of temperature, in

order to shed light on the nature of the magnetic, thermal and transport properties.

Information describing the unit cell and atomic positions of both phases may be

found in the caption of table 5.2.

5.1 Evidence for Sodium Ordering in the Heat Capacity and

Resistivity Measurements

Heat capacity and transport measurements were performed on single crystal and

powder samples in temperatures up to 400 K (shown in figure 5.2). Several high

temperature anomalies are present in both data sets, each exhibiting hysteresis

of the order of 1 K. The anomalies are unaffected by the application of fields

up to 90 kOe, suggesting the transitions are structural, rather than magnetic, in
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B

Figure 5.2: Panel A: The
high temperature heat capac-
ity data for x = 0.75 powder,
and x = 0.71 and 0.62 crys-
tals. A background of the De-
bye and Einstein fits were sub-
tracted. Anomalies that evolve
with changing sodium content
occur at two distinct order-
ing temperatures of 305 K and
340 K (TNa1 and TNa2). No
sodium ordering transitions are
visible in samples with x <0.6.
Panel B: The in-plane resis-
tivities for the two crystals.
Anomalies in ρab occur at tem-
peratures coincident with the
Na ordering temperatures seen
in the heat capacity.

origin1. At the highest sodium concentrations, a peak is visible in the heat capacity

data centered on TNa1 = 305 K. The peak is rather broad, with the onset of a

larger than expected C value occurring at ∼315 K. At lower values of x, a much

larger anomaly is seen at TNa2 = 340 K. With intermediate sodium concentrations,

peaks at temperatures within a few degrees of both ordering temperatures may be

obtained. After a background subtraction of the Debye-Einstein fits obtained over

the temperature range 2 - 400 K, an integration of the C/T versus T plot (as

presented in panel A of the figure) will calculate the measured change in entropy at

each transition. Assuming the jump in heat capacity occurs due to the transition

from a high temperature state, where the Na ions are completely mobile, to an

ordered structure in which the Na ions have been “frozen” onto specific sites, the

total configurational entropy for the x = 0.71 crystal is calculated to be 10.03 J

mol−1 K−1 (see appendix B). The total measured entropy for the x = 0.75 powder

and the x = 0.71 and 0.62 crystals over the entire temperature range presented

1It is noted, however, magnetic interactions with an energy scale of ∼350 K = 30 meV would require
much larger magnetic fields to manipulate the moments.
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in the figure is 1.05, 0.98 and 1.09 J mol−1 K−1 respectively. This corresponds to

just 10.1%, 9.3% and 10.8% of the configurational entropy expected for sodium

ordering over the two available sites, using the site occupancies as defined above for

the 6h and 2c structures. This may indicate that considerable Na disorder persists

below TNa1[2]. The similarity of the measured entropies over the three different

doping levels suggests, however, that both transitions are driven by similar events

of real space sodium ordering.

Anomalies also occur in the in-plane resistivity measurements, shown in

panel B of figure 5.2. Two kinks in the data are visible for the x = 0.71 crystal,

one at TNa1 and another much larger than the first at 315 K, the onset temperature

of the jump seen in the x = 0.75 powder sample. Ionic conduction between the

CoO2 planes is expected at high temperatures via the direct movement of the

sodium ions. The freezing of the Na ions onto well-defined sites at the order-

disorder transition could therefore lead to a small increase in ρ. However, ionic

conductivities at room temperature are expected to be much lower (10−3 S cm−1)

than the magnitude of the jump seen here, where ∆ρab ≈ 0.1 mΩ cm (= 103 S

cm−1). Foo et al. [25] have suggested that there are strong correlations between

the Na ions and the charge carriers which, at x = 1/2, leads to an insulating state

at low T . At 0.6< x <0.8 the effects are expected to be weaker. Nevertheless,

the carriers are still likely to be influenced by modulations in the Na layers as the

sodium ions order leading to some charge localisation. These effects are much

more strongly felt within the CoO2 layers resulting in the sharp increase in ρ. This

is in contrast to the transition seen at TNa2 in the x = 0.62 sample where a

reduction in temperature through the Na ordering transition is accompanied by a

large drop in resistivity. The likely origin of the sudden reduction in the resistivity

is the decrease in scattering from the more ordered phase. Both decreases [22, 89]

at 340 K and increases [90, 91] at lower temperatures have been reported to occur

in the resistivity, although most measurements in the literature have been made

to a maximum temperature of just 300 K. Without a more complete survey of
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sodium ordering transitions as a function of x, the connection between the sodium

doping level and whether charge localisation or reduced scattering is the dominant

effect cannot be clearly defined.

5.2 The HRPT Diffractometer

The HRPT diffractometer at SINQ (PSI) is a standard thermal neutron powder

diffractometer as described in section 3.10. Three samples of x = 0.75, 0.59 and

0.50 (consisting of ∼20 g) were packed into vanadium cans in a He atmosphere and

diffraction patterns obtained for temperatures between 1.2 ≤ T ≤400 K using a

cryofurnace. Typical counting times were of the order of one hour for each temper-

ature set point. This enabled data acquisition for small steps around the transition

temperatures to be taken within a reasonable time limit for the instrument. The

machine was operated in high intensity mode, utilising a Ge monochromator to

select a wavelength of 1.155 Å. The crystal structure refinements were carried

out using the program FULLPROF [92]; the neutron scattering lengths for each

atomic species were obtained from the program’s internal tables. Diffraction data

collected around the TNa transitions were measured with both increasing and de-

creasing temperature in the higher x compound to check for hysteretic behaviour.

No magnetic peaks were observed below the magnetic ordering transitions in either

the SDW phase or the half doped phase. To date, only two neutron scattering

studies have directly observed the antiferromagnetic ordering at x = 0.82 [17] and

x = 0.50 [28]: the single crystal, spin polarized diffraction experiments estimated

a total ordered moment of just 0.13(2) and 0.13(1) µB per Co respectively. It

is therefore not unreasonable to expect that powder averaging in an unpolarized

neutron diffraction experiment will lead to a lack of sufficient sensitivity to discern

the magnetic scattering.
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5.2.1 Coexistence of two Structural Phases in the SDW System

Structural detail relating to the ordering of Na between the CoO2 planes can

however, be ascertained. The crystal structures of x = 0.75(3) and x = 0.59(2)

powder samples were refined to contain the two phases as defined above; one in

which the first sodium atom is positioned in the centre of the Co triangular lattice

and one in which this sodium atom is displaced slightly. This displacement relaxes

the energy degeneracy between the two Na sites. Despite the small magnitude

of this structural offset, strong correlations between Na-O co-ordination and the

charge transfer to the CoO2 system (which also influences the charge density on

the oxygen site by a hybridization between the Co eg band the O 2p states [93])

lead to a change in the CoO6 octahedra and consequently to a noticeable difference

in lattice parameters between the two phases. The two phases are subsequently

easily identified in the diffraction data and the relative weight fractions of each

can be tracked as a function of temperature.

The diffraction data for the x = 0.75 powder were fitted to severals models:

a single 2c phase, a single 6h phase and a linear combination of the two. Below

TNa1 the system appears to be stable in a mixed phase state with a 6h to 2c

ratio of 3:2 (figure 5.4). Above TNa1, the 2c phase disappears and is completely

removed at a temperature of 322 K; the structure refinements using the multi-

phase model at higher temperatures produce a 1:1 weight ratio for both phases,

with lattice parameters that converge to the same values. Further to this, the

B factor for the Na(1) atom in the 2c phase jumps from 1.5 Å
2

to 2 Å
2
; dis-

continuities in the thermal factors are unphysical and indicate either a problem

with the atomic occupancy (to which the size of the thermal ellipsoid is coupled

within the Rietveld procedure) or a change in atomic position, as in the present

case. Refinements of the single phase 6h material produce the lowest χ2 values

for these high temperature data. The onset of the ionic ordering is accompanied

by a lattice expansion (panel B of figure 5.4), driven by the transfer of Na from

one atomic site to the other. This is visible in both phases, before a and c relax to
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Figure 5.3: Rietveld refinement fits of (A) Na0.75CoO2, (B) Na0.59CoO2 and (C)
Na0.50CoO2 at 300 K. The data points are represented by red circles, and the refinement
fit as a black line. The two sets of green vertical lines detail the Bragg positions of the
reflections belonging to the different phases. The difference between the data and the
fit is plotted beneath in blue.
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Figure 5.4: Panel A: The 2c:6h
phase ratio as a function of
temperature. Reversible phase
separation occurs below TNa1

= 305 K (denoted by the ver-
tical grey line); the transi-
tion shows a hysteresis of ∼2
K. Panel B: The a (closed
symbols) and c (open sym-
bols) lattice parameters for
both phases show the lattice
deformation that accompanies
this transition. Data for the 2c
phase is plotted in blue, those
in green refer to the 6h phase.

values between those of the individual phases above TNa1. The transition exhibits

a slight hysteresis of ∼2 K most clearly seen in the evolution of the 6h lattice

parameters (not shown), consistent with previous measurements [94]. The behav-

iour of a2c[6h](T ) and c2c[6h](T ) agrees well with the measurements of Huang et

al. [88] (over the limited temperature range presented by these authors) although

the absolute values for the a lattice parameter are slightly smaller and, interest-

ingly, the transition occurs at TNa1 rather than TNa2. At base temperature, the

a[c]-axis lattice parameter of the 6h phase is 0.11%[0.56%] smaller[larger] than

that of the 2c phase. This corresponds to a difference of 0.33% in the unit cell

volumes with the 6h phase being the larger of the two. The difference in lattice

parameters results in a visible splitting of some of the high angle diffraction peaks,

as shown in figure 5.5.

The resulting high temperature single phase material has fractional Na

occupancies of 0.35(2) and 0.41(1) at the 6h and 2b sites respectively. On cooling

through the Na ordering transition, the sodium ions are redistributed between the

phases. The 6h phase has average 6h and 2b sites with fractional occupancies of

0.33(1) and 0.37(1), whereas the 2c phase consists of 2c and 2b sites occupied at
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Figure 5.5: Panel A: A 2D interpolated line plot of the high angle diffraction peaks
(Note: the datasets are plotted at equal intervals along the y axis which therefore does
not represent a linear temperature scale). Differences in the lattice parameters between
the 2c and 6h phase lead to a splitting of peaks below the ionic ordering temperature
TNa1 (indicated by the dashed green line). Panel B: An intensity vs. 2θ plot detailing
the temperature dependence of the (1 1 12) reflection (the data sets have been offset
for clarity). The integrated intensity of the 2c (right hand) peak as a function of
temperature is shown in the inset.

0.56(1) and 0.25(1), although the values for the Na n (occupation values) tend to

increase[decrease] in the 6h[2c] phase with decreasing temperature. Consequently

the x values for both individual phases (calculated by the simple addition of the

site fractions) are not static, and vary with temperature as depicted in panel A of

figure 5.6 (the individual site occupancies are presented in panel B). The combined

phase sodium level is, however, invariant with temperature. In order to check these

data, the refinements were repeated at each temperature with the same starting

values for the sodium occupancies. The fits converged to the same values for each

data set and are therefore considered to be a true representation of the transfer

of sodium between the two phases as the temperature is changed, and not just

an artifact of the fitting procedure where a false local minimum is found from a

starting model based on the output from the preceding fit. The distribution of

sodium in the 2c phase corresponds well with the values reported by Huang et

al. [10], but not for the 6h phase for which the authors consistently measure a

higher occupancy on the 2b site. This site is higher in energy than those found at

the centre of the triangular lattice due to the increased Coulomb repulsion resulting
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Figure 5.6: Panel A: The total sodium concentration of each phase is variable with
temperature whilst the average x remains constant. Panel B: the occupancies of each
type of Na atom from which the total concentration is calculated. Panel C: The position
of the Na(1) atom in the 6h phase jumps to a position slightly closer to the ideal 2c
position (blue line) above TNa1. Panel D: The z position of the oxygen atoms predicts
the 6h phase to be more distorted than those in the 2c phase. A possible structural
distortion of the octahedra around 10-15 K is also visible.

from the smaller Co-Na(2) bond length. The results found in this study, with more

or less equal occupancies over both sites, suggest a more realistic structure. The

other refinable parameters, namely the positions of the Na(1) atom in the 6h phase

(which moves slightly closer to the ideal 2c position above TNa1), and the height

of the oxygen atoms above the cobalt planes were found to vary only a little with

T , as shown in panels C and D of figure 5.6.

The bond-lengths and angles presented in figure 5.7 were calculated from

the Rietveld refinements using the program Bond Str, which is part of the Fullprof

WinPLOTR suite [95]. Details of the cobalt-oxygen coordination are plotted in

panels A and B. The small structural distortion seen in the O z parameter is nat-

urally visible in these data, however the higher temperature data reveal a general

increase[decrease] in the 2c[6h] phase that mirrors the change in total sodium con-
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Figure 5.7: Selected bond lengths and angles in Na0.75CoO2 presented as a function of
temperature. Panel A: The Co-O distance shows both the low temperature distortion and
a general increase[decrease] in the 2c[6h] phase that mirrors the change in total sodium
concentration between the two phases. Panel B: The O-Co-O bond angle shows the
distortion of the octahedra (i.e. from 90◦) in both phases. Panel C: The Na(1)-O bond
distances do not change substantially at lower temperatures. The discontinuity seen at
TNa1 is an effect of the change in the c-axis lattice parameter. Panel D: The distance
between the oxygen atoms and the Na ions at the 2b sites increases monotonically in
both phases, again as a consequence of the lattice thermal expansion.

centration between the two phases, suggesting that both the occupation fraction

and position of the sodium atoms directly affects the crystal field splitting of the

cobalt t2g energy levels. The diffraction data therefore provide the experimental

evidence of the role of sodium doping on the magnetic characteristics. Panels C

and D show the temperature dependence of the sodium-oxygen distances on the

Na(1) (2c or 6h) and Na(2) (2b) sites. The former varies very little with T , whilst

the latter shows a general increase in both the phases as a consequence of the

thermal expansion of the c-axis lattice parameter.
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5.2.2 Phase Separation in Na0.59CoO2

The second sample in this study exists in the paramagnetic regime between the

SDW magnetic phase at x ∼0.75 and the insulating x = 0.5 system. As such,

no noteworthy features in the macroscopic (magnetization or heat capacity) low

temperature measurements are observed. The neutron diffraction data do however,

show interesting Na ordering effects similar to the magnetic phase discussed in

section 5.2.1. The diffraction data were refined to exactly the same models as

above: the best fits at low temperature were obtained with a mixed 2c:6h system

in a weight ratio of approximately 1:9, as shown in figure 5.8. The temperature

dependence of the lattice parameters also differ; the expansion of c in the 6h phase

is larger than expected, whilst the magnitude of the Co-Co distance (equivalent

to the a-axis lattice parameter) goes through a minimum at T ∗ ∼200 K, where

the phase segregation occurs with decreasing temperature. Comparisons of the

lattice parameters between the two phases follow relations in opposition to those

described above, with base temperature values of a[c] 0.06%[0.50%] smaller[larger]

in the 2c phase than at room temperature, indicating that the x dependence of

the lattice parameters is more complicated than the results presented by Huang et

al. [10], who predict the mixed phase to exist only at x = 0.75 and not at lower

stoichiometries.

The change from a negative to positive lattice expansion in the a-axis lattice

parameter of the 6h phase at T ∗, whilst the c-axis lattice parameter increases

monotonically with increasing temperature, produces a temperature shift of the

Bragg peaks that is (hkl) dependent. Consequently, some reflections appear to

merge due to an increased translation in 2θ of some peaks in comparison to others.

This is most clearly seen in the plots presented in figure 5.9. Whilst the overall

result appears similar to the effect of phase separation seen in the x = 0.75 sample,

all of the reflections plotted in panel B of the figure belong to the 6h phase only

(the small weight fraction of the 2c phase at low temperature ensures the intensity

from the Bragg peaks of this phase are not clearly visible in the diffraction pattern
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Figure 5.8: Phase fractions
(panel A) and lattice parame-
ters (panel B) of Na0.59CoO2.
A mixed phase state exists be-
low T ∗ ∼200 K, separating to
a single 6h phase at higher
temperatures. The lattice ex-
pansion in the 2c phase is less
than observed at higher doping
and a minimum in the 6h a lat-
tice parameter coincides with
T ∗.

as a whole).

The occupancy of the sodium sites of the 2c phase mirror that of the

higher doped material, with preference of the 2c over the 2b site leading to a total

average sodium concentration of 0.57(4). Once again in the 6h phase the sodium

ions are distributed almost evenly between the 6h and 2b sites, giving a calculated

average sodium concentration is 0.64(2). The structural parameters obtained in

the refinements are plotted in figure 5.10. Due to the small fraction of the 2c phase

present in the system, the fitted parameters and their evolution with temperature

are on the limits of experimental resolution, therefore producing larger errors in

the data than seen in the first sample. It is evident, however, that the sodium

occupancies and consequently the total sodium concentration of the two phases

(panels A and B) do not change with temperature in this sample. The fits also

reveal an increased difference in the distortion of the CoO6 octahedra in the two

phases than found in the SDW system (panel D), generated from the increased

deviation of the 6h Na atom from the high symmetry position (panel C).

The bond lengths and angles were calculated once again and are plotted in

figure 5.11. The relations between the bond lengths in the two phases are similar
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T
A B

Figure 5.9: Panel A: An interpolated line plot of the high angle diffraction peaks,
plotted with a non-linear temperature scale for clarity. A negative lattice expansion in
the a lattice parameter below T ∗, whilst c continues to decrease, results in a novel
translation of the Bragg peaks with temperature that is (hkl) dependent. Panel B: The
temperature evolution of the (220),(222),(1 0 15) and (2 0 13) (left to right) reflections
are detailed in this panel.

A

B

D

C

Figure 5.10: Panels A and B: The individual sodium site occupancies and the total
sodium concentrations are independent of temperature. Panels C and D: Neither the
sodium nor oxygen positions are seen to vary with T , however the absolute values of
both present an increase the distortion from the ideal 2c and CoO6 octahedral shape
than seen in the previous sample.

112



A
B

C D

Figure 5.11: Selected bond lengths and angles in Na0.59CoO2 presented as a function of
temperature. Panel A: The temperature dependence of the Co-O bond distance mirrors
that seen in the x = 0.76 sample, although the difference between the two phases is
exaggerated by the increased distance of the O z positions. Inset: The partial structure
of NaxCoO2 showing one CoO6 octahedron and one Na(2) atom (not to scale). The
Co[Na(2)]-O bonds are indicated by green[blue] dashed lines and the O-Co-O angle by
the green arrows. Panel B: The distortion of the CoO6 octahedra is further amplified
in the 6h phase with a increase in the bond angle observed on passing through the
sodium reordering transition. Panel C: The Na(1)-O bond distances follow the same
temperature independent relations as found previously. Panel D: The increase in Na(2)-
O with temperature is less than expected due to the anomalous values of a6h(T ). The
colour scheme used in all four panels follows the convention used in the previous figures.

to those of the x = 0.75 sample. However, it is the decreased value of the O-

Co-O bond angle in the 2c phase, combined with the increase in the difference in

the Co-O bond lengths between the two phases, that results in the c-axis lattice

parameter being larger than that of the 6h phase, as confirmed by a calculation

of the Co-Na(2) bond lengths which are equal to one quarter of the total lattice

parameter. A diagram of the partial structure of NaxCoO2 explaining the atomic

coordination is shown in the inset of panel A in figure 5.11. The data at low

temperature do not present any evidence of a lattice distortion, complementing

the fact that no magnetic anomalies are present in this system.
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5.2.3 Supercell Ordering in Na 1

2

CoO2

The half doped system was studied between temperatures of 1.2 K and 300 K, with

smaller temperature steps taken around each of the three transitions of interest

(TM , TMI and the 20 K magnetic transition). A Rietveld refinement of the 300 K

data is shown in panel C of figure 5.3; the structural model previously proposed by

Huang et al. [30] was used with an orthorhombic supercell of (2a×
√

3a×c). The

positions of the atoms within the new unit cell were written down and compared

to the available atomic sites for the spacegroup Pmmn. It was confirmed to be

the correct choice of spacegroup and the second origin choice setting was chosen

to model the orthorhombic unit cell. The “ideal” atomic positions based on the

hexagonal unit cell are listed in table 5.1, and the two origin choices for the new

unit cell are indicated in figure 5.12. In order to compare the high symmetry atomic

positions with the Wykoff positions listed for this particular spacegroup, the axes

were permuted (x, y, z) → (z, x, y) and the a- and b-axes of the orthorhombic

cell were interchanged so that aorth = 2ahex and borth =
√

3bhex in keeping with

the new unit cell cited by previous authors [30]. The Wykoff positions written in

the table incorporate these changes and hence are different to those listed in the

International Tables of Crystallography.

As in the more recent structural study performed by Williams et al. [32],

the positions of atoms not at special crystallographic sites were not constrained,

producing several interesting observations. Firstly, as seen in panel A of figure 5.13,

the lattice parameters a and b deviate from their ideal values of 2a and
√

3a below

room temperature. This orthorhombic distortion of the CoO2 planes reaches a

maximum of 0.05% at 200 K, remaining constant down to temperatures of 1.2 K,

and is accompanied by the diagonal distortion of the CoO6 octahedra as the second

and third oxygen atoms move away from their symmetric position in the centre of

the Co triangular lattice. This distortion is also seen in the deviation of the two

Co(1) atoms from the y = 0 plane (as shown in figure 5.12); the magnitude of this

twisting increases by a value of one third around TMI , shown in figure 5.14. At
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Co(1) Co(2) Na(1) Na(2) O

Figure 5.12: The crystal structure of Na 1

2

CoO2 as viewed down the c-axis. The dashed

blue and solid blue rectangles represent the first and second choice of unit cell in the
new orthorhombic setting. Zig-zag chains of two sodium sites (which are fully occupied
in this crystal structure) form along the b-axis and are indicated in the figure by solid
and dashed black lines (representing chains at z = 1

4 and z = 3
4 respectively). With the

exception of Co(2), all the atoms deviate from their ideal positions as illustrated by the
fact the Co(1) and Na(1) atoms do not lie directly on top of one another. The arrows
at these atoms represent the direction in which the atoms move during the extra lattice
distortion that occurs around TMI .
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Co(1) Co(2) Na(1) Na(2) O(1) O(2) O(3)

x 1/4 0 1/4 3/4 1/4 3/4 0

y 0 1/2 0 1/3 1/3 1/3 -1/6

z 0 0 3/4 3/4 z z z
Wykoff letter 4e 4d 2b 2a 4e 4e 8g
Wykoff position 1

4
, y, z 0, 1

2
, 0 1

4
, y, 3

4
3
4
, y, 3

4
1
4
, y, z 1

4
, y, z x, y, z

Table 5.1: The ideal atomic positions of Na 1

2

CoO2 in the orthorhombic cell, based on

the atomic coordinates of the parent hexagonal cell. The Wykoff letter of each site is
labelled on the bottom row (note the change in the coordinate system as described in
the text). The coordinates not at high symmetry positions are shaded in grey.
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Figure 5.13: Panel A: The lat-
tice parameters of Na0.50CoO2

plotted as a function of tem-
perature. The a and c axes
deviate from their ideal hexag-
onal cell values below ∼300 K,
remaining fairly constant a
lower temperatures. Panel B:
The variation of the unit cell
volume as a function of tem-
perature. The inset shows the
lattice contraction around the
53 K transition.
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Figure 5.14: Details of the distortion of the Co(1)-Na(1) chains around the 53 K tran-
sition.
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Figure 5.15: Neutron diffraction data in a x ∼0.75 single crystal. The integrated
intensity of the 2c (107) Bragg peak is plotted as a function of temperature.

the same temperature, the y position of the Na(1) atom which sits almost directly

below[above] the first[second] Co(1) atom moves from its distorted atomic position

to the ideal position in the hexagonal unit cell and back. The second Na atom,

whilst also slightly shifted from its ideal (2c) position, shows no movement around

TMI . This movement of Na and Co along the y axis results in a small contraction

in the total unit cell volume around TMI as shown in the inset of figure 5.13 panel

B.
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Table 5.2: Structural refinement parameters of NaxCoO2 at 1.2 K. Samples 1 and 2
were refined in space group P63/mmc with the following atomic positions: Co [2a]
(0,0,0), O [4f ] (1/3,2/3,z), Na(1) [6h] (2x,x,1/4) and Na(2) [2b] (0,0,1/4). Sample
3 was refined in the orthorhombic spacegroup Pmmn in the second origin setting, with
the following atomic positions: Co(1) [4e] (1/4,y,z), Co(2) [4d] (0,1/2,0), O(1,2) [4e]
(1/4,y,z) O(3) [8g] (x,y,z), Na(1) [2b] (1/4,y,3/4) and Na(2) [2a] (1/4,y,1/4).

1. x = 0.75(2) 2. x = 0.59(2) 3. x = 0.50
2c 6h 2c 6h

a (Å) 2.837990(4) 2.834620(3) 2.82606(3) 2.827530(3) 4.88131(4)
b (Å) 5.63364(6)
c (Å) 10.761621(3) 10.821926(2) 10.928080(2) 10.873570(3) 11.06592(12)
V (Å3) 75.07363(2) 75.30514(2) 75.585(1) 75.2864(2) 304.30754(2)
Co(1) y 0.012(2)
Co(1) z 0.0110(6)
Co B (Å2) 0.04(1) 0.10(1) 0.23(2)
O(1) y 0.334(1)
O(1) z 0.0923(1) 0.09092(9) 0.0951(7) 0.0897(1) 0.0862(3)
O(2) y 0.327(1)
O(2) z 0.0835(2)
O(3) x -0.0047(8)
O(3) y -0.1605(8)
O(3) z 0.0902(1)
O B (Å2) 0.22(5) 0.09(1) 0.07(1)
Na(1) x 2/3 0.578(2) 2/3 0.561(6)
Na(1) y -0.021(2)
Na(1) n 0.53(1) 0.351(8) 0.32(3) 0.28(2)
Na(2) y 0.361(2)
Na(2) n 0.23(1) 0.39(2) 0.10(3) 0.33(1)
Na B (Å2) 0.44(5) 0.50(5) 0.85(23) 0.88(11) 0.06(2)
x 0.760(1) 0.74(2) 0.42(4) 0.61(2)
Rp 5.63 5.51 5.80 5.11 5.31
Rwp 3.99 3.76 4.56 3.41 4.21
χ2 1.98 1.70 3.54
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5.3 Discussion

The refined structural parameters of all three samples at 1.2 K are listed in ta-

ble 5.2. The powder diffraction data show evidence of a structural change at TNa1

for x = 0.75, unexpected ionic ordering above 200 K in the x = 0.59 sample,

and clear evidence of the orthorhombic superstructure in x = 0.50 along with

the first experimental evidence of a structural distortion around the MI transition

temperature. The observation of a transition from a high temperature 6h phase

into a mixed phased state below 305 K, and the associated changes in lattice

parameters and bond lengths, agrees well with the findings of Huang et al. [88].

It must be noted, however, that their change in phase fractions occurred at the

higher Na ordering temperature TNa2 of 340 K, with a prevalence of the 2c phase

(with a total weight fraction of 70%) at base temperature. Such a transition was

observed, however, in a x ∼0.75 single crystal on the D10 diffractometer at the

ILL (details of the instrument are given in chapter 7). The diffractometer was

positioned in order to satisfy the Bragg condition of the (107) reflection in the

2c phase. The temperature was increased and decreased through TNa2, and the

summed intensity calculated for each temperature set point. The disappearance

of the 2c phase at this temperature is clearly seen as a sharp drop in the scat-

tered neutron intensity, although a large background remains, most likely due to

the fact the crystal had a significantly large mosaic spread in the ab plane. The

transition is hysteretic with a width of ∼1 K, again in good agreement with the

macroscopic measurements. Although this sample shows the same phase ordering

as that seen by Huang et al. [88], some significant differences are apparent. Firstly,

the transition in their publication occurs over ∼30 K in both warming and cooling

runs, an order of magnitude larger than the width of the transition seen in this

single crystal experiment. This is perhaps due to Na inhomogeneity in the powder

sample. Secondly, the hysteresis is slightly larger at a value of 5 K, although no

heat capacity measurements were presented in the paper to check this value.
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x = 0.75 x = 0.59 x = 0.50

2c a 14 2c a 17 a -5
c 1730 c 1340 b 1

6h a 13 6h a 6 c 2420
c 1750 c 2570

Table 5.3: The lattice thermal expansion parameters of the three powder samples, listed
for all phases in units of ppm.

The thermal expansion of the lattice parameters in all three samples, de-

fined as the fractional difference between the lattice parameters at room and base

temperatures, are listed in table 5.3 (Note: the calculated values for the 2c phase

in the x = 0.59 sample are based on the room temperature lattice parameters

of the 6h phase). The expansivity is highly anisotropic with coefficients differing

along the different crystallographic directions by two orders of magnitude. This

reflects the nature of the layered structure and agrees with the evolution of the

lattice parameters under externally applied pressure [74], which differ by an order

of magnitude. The thermal expansion of the c-axis in the 6h phase of the x =

0.59 sample is almost a factor of two larger than expected. The c-axis expansion

is a reflection of the high thermal expansivity found in the NaO2 layers [32] and

so the larger value of 2570 ppm is attributed to the distortion of the NaO6 octa-

hedra that occurs with the decreased value of the Na(1) x position (as described

in section 5.2.2). The deviation of the Na(1) site further from the centre of the

triangular lattice produces average Na-O distances similar to those found in the

x = 0.50 phase, which has a similarly high c-axis lattice expansion parameter.

The sodium-oxygen coordination is therefore strongly coupled to the structural

parameters.

The data presented in this chapter complete the ionic ordering phase dia-

gram proposed by Huang et al. [10] who performed measurements at room tem-

perature only. The mixed 2c and 6h solid state solution occurs not only at x

= 0.75, but exists at lower temperatures with lower sodium concentrations. The
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phase fraction of the 2c phase at base temperature also decreases with decreas-

ing x, with a measured value of 70% in the x = 0.75 data of Huang et al. [88],

decreasing to 40% and 10% in the two samples in this study. Plotting the Na or-

dering temperatures versus the x value of the 6h phase suggests that the 2c phase

extends down to a value of x = 1
2
, where the new ionic ordering pattern occurs; the

many different temperatures at which anomalies occur in the published resistivity

data may be explained within the framework of this new sodium ordering phase

diagram. These data also add weight to the idea proposed in section 4.6, that

the material is phase segregated into magnetic and non-magnetic constituents,

the relative proportions of both in any particular sample controlling the size of the

measured magnetic moment and the jump in the heat capacity at TSDW . Recent

NMR and electron paramagnetic resonance (EPR) measurements [81, 96] have

verified the presence of mesoscopic phase separation in samples with 0.65 ≥ x ≥
0.75, below temperatures in the range of 220 - 270 K, consistent with the results

of this work. The hypothesis is congruous with the measured magnetic properties,

given that only the 2c phase may exhibit magnetic ordering. A spin density wave

results from a nesting instability in Fermi surfaces with high symmetry. Further

investigation into the electronic structure of NaxCoO2 is necessary in order to con-

firm whether the movement of the sodium from the high symmetry 2c position is

enough to significantly alter the Fermi surface topology and suppress the magnetic

ordering.

What is the driving mechanism for the different types of sodium ordering?

The most popular Na ordering theories rely on the formation of sodium superstruc-

tures leading to charge localisation on the cobalt lattice, which is similarly ordered

due to the influence of the charge modulations in the Na layers. A large array of

different ordered structures have been proposed by density functional theory [97]

and Monte-Carlo simulations [98], many of which have been seen in electron dif-

fraction studies [77, 99]. As of yet, only two bulk structure measurements have

revealed any superstructure ordering for the SDW material [98, 100], the first a
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Figure 5.16: The ionic ordering phase diagram of NaxCoO2, after this work (data points
plotted in light blue squares) and references [10] and [88] (dark blue diamonds). Above
half doping, at which the long-ranged orthorhombic supercell ordering occurs (purple
line), the transition between the mixed 2c and 6h phases (dark blue) and the pure 6h
phase (light blue) occurs at higher temperatures with increasing sodium content. Above
x ∼ 0.8, only the 2c phase (grey) is present. At x = 1 the 2c sites are fully occupied
(dark grey). The number beneath each data point represents the weight fraction of the
2c phase at base temperature.

high intensity neutron Laue single crystal experiment and the second a high energy

x-ray single crystal diffraction study, finding superstructures based on clusters of

Na vacancies and Na density stripes respectively. No sign of any Na superstruc-

tures were visible in the neutron diffraction patterns for the x = 0.75 or x = 0.59

samples in this study, although due to the high density of reflections and limited

experimental resolution the presence of weak superstructure modulations cannot

be definitively ruled out. What is clear, is that the ordering is extremely sensitive

to x and in many cases, apparently sample dependent, with more than one kind of

superstructure order seen in the same sample in some of the transmission electron

microscopy (TEM) experiments. The degree of coupling between the cobaltate

layer and the Na ions is expected to be weak, however the charge and magnetic

ordering in this material occur at low energies indicating the physics of the CoO2

layers may still be affected by the nature of the ionic ordering in intermediate

charge reservoir layers.

Evidence for charge localisation as a result of Na ordering has not yet ap-
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peared. IR conductivity measurements [101] see a far infrared peak (FIP) with

an optical gap at x = 0.5, a feature common to the conductivity of many charge

ordered materials. At higher sodium doping, the FIP remains whilst the gap is

closed, to which they attribute a coexistence of localised and itinerant charge car-

riers. Even in the half doped system, proof of a completely charge ordered (CO)

cobalt system with full charge disproportionation into Co3+ and Co4+ remains

elusive. The bond valence sum method was used to calculate the formal cobalt

valence on each site in the x = 0.50 sample using the fitted crystal structures

over the entire temperature range measured. The results agree well with those of

Williams et al. [32]. The convergence of the crystal structure at high temperatures

to the “ideal” hexagonal structure leads to an identical Co-O hybridisation on both

sites and equal values for the valence of +3.35. The orthorhombic distortion that

presents itself at lower temperatures lifts the degeneracy on the two sites resulting

in a slightly charge disproportionated state with formal valencies of +3.45 and

+3.32 on the first and second cobalt sites respectively. Each measurement is less

than the value of +3.5 expected from the simple ionic picture as described in

section 2.2. It is clear, however, that a fully charge ordered state never appears

in Na 1

2

CoO2, even during the further orthorhombic distortions seen around the

TMI transition. As the material passes through this transition careful examination

of the bond lengths as a function of temperature reveal that the increase in one

Co-O bond length is balanced by the decrease in another, leading to a temperature

independent value of the Co valence. In the absence of charge ordering, a viable

explanation for the lattice expansion anomaly has yet to be found. The modifica-

tion of the magnetism already present in both the x = 0.75 and x = 0.5 samples

at ∼10 K and TMI respectively, appears to exhibit sufficient magnetoelastic cou-

pling to induce a mechanical stress within the crystal structure, producing the

measured distortions within the crystal structure. Suggestions that the ordering in

the Na layers is largely driven by intraplanar electrostatic interactions [98] do not

account for the one superstructure on which more than one set of authors agree
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to exist, namely the zig-zag stripes of the Na orthorhombic supercell at x = 0.5,

since this type of ordering does not maximise the average Na-Na distance as would

be required for simple electrostatic repulsion. This strongly indicates the driving

force for Na ordering in sodium cobaltate is more complicated and may result from

band structure effects originating in the electronically active cobalt oxide planes, in

opposition to the previously assumed model in which ionic ordering was the cause

of such electronic effects.
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Chapter 6

Magnetic Excitations in Na1

2

CoO2

6.1 The MAPS Spectrometer

The MAPS spectrometer at ISIS (RAL) is a time-of-flight inelastic neutron spec-

trometer that operates in direct geometry, i.e. the neutrons incident on the sample

are monochromated by the use of a chopper, a mechanical rotating device that

selects neutrons of a defined wavelength, as described in section 3.12.1. The scat-

tered neutrons are incident on a 16 m2 array of detector banks consisting of 40,000

detector elements covering a large area in reciprocal space. The final energy of the

neutrons is determined by the time-of-flight from the moderator to the detector

and measured at every pulse in 2500 time channels. Each data set therefore con-

sists of 108 pixels of data, approximately 0.4 GB. In contrast to the experimental

description in section 3.12.1, where a line of detectors measured an area of recipro-

cal space as a function of energy, the area detectors in MAPS measure a reciprocal

space volume, again as a function of energy. The scattering function therefore ex-

ists in four dimensional reciprocal space, however, of the three components of q

and the energy, only three are independent as they are all correlated to the three

components of kf . After the measurements are made, the data are converted into

an absolute cross-section by a comparison to scattering from vanadium and the

data normalised per formula unit of sample. After the decision of how to align

the crystal (i.e in which plane to look for excitations) and which incident energy
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to use (how much of reciprocal space is to be viewed and at what resolution) is

made, MAPS simply collects data in all of the available scattering volume. The

data is reconstructed after the experiment, from which cuts or curved trajectories

through planes, and slices through volumes can be evaluated. Because the data in

a TOF experiment are collected simultaneously for a large range of q values (even

those that are not of interest), the data collection is significantly faster than the

TAS technique, however the incident flux is much lower (∼103 n cm−2 s−1 though

this is Ei and collimation dependent) and the energy resolution is worse, especially

at low energy transfers.

6.2 The 2T1 Triple-Axis Spectrometer

The Orphée reactor at LLB (Saclay) provides a flux of 3×1014 neutrons cm−2s−1

that are thermalised in a heavy water moderator around the reactor core. Guide

tubes, tangential to the core, direct the neutron beam to the instrument. The 2T1

triple axis spectrometer (TAS) has its guide tube situated in the moderator near

the core, where the flux of thermalised neutrons is at a maximum; the total flux

at the sample, as in the TOF spectrometers, is strongly dependent on collimation

and incident energy but is of the order of 106 n cm−2 s−1. The spectrometer itself

works as described in section 3.12.2. The first axis corresponds to the angle of the

crystal monochromator used to select the energy of the incident neutrons. The

second axis relates to the orientation of the sample. The third axis contains a

pyrolytic graphite (PG) analyzer used to select neutrons of a given final energy,

the number of which are measured by a 3He detector.

6.3 Observation of Magnons in the Supercell Lattice

For the measurements made on MAPS, a mosaic of six crystals, each of mass

∼0.5 g, was mounted onto an Al sample holder, placed inside a vanadium can

and cooled to 10 K in a closed-cycle refrigerator (CCR). The can contained an
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Figure 6.1: Inelastic scattering in the (hk0) plane summed over energy transfers of
10-20 meV. Scattering is visible at points corresponding to (100) in the orthorhombic
supercell, although twinning reproduces the hexagonal symmetry. An overlay of the
parent hexagonal reciprocal lattice is shown.

atmosphere of He to allow efficient heat exchange between the cold head of the

CCR and the crystals. An initial survey of the six crystals using the neutron Laue

facility (ALF) at ISIS revealed that the (100) direction had been seeded in the

crystal at an angle of 10 ◦ to the growth direction; this had continued through the

entire crystal boule. The six crystals used in this experiment originated from three

slices of the crystal boule that were split down the growth axis (in order to produce

a larger surface area) and consequently three were crystallographic mirror images of

the other three. The two mirror sets had to be identified and mounted on opposite

sides of the sample holder. Despite the experimental difficulty involved, the final

mounted crystal set had a mosaic spread of ∼10◦, small enough to make an initial

survey of the inelastic excitations. The spectrometer was configured with the

incident neutron beam parallel to the c-axis of the crystals so that the scattering

in the ab plane would be measured. An incident neutron energy of 100 meV

was selected and long counting times (typically 48 hours) were adopted to build

up sufficient statistics in (q,h̄ω) space over the range of interest (−1 ≤ q ≤ 1,

h̄ω ≤25 meV). The data were analysed using mslice [102], a Matlab data analysis

127



(0k0)

(hh0)

(h00)

(-½k k 0)

Figure 6.2: The two dimensional reciprocal lattice of NaxCoO2. The hexagonal unit
cell is outlined in black with the (100) and (010) directions also marked in black. The
first Brillouin Zone (BZ) is constructed by marking the perpendicular bisectors of the
six reciprocal lattice vectors Ghk = ha∗ + kb∗ (h = k = 1) and is filled in green. The
zone centre of the magnon (the green circle) corresponds with the zone boundary of the
BZ. The second BZ (filled in pale blue) is constructed in a similar fashion, by bisecting
the reciprocal lattice vectors that cross only the first BZ (i.e. along (hh0), marked in
pink). The zone centre of the observed phonon is identified by a red diamond.

programme for time-of-flight neutron spectrometers. To plot the data correctly,

the coordinates must first be written in terms of orthogonal viewing axes u1 and

u2, i.e. the direction perpendicular to a* must be written as a projection of the

hexagonal direction b*. The matter is further complicated by the fact that the

crystals were mounted with a* vertically offset and so the actual viewing axes are

the product of the orthogonal projection of the hexagonal cell and an anticlockwise

rotation of ϕ = 10◦:




u1x u1y

u2x u2y



 =




−1

2
1

1 0



 •




cos ϕ sin ϕ

− sin ϕ cos ϕ



 (6.1)

In figure 6.1 inelastic scattering is clearly visible at points relating to (100)

in the orthorhombic notation, or
(

1
2
00
)

in the parent hexagonal lattice (Note:

all (hkl) notation from this point refers to the hexagonal structure). All six

peaks are also visible in the elastic channel, which is at odds with a true long-

ranged orthorhombic superstructure, where there should only be two. However,
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Figure 6.3: q-data maps summed over an energy transfer of 10≤ h̄ω ≤20 meV at
temperatures above and below TM plotted in units of mb sr−1 meV−1 per formula unit.

The scattering related to the magnon at
(

1
200

)
is still visible at 100 K although broader.

the integrated intensity of pairs of peaks diametrically opposite each other match,

suggesting that either the six crystals had been aligned along different equivalent

direction choices of (100) or the crystals exhibit structural twinning (or more cor-

rectly - tripling) in the basal planes which, as measured by Gašparović et al. [28],

is directly proportional in magnitude to the tripling of the magnetic domains. The

latter scenario is more likely since the six crystals were all mounted with the original

crystal growth axis vertical. The relative populations of each of the three domains

should not necessarily be assumed an invariable characteristic of each crystal; as

described in section 2.1, the layered structure of NaxCoO2 permits ionic conduc-

tion of Na through the crystal and persistent temperature cycling could potentially

make quantitative analysis on single crystal experiments meaningless. In order to

maximise the signal in this experiment however, the data were folded onto one 60◦

segment, thus combining all three crystal domains. A schematic diagram of the

reciprocal unit cell illustrating the geometry is shown in figure 6.2.

q-data maps were produced by slicing the data across different energy trans-

fer levels (the data in figure 6.1 shows a slice with 10≤ h̄ω ≤20 meV) and then
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folding the datasets through successive 60◦ segments. For a G-type antiferromag-

netically ordered system, spin excitations should be visible as a cone of scattered

neutron intensity around the magnetic zone center. Slicing the data across q over

finite energy ranges will therefore produce a set of rings. However, it should be

noted that there is no magnetic scattering in the (hk0) plane. Nevertheless, taking

a cut through the data along (h00) (figure 6.4) reveals several interesting features.

Firstly, the prominent peak visible at (1
2
00) at 10 K, has broadened and decreased

in intensity at 100 K and is no longer apparent against the background in the one-

dimensional slice of the data. Secondly, there exists a sharper peak at (100) which

increases in magnitude when the temperature is increased and can therefore be

attributed to a phonon mode.1 Thirdly, an isotropic increase in scattering inten-

sity is visible at |q| ∼0.8 in reciprocal lattice coordinates. There are two possible

causes for this background. The first is due to elastic scattering from the sample

environment which, having taken a different path through the instrument, arrives

at the detectors in the time channels corresponding to this level of energy transfer.

A slice through the elastic channel of the data produces two concentric rings of

intensity at h = 1.05 and 1.20. These values, when converted to inverse ångströms

correspond exactly to the |q| values of the two highest d spacings for aluminium,

d111 and d200. Although the measured scattering function was corrected by taking

a background from vanadium, scattering from the sample environment, includ-

ing the aluminium to which the crystals were attached, will be present in these

data. The second explanation refers to the size of the resolution ellipsoid of the

instrument. A cut through the data, analogous to a constant q scan in a TAS

measurement (panel B of figure 6.4) reveals the quasielastic scattering extends to

and energy transfer of almost 10 meV. This originates from the convolution of real

quasielastic scattering (perhaps from hydrogen within the sample or the sample

environment) and the finite spectrum of neutron energies within the “monochro-

1It should be noted that due to the orientation of the sample with respect to the MAPS detector
array, data was collected only at the (010) and (010) reciprocal lattice points and the four other positions
in the two equivalent directions were absent. The integrated intensity of this peak will therefore not be
representative of the size of the phonon involved.
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A B

Figure 6.4: Panel A: A cut through the data in figure 6.3, the 100 K data have been

offset vertically by 0.75 for clarity. The excitation at
(

1
200

)
has softened with increasing

temperature and is almost invisible against the background in this one-dimensional plot.
The sharper peak at (100) has increased with temperature, indicating it is a phonon
mode. Panel B: Cuts along the same direction with smaller widths in energy transfer
(±1 meV); as a consequence of binning the data into smaller regions the detail seen in
panel A is lost. However, the extent of the quasielastic scattering (up to ∼10 meV) at
this incident neutron energy and chopper setting is visible (the intensity is plotted on a
log scale).

mated” incident beam. The data in figure 6.3 will naturally include some of the

scattering from below 10 meV; a resolution ellipsoid which is |q| dependent will

sum over larger portions of the background as it moves away from the origin of

reciprocal space. The evidence for this is visible in panel B of figure 6.4 where the

cuts nearest the boundary of the diffuse scattering carry more spectral weight at

higher q.

To follow on from these observations and take more precise measurements

of the magnetic excitations, measurements were undertaken on the 2T1 TAS. Just

one of the crystals was selected for the triple axis measurement in order to re-

duce the overall mosaic spread and optimise resolution. The crystal was cooled

in an orange cryostat with the c-axis aligned vertically so that the Co moments

were in the scattering plane. The tripling of the orthorhombic structure ensures

that a component of the spin direction is always perpendicular to the scattered

wave-vector, no matter the orientation of the crystal in this plane. Measurements
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Figure 6.5: Constant energy scans through
(
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)

at an energy transfer of 15 meV.

Whilst the peak in the elastic line remains at high temperatures, the inelastic signal has
disappeared at twice the ordering temperature TM , with an increase in the background
corresponding to an increase in diffuse scattering.

were taken both at constant energy transfer through a crystallographic direction

of interest and also at constant q with increasing h̄ω. At a temperature of 2.8

K, a clear peak is identifiable in both the inelastic and elastic channels at q =
(

1
2
00
)

as expected. In order to access high enough energy transfers to examine

the dispersion, it was necessary to move to the next Brillouin zone and take mea-

surements at
(

1
2

1
2
0
)

(see figure 6.2). The magnitude of the change in intensity

between the two sites is 18%, comparable to that expected (15%) from the de-

crease in the magnetic form factor of Co4+ with an increase |q| from 1.28 Å
−1

to 2.22 Å
−1

. A further indication that the signal is magnetic in origin is that the

peak is destroyed by increasing the temperature to ∼2TM (figure 6.5). Similar sets

of q-scans were made at increasing energy transfers and are shown in figure 6.6.

Two interesting features arise. Firstly, the excitation is gapped; no scattering is

seen below 11.5 meV. Secondly, the peaks are overly damped, increasing in width

with increasing energy, whilst the overall dispersion is very steep. The dispersion

is qualitatively similar to that seen in the SDW phase [16, 17] in the ab plane, al-

though the intraplanar exchange interactions are antiferromagnetic at this doping

level and the spin wave gap is an order of magnitude larger.

132



0.3 0.4 0.5 0.6 0.7
0

5

10

15

20

25

30

ΓΓΓΓ (arb. units)

B

 

 

hω
 (

m
e

V
)

(h½0)

0.0 0.1 0.2

 

 

0.3 0.4 0.5 0.6 0.7
0

100

200

300

400

500

 10 meV 
 15 meV

(h½0)

A

 

 17 meV
 25 meV 
 30 meV 

 

 

In
te

ns
ity

 (
co

un
ts

 /1
00

k 
m

o
n.

)

Figure 6.6: Panel A: Constant energy transfer scans at
(

1
2

1
20
)

taken along the (100)

direction at 2.8 K, fitted to two gaussian peaks. The 10 meV dataset has been offset
by +350 counts, whilst the last three datasets were offset by -150, -200 and -250
counts respectively for increasing energy transfer cuts. Panel B: The measured spin

wave dispersion along
(
h1

20
)

at 2.8 K; the spin wave gap closes at ∼11.5 meV. Inset:

the width of the peaks (Γ) increases with increasing energy transfer.

6.4 The Nature of the Excitation Gap

To examine the spin gap further, scans of constant q were made through increasing

energy transfer. The gap was observed at both
(

1
2
00
)

and
(

1
2

1
2
0
)

(figure 6.7) at

Eg
∼= 11.5 meV. The onset of scattering is sharp, and decays with increasing h̄ω

as expected. As seen at the higher doping levels, there exists an optical phonon

at ∼20 meV which dominated the signal in the q-scans at that energy transfer.

Fortunately, since optical phonon modes are relatively flat, it was therefore possible

to pick up the signal from the magnetic excitation once more at higher h̄ω. In

order to correct for the additional phonon component to the scattering, another

energy scan was taken at an offset position from the excitation of (0.594 0.4 0),

the exact values of (hk0) chosen to set the analyzer at the same 2θ position as the

previous scan. The difference curve then removes the diffuse[phonon] scattering

below[above] the gap.

Finally, the sample was tilted slightly into the (100)-(001) scattering plane

and the same energy scan repeated for q=
(

1
2
01

2

)
(not shown). The value of

Eg is shifted to ∼9 meV, a decrease of 25%. Such a modification to the gap
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Figure 6.7: Constant q-scans at
(

1
2

1
20
)
. A background was taken in an offset position

of (1
2 + δ 1

2 − δ 0) where δ ∼ 0.1 was chosen so that the spectrometer was aligned
with the same 2θ positions as the on-peak measurements. The subtracted data (black
open squares) is plotted; the line corresponds to the convolution of the experimental
resolution ellipsoid and the intensity expected for an ideal gapped system (Eg = 11.5
meV).

suggests that either the dispersion along c is significantly large, or that the gap at

the magnetic zone centres
(

1
2
0lodd

)
is much less than the Eg measured here, and

merits further investigation.

6.5 Discussion

It is clear from these measurements that the magnetic excitations are sensitive to

the amount of sodium in the system, with a large excitation gap appearing at this

doping level, and are strongly correlated with the arrangement of the ionic order-

ing, with the zone centres of the intra-planar excitations in Na 1

2

CoO2 coinciding

with the supercell Bragg peaks as described in section 5.2.3. The magnetic exci-

tations in the SDW system have been characterised by neutron spectroscopy and

the structure confirmed as A-type antiferromagnetic ordering [16, 17]. Bayrakci

et al. [17] managed to resolve magnetic Bragg peaks at (1 0 lodd) and (1 1 lodd)

using polarized neutrons on the 4F1 spectrometer at LLB. They extracted a total

moment of just 0.13(2) µB per Co. For an isolated Co4+ ion in the low spin state
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the magnitude of its spin angular momentum is given by:

µ = 2
√

S(S + 1) = 1.73 µB per Co (6.2)

At a doping level of x = 0.75 only one quarter of the cobalt sites carry spin half, so

that the total moment expected from the neutron diffraction measurement should

be ∼ 0.4 µB per Co. It should be noted that the crystal field environment may alter

the moment of the Co so that these calculations may give just an approximation to

the total moment measured. The static magnetic order of Na 1

2

CoO2 has also been

confirmed by neutron diffraction [28] and again, the measured moment of 0.13(1)

µB per Co is less than expected. The easy axis was found to have changed

from c to a. The symmetry breaking imposed by the orthorhombic supercell

produces two separate Co sites, one of which, according to the simple ionic model,

is magnetically ordered (Co4+) and the other nonmagnetic (Co3+), leading to

alternating rows of spin half and zero spin cobalt atoms that run along a. In

terms of the new unit cell, the system can be thought of as a simple G-type

antiferromagnet with a magnetic propagation vector of
(
11

2
1
)
. The magnetic

structures for the two different doping levels are presented in figure 6.8. An

important difference between the two magnetic structures is that, whilst the inter-

planar interactions are both antiferromagnetic, the intra-planar magnetic coupling

constant has changed sign. At x = 3
4

the interaction between spins in the basal

plane is ferromagnetic, corresponding to a two dimensional magnetic ordering

vector (00). This had been previously observed on the MAPS spectrometer as

a peak of scattered intensity centered on the origin [40]. In the experimental

geometry used (identical to the experiment described above) the origin of the

reciprocal lattice would coincide with the axis of the incident neutron beam, which

is not covered by detectors for obvious reasons. In order to access that region

of reciprocal space, the crystal was rotated along the axis perpendicular to the

incident beam by 30◦. During the MAPS experiment in this study, the same

procedure as adopted by Boothroyd et al. [40] was used to verify that in-plane
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Figure 6.8: The magnetic structures of Na 1

2

CoO2 (G-type AFM) and Na 3

4

CoO2 (A-type

AFM). The hexagonal unit cell is shaded blue in both systems, and the orthorhombic
supercell shaded pink in the x = 1

2 structure. The magnetic ordering vectors for the two

doping levels are
(
11

21
)

and (001) respectively.

FM coupling really is absent in the x = 1
2

system. The results are shown in

figure 6.9. In the experiment of Boothroyd et al. [40] the crystal was aligned with

the (100) direction horizontal. Adding the extra rotation angle ϕ, the x = 1
2

data

must be rotated by 100◦, and hence the gaps between detectors are seen to be

rotationally offset between the two datasets. The data in the x = 3
4

experiment

was also taken with a slightly higher incident neutron energy of 60 meV compared

to 50 meV as used in this particular measurement2. Consequently, the detectors

in the dataset on the right hand side cover slightly more reciprocal space. Despite

these experimental differences, it is clear to see that no in-plane ferromagnetic

excitations exist in the Na 1

2

CoO2 sample. The data were summed over energy

transfer values of 8≤ h̄ω ≤12 meV and so little scattering is expected at
(

1
2
00
)

(actually
(
01

2
0
)

in this figure since the basis vector set has been rotated to match

2This incident energy was the original choice of experimental setting used. After performing this
particular measurement, the sample was rotated back to ki ‖ c. The scattering at

(
1

2
00

)
was then

observed towards the outside edges of the detectors where the resolution is worse. As a result, a new
Ei of 100 meV was adopted for the measurements presented in figure 6.1.
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Figure 6.9: Neutron inelastic scattering of Na 1

2

CoO2 (left) and Na 3

4

CoO2 (right) in

the (hk0) plane averaged over neutron energy transfers of 8≤ h̄ω ≤12 meV. Scattered
intensity at the origin indicates ferromagnetic interaction between the spins within the
(hk) plane, absent at x=1

2 and present at x=3
4 . The x=3

4 data is reproduced from
reference [40].

the orientation employed by Boothroyd et al. [40]), however the finite resolution

ellipsoid ensures that some of the intensity from above the gap is summed over

and a faint signal of the scattering seen in figure 6.1 is visible.

Both Helme et al. [16] and Bayrakci et al. [17] fitted their dispersion data

using a spin Hamiltonian assuming nearest neighbour interactions of the form:

H = −2Jab

∑

<ij>

Si.Sj − 2Jc

∑

<ij>

Si.Sj − D
∑

i

S2
iz (6.3)

where the first summation refers to nearest neighbour spins in the basal plane

and second summation to spins between planes. The last term in equation 6.3

characterises the exchange anisotropy and the tendency of the spins to align per-

pendicular to the ab planes. The excitation dispersion is calculated as described

in section 1.1.4. Using the formalism set out in appendix A, the coefficients of the

Fourier transformed Hamiltonian are:

a1 = b1 = −2JabS




∑

↑↑
eiq.δ↑↑ − z↑↓ − z↑↑




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= −2JabS




∑

↑↑
eiq.δ↑↑ − 0 − 6





c1 = d1 = −2JabS
∑

↑↓
eiq.δ↑↓ = 0

a2 = b2 = −2JcS




∑

↑↑
eiq.δ↑↑ − z↑↓ − z↑↑





= −2JcS (0 − 2 − 0) = 4JcS

c2 = d2 = −2JcS
∑

↑↓
eiq.δ↑↓

a3 = b3 = 2DS

c3 = d3 = 0 (6.4)

The nearest neighbour δ vectors are written in terms of the reciprocal unit lattice

vectors G = ha∗ +kb∗ + lc∗. For the in-plane interactions (term number 1 in the

Hamiltonian):

∑

↑↑
eiq.δ↑↑ =

∑
cos (2πh) + cos (2πk) + cos (2π (h + k))

= 2 [cos (2πh) + cos (2πk) + cos (2π (h + k))] (6.5)

There are no intraplanar nearest neighbours with antiparallel spin and so the sums

in c1 and d1 are zero. For the out of plane interaction (term 2), there are no

parallel nearest neighbours, and the sums in c2 and d2 are:

∑

↑↓
eiq.δ↑↓ = 2 cos (πl) (6.6)

Including the interaction coupling constants, we define:

Jab (q) = 2Jab [cos (2πh) + cos (2πk) + cos (2π (h + k))] (6.7)

Jc (q) = 2Jc cos (πl) (6.8)

The coefficients are added and the dispersion calculated from equation A.33 giving:

h̄ω = 2S
√
{Jc (0) − [Jab (q) − Jab (0)] + D}2 − {Jc (q)}2 (6.9)

The exchange constants fitted by both experimental teams gave vales of Jab =

4.5(3) meV [3(1) meV], Jc = -3.3(3) meV [-6.10(25) meV] and |D| = 0.05(5)
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meV [0.0430(25) meV] where the values calculated by Bayrakci et al. [17] [Helme

et al. [16]] were measured on a sample with x = 0.82 [x = 0.75]. Helme et al. [75]

analysed the data further by adding a second, in-plane anisotropy and were able to

discern two spin-gaps of 0.95(15) meV and 1.95(15) meV for the out-of-plane and

in-plane dispersions respectively. Bayrakci et al. [17] on the other hand were not

able to refine a sufficiently accurate value for D and could not ascertain whether

or not a gap was present at the zone centre.

The two studies produced similar results except for a factor of two difference

in the measured values of Jc which is not surprising given that the inter-plane

interactions are most likely governed by super-exchange via the Na sp2 orbitals [85]

and therefore highly sensitive to the exact stoichiometry of the sample. What

is surprising however, is the relative isotropy of the two coupling constants, in

a system that exhibits two dimensionality in its macroscopic properties. More

specifically, comparisons to other layered magnets like YBa2Cu3O6 [103], that have

exchange anisotropy of several orders of magnitude may no longer be applicable.

In the light of such results we must consider the validity of spin wave model used

to fit the data.

The first point of note is the false assumption made in the Hamiltonian

itself. Equation 6.3 refers to the spin arrangement for Na 3

4

CoO2 as detailed in

figure 6.8 that requires in-plane ferromagnetic coupling between each hexagonal

lattice site. Of course, only one quarter of the Co atoms carry spin. In order

for the Hamiltonian to accurately describe the magnetism, the system must be

phase separated into areas of non-magnetic Co3+ and magnetically dense regions

of Co4+. Both studies found the spin-modes to be quite sharp and resolution lim-

ited, indicating long-ranged ordering both in- and out-of-plane. Phase segregation

was discussed in section 5.2.1, in which a fully magnetic x = 0 phase was not

observed; whilst it would explain the nature of the spin-modes it is not clear how

the system would overcome the Coulomb penalty associated with such clustering

of spins. A second model, in which the spin-half ions are distributed evenly on
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every fourth lattice site resulting in a triangular supercell with sides equal to 2a

was discounted by Boothroyd et al. [40] due to the absence of magnetic excita-

tions at half reciprocal-lattice spacings within the plane that would result from a

doubling of the real-space lattice. In consideration of these points it may be more

appropriate to consider an itinerant model for the magnetism.

Now let us consider the data collected for the system under study in this

experiment, Na1
2
CoO2. The excitation in AFM systems depends on a cos (πh)

term around the zone centre. The data in figure 6.6 were therefore fitted to a

the function h̄ω =
√

∆2 + (Dq)2 where ∆ is the value of the energy gap and

D is the stiffness constant, more commonly referred to as the spin wave velocity

in AFM systems. A fit to the data gives values of ∆ = 11.5(5) meV and D =

514(22) meV Å and is plotted as the solid line in panel B of figure 6.6. Normalising

the measured data at low q to the expected cos (πh) k dependence would give

a highest value for the energy transfer at the zone boundary of ∼112 meV, even

though experimental the signal of the dispersion is lost above ∼30 meV.

The theory of spin waves in itinerant ferromagnetic systems is well under-

stood and can be modeled by including the Hubbard Hamiltonian that takes the

Coulomb interaction between the itinerant electrons into account [5]. The result-

ing spin-wave modes resembles those of localised systems at low energy transfers;

at higher energies single-electron modes know as Stoner excitations become im-

portant so that the original spin-wave dispersion is damped, decreasing in intensity

as the excitations decay into electron-hole pairs. A highly damped spin wave is

therefore a signal of intinerancy. The theory of spin-waves in itinerant antiferro-

magnets is not nearly as developed. In fact, due to zero-point motion, a system

with two interpenetrating antiparallel spin lattices is not even an eigenstate of

the localised spin Hamiltonian and so AFM spin wave theory is based on a per-

turbation of the mean-field Néel state [104]. The magnetic excitations of some

itinerant antiferromagnets have been measured. For example, both Cr [105] and

Mn3Si [106] have excitations emanating from magnetic Bragg peaks (although the
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magnetism in Mn3Si is incommensurate in structure and therefore the excitations

emerge from the magnetic satellite peaks that combine at higher energies) that

are very steep in energy and highly damped. If manganese silicide is doped with

iron, the magnetic ordering becomes commensurate and it is possible to follow the

spin waves to higher energies [106]. The dispersion is seen to vary linearly in q

up to energies of ∼2 kBTN above which it rises vertically and is described as a

“chimney” of scattering. That behaviour is not seen in Na 1

2

CoO2; the dispersion,

as plotted in figure 6.6, is linear until the signal disappears at ∼4 kBTM .

The most obvious method for determining the proportion of localised to

itinerant spins in a ferromagnetic material is to calculate the ratio of the moment

determined from the Curie-Weiss magnetic susceptibility above TC (as described in

section 4.1) and the low temperature saturated moment, equal to one in completely

localised magnetic systems and greater than one for itinerant materials. This

technique is naturally not applicable in an antiferromagnet. A different technique

proposed by Mook [110], relates the spin-wave stiffness (or velocity) to the ordering

temperature TC (or TN): low ratios of the two numbers indicate localised systems

and higher numbers itinerary, where excitations due to misalignments of individual

spins would not account for the magnitude of the observed values of spin wave

energy. The values for several magnetic systems are listed in table 6.1 and it is clear

to see that sodium cobaltate, with a value of 5.90 for the spin velocity to ordering

temperature ratio, falls in the category of itinerant systems. For a localised spin

system, whether FM or AFM, the energy of the excitation at the zone boundary

should be of the order of kBTC[N ]. An extrapolation of the data collected in this

study predicts these two energies to be different by an order of magnitude. If the

system exhibits low dimensionality, as suggested in section 4.5.1, the energy scale

characterising the excitation will relate to the strength of interactions along the

spin chains, thus underestimating kBTC[N ]. However the loss of the excitation into

a broadened continuum of decay modes, as witnessed here, indicates strongly that

the material is itinerant in character.
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TC TN D D D/TC D/TN System Reference

(K) (K) (meVÅ
2
) (meVÅ) (meVÅ

2
K−1) (meVÅK−1)

EuS 17 2.6 0.15 Localised FM [107]
EuO 69 12 0.18 Localised FM [108]
Mn3Si 26 37 1.43 Itinerant AFM [106]
Cr 300 500 1.67 Itinerant AFM [105]
Ni3Al 41 85 2.07 Itinerant FM [109]
Na 1

2

CoO2 88 514 5.84 ? AFM This work.

Table 6.1: Spin-wave velocities and transition temperatures for a variety of magnetically ordered materials.

14
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If this is the case, what is the origin of the localised behaviour that is ex-

hibited across the phase diagram? In the SDW system, the magnetic susceptibility

displays Curie-Weiss characteristics and at half doping there exists a metal to in-

sulator transition at 53 K. Both these features may originate from Fermi surface

nesting effects. The phase diagram of sodium cobaltate is characterised by the

effects of strong electron correlations. At x > 0.5, some of the Co states may

be localised by these interactions causing the Curie-Weiss-like magnetic behaviour

and spin wave excitations, whilst the material retains metallic conductivity. Below

half doping the electron correlation effects are weaker and the system is Pauli para-

magnetic. At x = 0.5 a scenario in which the magnetism is largely described by the

itinerant electron picture but electron correlation effects play a role in the forma-

tion of the MIT appears most appropriate. It should be noted that the insulating

transition is anisotropic; the resistivity at low temperatures along c is 25 Ωcm and

just 15 mΩcm along ab [29], a value comparable to that of the “metallic” SDW

system [94], and whilst Na 1

2

CoO2 is considered a low temperature insulator in dc,

optical conductivity measurements [111] reveal the MIT is only visible in the low

frequency data. The mechanism that drives the MIT is clearly not yet understood

and further investigation into the electronic band structure at this doping level is

needed. The fact that the magnetic ordering and the insulating transition occur

at ordering temperatures that differ by 30 K suggest that the two phenomena are

unconnected, as opposed to a more traditional scenario of a Mott insulating transi-

tion where electrons are frozen onto lattice sites at one ordering temperature. We

can therefore assume that the transport carriers reside mainly on the second Co

sites that are not involved in the spin ordering transition at 88 K. The opening of

a gap on the part of the FS related to band containing these carriers would readily

explain the onset of the insulating transition. An alternative scenario, in which the

insulating transition is caused by charge ordering on the cobalt sites can be dis-

missed for several reasons. Firstly, this type of ordering would be associated with

charge modulation in the Na layers. Na superstructure ordering exists to high tem-
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peratures whereas both the magnetic ordering and the insulating transition occur

at much lower temperatures. Secondly, there does not exist sufficient difference

between the Co-O orbital ordering on the two sites that would merit a high level

of charge disproportionation into Co3+ and Co4+. As detailed in section 5.2.3,

valence-bond calculations for both Co sites do not yield any appreciable difference

in charge. Thirdly, recent NMR studies [31] did not measure any differences or

changes in charge on the two sites at either the magnetic or MI transition. Finally,

the excitation modes measured in this study indicate that the system is at least

partially itinerant and that a model containing zero spin Co3+ and spin-half Co4+

is not appropriate anyway.

In summary, the intra-planar magnetic excitations of Na 1

2

CoO2 have been

measured using both time-of-flight and triple-axis neutron spectroscopy. Exci-

tations whose zone centres coexist with the structural supercell ordering Bragg

reflections have been studied. The excitation has a gap of 11.5(5) meV. The

magnitude of the scattered intensity correlates well with the magnetic form factor

expected for Co4+ and the excitation is destroyed by increasing the temperature

confirming the magnetic origin of the dispersion. A localised moment picture

does not provide physically realistic values for the magnon velocity or the energy

transfer at the zone boundary and is not consistent with the broadening and dimin-

ishing scattering more reminiscent to the transformation between spin wave and

Stoner excitations as seen in the itinerant ferromagnets. A more itinerant analysis

with a small charge disproportionation is therefore considered appropriate for this

magnetic system.
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Chapter 7

Superconductivity in

Na1

3

CoO2·43D2O

Single crystal and powder samples of Na 1

3

CoO2 · 4
3
D2O were obtained by a two

stage reaction process, with the deintercalation of sodium from the anhydrous

higher doped samples followed by the chemical intercalation of water or deuterium

oxide, by reaction with either vapour or liquid. It is known, however, that high

levels (>75%) of relative humidity [112] are necessary to obtain a fully hydrated

phase. The crystals are extremely unstable to the loss of hydration, forming the

non-superconducting y = 0.6 phase at a temperature of just 35 ◦C or with ex-

posure to dry atmosphere after ∼30 minutes [12]. The production of the correct

level of water vapour in a sealed chamber, as used in some previous studies, re-

quires heating to temperatures around which the decomposition of the y = 1.4

phase occurs. The superconductivity of samples produced in this way is highly

unstable. The single crystal samples used in this study, were therefore deuterated

by submersion in liquid D2O for a total of three months [60].

The following chapter describes magnetisation and heat capacity measure-

ments in which the nature of the superconductivity is probed, followed by a neutron

diffraction investigation into the role of water doping within the superconducting

system. Heavy water was chosen over normal water due to the high incoherent
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TC
Tirr

B

Figure 7.1: Panel A: Magnetic susceptibility of a powder sample in an applied field of
10 Oe, with a critical temperature of 4.8(1) K. The large difference between the field
cooled (top) and zero field cooled (bottom) curves show significant pinning effects and
a possible irreversibility temperature Tirr at ∼4.3 K. Panel B: The magnetisation of a
single crystal sample measured as a function of field in different temperatures. TC is
similar to that of the powder, however the superconducting volume fraction is seven
times smaller. Deviation from perfect diagmagnetism occurs above 28 Oe.

scattering cross section of hydrogen, which would add a large background and mul-

tiple scattering problem to the results of the neutron scattering study described in

section 7.4.

7.1 Magnetisation Measurements of the Superconducting

Transition

The magnetisation data were collected between temperatures of 1.5 and 10 K as a

function of temperature and field using both the SQuID magnetometer and VSM.

The superconducting transition is indicated by the onset of negative susceptibility

at the critical temperature. Many single crystal and powder samples were measured

and superconducting temperatures were found in the range of 2 - 5 K, although

a clear correlation between TC and the sodium doping level (as measured by the

time scale of the deintercalation process detailed in section 3.5) was not obtained

due to the inability to control the water (and therefore oxonium) content within

each sample. In that respect, the TC (x) results mirror those of Chen et al. [38].
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Magnetic susceptibility data collected as a function of temperature, and the

isothermal magnetisation data plotted as a function of field for a powder and single

crystal sample are detailed in figure 7.1. The powder sample (plotted in panel A)

has a critical temperature of 4.8(1) K and shows considerable hysteresis between

the field cooled and zero field cooled curves, indicating that either flux pinning

or weak link effects are important in this system. The value of the magnetisation

at 1.8 K corresponds to a Meissner fraction of 45%, although it is apparent the

superconducting transition is not yet complete at this temperature. At ∼4.3 K, the

FC and ZFC curves appear to merge, indicative of the presence of an irreversibility

line. Irreversibility effects occur in highly anisoptric systems, such as the HTSCs,

in which weak coupling bewteen the transport carrier planes may result in a break

up of the 3D line vortices into 2D “pancake” vortices under an applied magnetic

field. The line of irreversibility in the H(T ) phase diagram roughly follows a power

law behaviour with Hirr ∼ (1 − Tirr/TC)n where n varies between values of 1

and 5.5 for most HTSC systems [113]. Using the parameters for Tirr and TC as

measured above, we obtain a value for n of 3.

Magnetisation data collected on a single crystal sample (with H applied

parallel to the ab planes) as a function of applied field are plotted in panel B.

The critical temperature is measured as 4.5(1) K, however the Meissner fraction

in this sample is just 6%, perhaps as a result of the difficulty in hydrating single

crystals in comparison to powder samples which have a much greater surface area.

Partial Meissner fractions are indicative of poor sample quality, where in this case

not all of the material may exist in the y = 1.4 phase, or that the superconductor

itself is non-BCS. The variety of measured Meissner fractions in both this study

and presented in the literature indicate that both such scenarios are likely. The

magnetisation at the lowest measured temperature was replotted in S.I. units of A

m−1 along with a plot for an ideal diamagnet with M = − (1/4π) H scaled to a

superconducting fraction of 6%. The virgin curve was seen to deviate from perfect

diamagnetism at a field (HC1) of just 28 Oe; the point at which M turns around
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Figure 7.2: Panel A: The width of the hysteretic magnetisation loops as presented in
panel B of figure 7.1, plotted in 0.5 K steps between 1.5 and 5 K. Panel B: The flux
pinning force for the same temperature datasets are presented in panel A; the maximum
in FP occurs at 320 Oe. Inset: The width of the M (H) curves shown in panel A at
zero applied field plotted as a function of temperature.

to have positive susceptibility was measured to be 220 Oe. Using the relation

HC1 (T ) = HC1 (0)
[
1 − (T/TC)2

]
, HC1 (0) is calculated to be 31.5 Oe.

Information on the pinning force per unit volume of a type two supercon-

ductor may be obtained from the hysteresis of the magnetisation curve between

the increasing and decreasing field sweeps (∆M), since the degree of hysteresis

depends on the effectiveness of the sample (through defects or sample inhomo-

geneities) in obstructing the movement of flux vortices through the sample. The

pinning force per unit volume is defined as FP = JC ×H and is derived from the

Lorentz force that acts on the flux line lattice. JC is the critical current density of

the superconductor and is written as JC = 2∆M/d for polycrystalline samples,

where d is the average grain size. For single crystal samples, the critical current

density is defined in the extended Bean critical model as:

JC =
20∆M

a
(
1 − a

3b

) (7.1)

where a and b are the cross-sectional dimensions of the sample in the directions

perpendicular to the applied field and a is the lesser of the two quantities. The

hysteresis in the magnetisation loops and the corresponding values for the flux

pinning force at temperatures between 1.5 and 5 K (calculated assuming JC and
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H were perpendicular) are plotted in panels A and B of figure 7.2. The hysteresis

width at the lowest measured temperature and zero field corresponds to a critical

current density of ∼1400 A cm−2, an order of magnitude less than typical JC

values in most HTSCs, although this may be due to the small superconducting

fraction (scaling the value to a full Meissner fraction gives JC ∼23000 A cm−2).

The calculated values for the flux pinning force are very small indeed, as can be

expected from the morphology of the M(H) loops: the magnetisation does not

immediately change sign upon reversal of the applied field.

7.2 Mapping the Field-Temperature Phase Diagram

Heat capacity measurements were made on single crystal Na 1

3

CoO2 · 4
3
D2O in

fields of up to 90 kOe in the temperature range 0.4 to 10 K; the data is plotted

in figure 7.3. The data were fitted above TC to an electronic (γNT ), phonon

and anharmonic coupling term (β3T
3 + β5T

5), with γN = 13.9(3) mJ mol−1

K−2, β3 = 0.32(1) mJ mol−1 K−4 and β5 = 0.9(1) µJ mol−1 K−6. This is

a substantial reduction on the values obtained for the anhydrous materials and

reflects a significant change in the response of the lattice at low T . A large upturn

at low temperatures was visible in the majority of the datasets and attributed to a

Schottky anomaly. Such a feature is not uncommon among many of the published

heat capacity studies [60, 45, 46]. It was fitted to a function of the form:

CSch

T
= NkB

(
ǫ

kB

)2 eǫ/kBT

T 3 (1 + eǫ/kBT )
2 (7.2)

where N represents the number of magnetic, spin-half atoms in the system and ǫ

is a characteristic energy scale of the field induced splitting of the spin half levels.

Both the high temperature Debye fit and the low temperature Schottky fit for

a sample dataset are shown in panel A. Both were removed in all the available

datasets in order to produce a plot of the electronic specific heat due to the su-

perconducting transition, as shown for the zero field data in panel B. The size

of the superconducting jump is estimated by placing a vertical line at the tem-

149



A B

DC

Figure 7.3: Panel A: The raw specific heat data for a single crystal sample with an
applied field of 1 kOe parallel to the ab planes. The Debye fit (containing the normal
state electronic and lattice contributions) made above TC is plotted in blue, and the
low temperature Schottky fit is plotted in cyan. Panel B: The zero field data after the
subtraction of the fits detailed in panel A. The red lines indicate the value of T at half
the jump and the linear electronic fit below TC from which an estimate of ∆C/TC is
made, whilst the normal state electronic term is shown in blue. Several models of the
low temperature heat capacity data are also plotted. Panel C: Several datasets of the
heat capacity as plotted in panel B with applied fields parallel to the ab planes. The
suppression of the superconducting jump and critical temperature under magnetic fields
is evident. Panel D: The HC2 versus T phase diagram. Little anisotropy is observed at
low fields.
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perature midway between the onset and the peak of the superconducting jump,

and measuring the point at which it bisects the linear fit to the data below TC ,

which defines the superconducting electronic term to the specific heat, γS = 3.8

mJ mol−1 K−2 found by an extrapolation to zero temperature. The size of the

jump at the superconducting transition, as plotted in panel B, is measured to be

∆Cel/TC = 4.9 mJ mol−1 K−2 producing a value for ∆C/γNTC of 0.35, just

25% of the expected BCS value of 1.43. This correlates well with the supercon-

ducting fraction estimated from the ratio of the superconducting and normal state

electronic components with γS/γN = 3.8/13.9 = 27%. The size of the supercon-

ducting fraction is in line with previous reports [7, 33, 35, 45, 46, 47, 60], indicating

either the samples are partially dehyrdrated and the superconducting fraction is

an indication of the volume fraction of the y = 1.4 phase, or the presence of non-

conventional superconductivity. The superconducting transition is a second order

phase transition, and consideration of the thermodynamics above and below TC

state that the entropies of the normal and superconducting states must be equal

at the transition temperature, i.e.:

d

dH

∫ TC

0

C (T,H)

T
dT = 0 (7.3)

Examination of the positive and negative areas of the graph in panel B show

that the areas contained above and below γN (3.74 and 2.28 mJ mol−1 K−1

including the extrapolation down to 0 K) are not equal. Furthermore, the positive

and negative entropies vary between datasets in different applied fields. Non-

conservation of entropy may indicate a change in the nature of the vortex state

at higher H, the onset of an additional magnetic phase transition below TC , or

two superconducting order parameters with different field dependences. Another

problem becomes evident upon examination of the low temperature data, since

they never extrapolate to zero specific heat at zero temperature. This may be

further evidence of a superconducting fraction of less than 100%, or may indicate

an insufficient subtraction of the addenda from the experimental data, which varied
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T dependence Gap topology

Ces (T ) α exp (−t) Fully gapped
Ces (T ) α t3 Point nodes
Ces (T ) α t2 Line nodes
Ces (T ) α t No gap

Table 7.1: Low temperature dependence of the electronic specific heat for different
models of the superconducting order parameter. t represents the reduced temperature
parameter, equal to T/TC .

between one and two thirds of the total measured heat capacity due to the small

size of the sample used.

The data at low temperatures were fitted to several models in order to eluci-

date the nature of the pairing mechanism. A fully gapped state is characterised by

an exponential dependence of the electronic heat capacity, whereas nodal struc-

tures for the gap topology are defined by different power law behaviours. The

temperature dependences of the different models are listed in table 7.1 and the

first three are plotted with the experimental data in panel B. Satisfactory fits are

obtained for a superconducting order parameter with either point nodes or a fully

gapped state, in agreement with the data of Cao et al. [33] but not those of

references [35, 45, 46].

Measurements were repeated with different applied fields both parallel and

perpendicular to the basal planes of the material. A few datasets for the H//ab

data are plotted in panel C. The size of the jump in the heat capacity is suppressed

in applied fields along with TC . A summary of the critical fields versus temperature

is given in panel D. The values for H//ab are in agreement with other published

data, however the anisotropy is surprisingly small in comparison to that measured

by Chou et al. [60]. A change in slope of ∂HC2/∂T |TC
at 5 kOe is visible in the

H//ab data, which had been reported in two previous heat capacity studies on
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powder samples [46, 114] and attributed to either a field induced transition from

singlet to triplet pairing, or the presence of two competing superconducting order

parameters with identical critical temperatures that exhibit different responses to

an applied magnetic field. The reported discovery of the existence of two super-

conducting phases in sodium cobaltate oxyhydrate that are separated by another

AFM phase by Sakurai et al. [115] supports the latter suggestion.

Using all of the available data, the measurements were used to characterise

the material using the Ginzburg-Landau (GL) relations, which are written in c.g.s.

units as:

HC1 (0) =
HC (0)√

2κ
=

Φ0

4πλ2
ln κ (7.4)

HC2 (0) =
√

2κHC (0) =
Φ0

2πξ2
(7.5)

where, HC (0) is the thermodynamic critical field, κ is the ratio between the

penetration depth λ and the coherence length ξ, and Φ0 is the magnetic flux

quantum, equal to h/2e or 2.07×10−7 G cm2. The value for HC1 (0) was defined

by the magnetisation data and gives values for the superconducting penetration

depths of λab = 5900(600) Å and λc = 4900(500) Å. The average of these two

values is in agreement with the data of Sakurai et al. [34], slightly smaller than

the powder average value of 7900 Å measured by Cao et al. [33] and almost a

factor of two smaller than the penetration depth measured by Kanigel et al. [116]

by µSR. HC2 (0) may be evaluated from the data presented in panel D, using the

Wertham-Helfand-Hohenberg (WHH) formula (in the dirty limit) which relates the

upper critical field to the initial slope of the HC2 versus TC data:

HC2 (0) = −0.693



 ∂HC2

∂T

∣∣∣∣∣
TC



TC (7.6)

The initial slopes of the data presented in panel B are isotropic at -26(5) kOe

K−1 below an applied field of 5 kOe, above which data taken with H//ab rises

dramatically at a value of 180(20) kOe K−1 before being suppressed at fields

above 50 kOe. These values correspond to anisotropic upper critical fields of
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80(10) kOe along c and 560(60) kOe along ab. The extrapolation of the data

to zero temperature gives a value for the upper critical field much lower than the

calculated values. Spin singlet paired systems usually exhibit such suppressions of

HC2 due to pair breaking effects from the energy splitting induced by the Zeeman

effect. The critical field limit in these cases is called the Pauli paramagnetic or

Clogston-Chandrasekher limit and is calculated as HP = 18.4TC
∼= 83 kOe. An

extrapolation of the high field H//ab data to zero temperature gives a value of

Hab
C2 = 83.5(5) kOe in excellent agreement with the calculated value.

The superconducting coherence lengths are calculated by combining the

WHH formula with equation 7.5:

∂H i
C2

∂T

∣∣∣∣∣
TC

= − 1

TC

Φ0

2πξjξk

(7.7)

where i, j and k are cyclic permutations of the crystallographic directions. In the

present case ξi and ξj are both equal to ξab and ξk = ξc. These values correspond

to anisotropic coherence lengths (above 0.5 T) of ξab = 53(5) Å and ξc = 7.7(9)

Å. The fact that the c-axis coherence length is less than the interlayer spacing

indicates that the system may be a weak link superconductor, as suggested by

Cao et al. [33]. The isotropic average coherence length is calculated to be 20(1)

Å, which agrees with the results of Sakurai et al. [34] but is slightly smaller than

most values reported for powder samples [33, 69].

Finally, the GL parameter κ may be evaluated from the above measure-

ments. κ defines the type of superconductor, since parameters of less than 1/
√

2

describe type I materials and vice versa, because near the upper critical field the

distance between vortices approaches the size of the coherence length, and a pen-

etration depth larger than ξ will not support the formation of flux lines. The

anisotropic parameters are calculated as κab = 115(15) and κc = 650(100) which

define sodium cobaltate oxyhydrate as an extreme type II superconductor. Other

estimates for the GL parameter fall into the range of 100-250 [33, 34]. Typical GL

parameters for the HTSCs are of the order of 100 [3].
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Figure 7.4: The experimental set up of
the D10 diffractometer. A single energy
incident neutron beam is selected with
a PG monochromator and then colli-
mated to reduce the background sig-
nal and decrease the beam divergence.
The detector is positioned at the cor-
rect 2θ to satisfy the Bragg condition
for a particular d-spacing, and the crys-
tal oriented (ω, χ and φ varied) so that
the desired crystallographic direction bi-
sects the incident and final neutron di-
rections.

7.3 The D10 Diffractometer

The D10 instrument (shown schematically in figure 7.4) is a four circle diffrac-

tometer. The incident neutron beam is monochromated with pyrolytic graphite

(PG) and has a flux of 5 × 106 n cm−2 s−1. The sample is fixed to an Al pin

inside a CCR mounted on an Eulerian cradle. The cradle has three independent

axes of rotation. ω and χ rotations circumscribe the base of the CCR on a sphere

whilst the sample mounting is set at the correct length so that the crystal is always

coincident with the neutron beam. Rotation around the axis of the mounting pin

(φ) completes the three axes of rotation needed to orient the crystal in any direc-

tion. Finally, the detector moves in an arc around the sample table at an angle 2θ

in order to satisfy the Bragg condition for a particular (hkl). The detector is a

80×80 mm2 two dimensional microstrip detector, which measures two dimensional

slices through the three dimensional reflection ellipsoid. For the measurements in

this study, the crystal was rotated through a reflection so the detector scanned

a direction of interest in q space, and the intensity over a defined area of the

detector summed at each step. The procedure results in a plot of intensity versus

q, from which the peaks are fitted to a Gaussian curve in order to calculate the

square of the structure factor for each reflection.
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7.4 Supercell Ordering and Water Co-ordination

To date, three powder neutron diffraction studies have been performed on NaxCoO2·
yH2O [8, 13, 87], with the intention of determining the coordination of the water

to the crystal structure. Hydrogen has a high incoherent neutron scattering cross

section (80.26 barns in comparison with the coherent cross section of just 1.76

barns) which is detrimental in collecting high resolution diffraction patterns and so

the polycrystalline samples used in these studies were intercalated with heavy wa-

ter (deuterium has a σinc of just 2.05 barns). Both Lynn et al. [87] and Jorgensen

et al. [8] refined the crystal structure in the same spacegroup as the unhydrated

structure, but determined two different structures for the orientation of the water

molecules. The two models (with the D2O molecules structured similarly to ice

and D2O hydration shells around the Na atoms, respectively) are mutually incom-

patible, moreover examination of the diffraction patterns in both studies reveal

Bragg peaks that are undefined. In particular, there exist two broad reflections

at d spacings of 2.6 and 2.8 Å. Jorgensen et al. [8] commented that for all of

the D2O molecular positions that their model makes possible, there are only a few

feasible atomic structures for the correct fractional occupancies. D-Na repulsion

must be minimised by orienting the water with its deuterium atoms pointing away

from the Na ion and it is clear to see that several oxygen sites cannot be simulta-

neously occupied if they are too close to one another. The atomic structure with

all possible atomic sites occupied (equating to a composition of NaCoO2·12D2O)

is shown in the top half of figure 7.5. Below are two possible superstructures.

Firstly, a (2a× 2a) structure is defined; if the entire sample has this structure the

chemical composition will be Na 1

4

CoO2 · 4
3
D2O. Since the fractional occupancies of

the sodium and D2O in their Rietveld refinement did not match this composition,

Jorgensen et al. [8] opted for a second supercell ordering with an orthorhombic

cell of dimensions (3a ×
√

3a). This atomic arrangement results in zig-zag D-O

chains running parallel to
√

3a side of the cell. They argue that there are three
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Figure 7.5: Supercell ordering, looking down the c-axis. A slice of the atomic structure
showing just one layer of Na atoms (blue) and D2O molecules (green-grey) is shown
with all the possible atomic positions occupied (top). Two atomic supercells are shown
beneath: a (2a × 2a) hexagonal cell has a composition of Na 1

4

CoO2 · 4
3D2O (left) and

a (3a ×
√

3a) orthorhombic cell exists with a composition Na 1

3

CoO2 · 4
3D2O (right).

possible orientations for the D-O chains with equal probabilities of occurrence and

hence it is likely that the chains may exhibit ordering in stacking sequences along

the c-axis. In this case the new unit cell is also tripled along c. Despite identifying

the supercell ordering, the authors did not attempt to refine the structure in terms

of the new atomic cell, but merely commented that the 2.6 Å peak was centred

at (309)orth and the 2.8 Å peak at (303)orth.

In the third study by Argyriou et al. [13], the positions of the oxygen atoms

in the water were first identified by the refinement of the structure of a sample that

had been hydrated in a H2O/D2O mixture, the exact H:D ratio determined so that

their neutron scattering lengths (-3.74 fm and 6.67 fm for H and D respectively)

cancel. In this scenario, only the sodium, cobalt and oxygen atoms contribute

to the diffraction pattern. The final structure identified by the authors was the

(2a × 2a) supercell with a prismatic water coordination as drawn in figure 7.5.

The only difference between the models identified by Jorgensen et al. [8] and

refined by Argyriou et al. [13] was that in the latter, the Na occupancy was shared

between the 2c and 6h sites as for the higher doped, anhydrous structures (see
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chapter 5). With this structure, the 2.8 Å reflection can be assigned to either

the
(

1
2

1
2
1
)

reflection, or an unresolved reflection from both the
(

1
2

1
2
0
)

and
(

1
2

1
2
1
)

Bragg peaks.

At first sight, it appears that the structure of NaxCoO2·yD2O has been

solved. However, upon close examination of the published diffraction pattern,

the broad reflections at 2.6 Å and 2.8 Å reflections have been included into the

background function. It is a much sharper peak at 2.8 Å on top of the broad

reflection that has been fitted. Most notably, this reflection does not exist in the

data of either of the other two publications. Argyriou et al. [13] acknowledge that

electron diffraction patterns from different areas of the sample produce different

superstructure reflections, and that because of the complex sample fabrication

technique (the deintercalation of Na and the subsequent intercalation of D2O)

many possible Na-D2O coordinations may coexist in the same sample. The fact

that the 2.6 Å and 2.8 Å reflections are so much broader than the overlying Bragg

peaks suggest that they have a different origin; whilst the reflections in Argyriou

et al. [13] diffraction pattern can be assigned to a (2a × 2a) supercell defined

by the Na ordering, the broad reflections must relate to short-ranged correlations

of the water. In any case, the 2.6 Å reflection can be assigned to the
{

1
2

1
2
3
}

family of directions and the 2.8 Å peak to reflections with
{

1
2

1
2
1
}

(i.e. those

positions in reciprocal space that lie on the circle in figure 7.8). Intensity from the

higher l reflections is lost under the stronger Bragg reflections from the NaxCoO2

diffraction pattern.

The structure of NaxCoO2·yD2O is complicated, with many overlapping

Bragg reflections contributing to the powder diffraction pattern. Single crystal

diffraction is a more powerful structure determination technique, since reflections

with the same d-spacing but different q may be investigated independently. Three

dimensional reciprocal space requires a longer time for investigation and prior

knowledge of which crystallographic directions to probe. At the time of the exper-

iment the third study by Argyriou et al. [13] had not been published and so the
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aim of the experiment was to confirm the (3a×
√

3a) superstructure as proposed

by Jorgensen et al. [8]. A crystal of dimensions 2×2×0.5 mm3 with a supercon-

ducting TC of 3.8 K, fabricated with the techniques described above, was used.

The ambient room temperature was ∼30◦C, close to the temperature identified

by Foo et al. [12] where spontaneous decomposition to the non-superconducting

y = 0.6 phase occurs, and so precautionary measures were needed to ensure the

water remained in the crystal during the experimental setup. The crystal was glued

to an Al pin inside a refrigerated room at ∼5◦C before being transported to the

instrument packed in dry ice. Once mounted, the CCR was attached and cooled

to below 0◦C as quickly as possible. Finally, the crystal was oriented using an

incident neutron wavelength of 2.36 Å.

In order to determine the quality of the sample (the mosaic spread) and

whether any of the lower hydrate phases were present (as described in section 2.1)

a scan was made along the (00l) direction. The different hydrate phases (y =

0, 0.3 0.6 and 1.4) have lattice parameters that differ only along the c-axis and

have been identified using x-ray diffraction [12]. Assuming these different phases

are collinear along c (as the layered crystal structure ensures) it is a simple matter

to calculate the q values for different hydrate reflections. The scan along (00l)

is shown in figure 7.6. The peaks were fitted to pseudo-Voigt functions and their

integrated intensities compared. The peaks highlighted grey in the plot correspond

to the fully-hydrated y = 1.4 phase (c = 19.56 Å). Two other phases were also

identified: the y = 0.6 hydrate, highlighted pink, has a c-value of 13.69 Å and

the y = 0 parent phase, highlighted yellow, has c equal to 11.12 Å (suggesting a

sodium concentration of ∼0.5). Reflections corresponding to the y = 0.3 phase

were not identified. The relative intensities of each type of reflection give a y =

1.4 : y = 0.6 : y = 0 ratio of 18.0(4) : 1.0(2) : 1.0(2).

Given that the double-layer hydrate is the predominant phase in the sam-

ple, a range of scans were performed to investigate the supercell ordering. Sur-

prisingly, no reflections corresponding to the (3a×
√

3a) supercell were identified.
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Figure 7.6: Diffracted neutron intensity, scanning along (00l). The reflections belonging
to the fully hydrated y = 1.4 phase are highlighted grey. Reflections from other partially
hydrated phases occur at non-integer l values and are highlight pink (y = 0.6) and
yellow (y = 0).

The following directions were scanned with no reflections observable above the

instrumental background intensity: (10l)orth =
(

1
3

1
6
l
)

hex
, (20l)orth =

(
2
3

1
3
l
)

hex
,

(11l)orth =
(

1
3

1
3
l
)

hex
and (21l)orth =

(
2
3

1
6
l
)

hex
. The orthorhombic supercell or-

dering is therefore not present in this sample. The second choice of supercell was

then investigated. Reflections, of the same order of magnitude as the (a × a)

parent cell reflections were observed at half-integer h and k values corresponding

to the (2a× 2a) superstructure. The collected data are plotted in figure 7.7, with

blue lines for the (a × a) cell and green for the (2a × 2a) supercell reflections.

Interestingly, the parent cell reflections only occur at even l (in accordance with

the extinction rules for the P63/mmc space group) whereas, with the exception

of the (10l) reflections, the supercell Bragg peaks occur at odd l. The supercell

reflections are also, on average, twice as wide as the parent cell Bragg peaks, indi-

cating short ranged correlations and explaining the origin of the broad reflections

seen in the powder diffraction experiments. A summary of directions along which
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Bragg peaks were measured is shown in figure 7.8, with the same colour code as

used in figure 7.7. The reciprocal unit cells of the (2a × 2a) and (3a ×
√

3a)

superstructures are indicated by the black and pink dashed lines respectively. The

nature of the relative sizes and orientations of the reciprocal unit cells are outlined

in appendix C.

In summary, the single crystal diffraction data definitively excludes the pos-

sibility of the orthorhombic supercell occurring in the sample in this study. In order

to model the validity of the structure of Argyriou et al. [13], the calculated peak

intensities were produced using FULLPROF and compared to the integrated

intensities fitted from the data in figure 7.7. The correlation of the calculated and

measured intensities (plotted in figure 7.9) is not good; the line of best fit has a

correlation coefficient R of just 0.62. Due to experimental difficulties, the amount

of measured reflections is relatively low, and attempted single crystal refinements

using the program GSAS [117] were not successful due to the small number of

independent (hkl) reflections in comparison to the number of degrees of freedom

within the crystal structure, which has many atoms within the unit cell and rel-

atively little symmetry. Important conclusions from the data may still be drawn.

Firstly, although broader than the Bragg reflections of the parent structure, the

reflections were measured as peaks along l in three dimensional reciprocal space

and therefore correspond to ordering within the ab planes in real space, however,

information on the inter-planar correlations cannot be extracted from these mea-

surements. The convolution of the instrumental resolution and the finite mosaic

spread was estimated by fitting the (00l) peaks to pseudo-Voigt functions: the av-

erage width was found to be 0.21(1) Å
−1

. The widths of the superstructure peaks

were also fitted to pseudo-Voigt functions, and the total fitted width assumed to

comprise the above instrumental width and a peak broadening term due to short

range correlations, added in quadrature i.e. 2ωtotal =
√

2ω2
res + 2ω2

SRO, where

2ω represents the full-width-half-maximum of the reflections for the components

denoted by the subscripts. An average correlation length for the SRO was found
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Figure 7.7: q scans along l. The reflections from the parent hexagonal cell are plotted
in blue, the supercell reflections in green. The measured reflections from the parent
hexagonal cell appear to obey l = 2n extinction rules, whereas the supercell reflections
obey l = 2n-1, with the exception of the (10l) reflections in which both even and odd
reflections are present.
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a*

b*

Figure 7.8: Directions in reciprocal space where Bragg reflections were observed are
marked with green/blue circles (see figure 7.7). The reciprocal lattices of the orthorhom-
bic and hexagonal supercells are also marked.

by the Scherrer method, showing that the water ordering extends over at least 14

Å, corresponding to ∼5 unit cells. Secondly, definite proof of the existence of the

(2a×2a) supercell in a single crystal sample has been presented for the first time.

Despite the immense interest in the physics of this system, no reports of neutron

diffraction performed single crystal samples have been published, presumably due

to the difficulty of manufacturing high quality samples.

7.5 Discussion

The physics of NaxCoO2 samples with reduced sodium content is influenced by the

layered nature of the crystal structure that has a reduced number of Na octahedra

with which to bond the cobalt oxide layers together. Measurements of the c-axis

resistivity on an anhydrous x = 0.3 crystal is plotted in figure 7.10 alongside the

data for the x = 0.71 crystal as presented in section 4.1.3. The overall behaviour

as a function of temperature is sample independent, however, the absolute value

of the resistivity along c for x = 0.3 is an order of magnitude larger than that

found in the higher doped crystal. The basal plane resistivity on the other hand,

remains in the range of 0-3 mΩ cm over all measured sodium concentrations.

The anisotropy in the resistivity measurements at x = 0.3 is roughly temperature

independent at a value of ρc/ρab = 90.
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Figure 7.9: A comparison of the measured Na 1

3

CoO2 · 4
3D2O diffraction data to the

calculated intensities based on the structure of Argyriou et al. [13]. Both sets of data
are plotted in arbitrary units.
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Figure 7.10: Resistivity measurements made with the current along the c-axis in x = 0.3
and 0.7 crystals. Over the entire temperature range, the former measurements are an
order of magnitude larger than the latter. Resistivity in the ab planes remains unchanged
after the sodium deintercalation process.
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BA

Figure 7.11: X-ray Laue images of x = 0.7 (panel A) and 0.3 (panel B) crystals with
the camera aligned along the (100) direction (the [10l] zone therefore runs vertically
through the centre of the image). Correlation between the ab planes is lost after the
sodium deintercalation process transforming the spots into lines of scattering.

The large increase in the c-axis resistivity as the sodium is removed is a

consequence of decoupling of the CoO2 planes as the number of exchange pathways

along c is reduced, which indicates the existence of different scattering mechanisms

for the in- and out-of-plane charge transport as expected from the anisotropy of the

underlying crystalline structure. This increase in incoherency is also visible in the

appearance of diffuse scattering in x-ray Laue experiments, shown in figure 7.11.

The two images present the x-ray scattering from a x = 0.7 crystal (panel A) and

a x = 0.3 crystal (panel B) with the (100) direction oriented down the x-ray beam

and the (001) direction perpendicular, collinear with the vertical camera axis. The

three most clearly visible zones in both images correspond to the [10l] zone running

vertically through the centre of the photograph and the [21l] and [31̄l] curved zones

to the left and right, respectively. The sodium deintercalation process evidently

removes the correlations between the ab planes in different crystallographic layers,

transforming the spots seen in panel A into lines of scattering along the directions

in which l is varied.

It is undoubtedly this reduced correlation length, coupled with the increased

distance between the cobalt oxide planes that produces the two-dimensionality on

which the superconductivity in the hydrated compound is said to depend. Due

to the highly unstable nature of the superconducting crystals, neither Laue nor
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resistivity measurements were made on the hydrated compound in order to make

a comparison to the properties of the anhydrated x = 0.3 parent compound. Few

resistivity studies on the superconducting material have been reported, due to the

experimental difficulties involved in attaching the sample contacts without a loss in

water concentration. Those few experimental reports [29, 60, 69] do not measure

a zero value for the resistance below the superconducting transition indicating the

presence of non-superconducting phases.

Evidence for the presence of the normal state coexisting with the super-

conducting phase was presented in sections 7.1 and 7.2. However, the amount of

non-superconducting material within the samples may not be quantified by these

measurements alone and it should be noted that the relative amounts of the y =

1.4 and y = 0.6 - 0 phases in any one sample may change between experiments

depending on the environmental and sample handling conditions. The fraction of

superconducting and non-superconducting material as found by the (00l) scans

in the D10 experiment showed that, even under the least ideal experimental con-

ditions a crystal may retain a high proportion of its water content and that the

system is, in general, more resilient than other reports may have led us to be-

lieve [12]. It can therefore be said with certainty, that the low Meissner fractions

presented in the literature, and in this work, are most likely due to weak link nature

of this layered system, which does not exhibit conventional BCS superconductivity.

As previously discussed in section 2.2.1, the superconducting pairing mech-

anism has not yet been identified, with experimental evidence and theoretical

speculation producing many conflicting ideas. The debate centres on the question

of whether superconductivity occurs in the spin singlet or spin triplet channels,

with different Co NMR and NQR experiments indicating both isotropic [44] and

non-s-wave pairing [118]. At the same time, the time reversal symmetry breaking

predicted by calculations in the t − J model [119] was disputed by recent µSR

experiments [120]. Most of the theoretically predicted pairing states are dependent

on the exact model used, the majority of which assumed single band models on
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the basis that the e′g orbitals were predicted to lie below the Fermi level from the

numerous ARPES measurements [52, 53, 54, 55]. The latest multi-band models

produce spin-triplet f -wave pairing supported by in-plane ferromagnetic fluctua-

tions, as predicted for the anhydrous material with the same cobalt valence, at

x ∼0.7 [40]. In order to elucidate the fundamental properties of the superconduct-

ing state, the exact chemical composition of the sample under investigation must

be identified in all future experimental studies, ideally in situ since the hydration

process and therefore the setting of y and z is a dynamic process, susceptible to

change with repeated temperature cycling and on exposure to atmosphere. In the

light of the most recent studies, that have identified the presence of two different

superconducting phases which exist with the same average cobalt valence [115],

but differing ratios of sodium to oxonium, the need for such careful sample iden-

tification becomes essential. If the superconducting pairing mechanism is actually

dependent on the magnetic interactions within the system, the possibility arises

that the previous conflicting reports may mirror the change in oxonium content

from sample to sample, which governs the magnetism in the system by tuning the

cobalt valency.

Further research into the chemical structure of sodium cobaltate oxyhy-

drate is therefore needed, in order to advance our understanding of the role of

oxonium doping within this material. The neutron diffraction data presented in

section 7.4 provides the first evidence of short range ordered water co-ordination

in a single crystal sample, however not enough data were collected in order to

complete a crystal structure refinement. The exact nature of the water ordering

and even the position of the oxonium molecules within the unit cell are currently

unknown, with structural [121] and redox titration [36] studies predicting the addi-

tion of oxonium onto the Na vacancy sites and another neutron powder diffraction

study [13] concluding that the intercalated H3O
+ resides within the hydrate layer.

Since superconductivity is essentially an instability at the Fermi surface, detailed

knowledge of the crystal structure as a function of x, y and the oxonium content
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z must be ascertained before conclusions can be drawn from the predicted band

structure calculations, which are currently in their infancy. It is clear however, the

presence and topology of the elliptical hole pockets at the K points discussed in

section 2.3, vital to the existence of superconductivity in many theories [49], is

extremely sensitive to the overall chemical structure.
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Chapter 8

Summary and Conclusions

Sodium cobalt oxyhydrate, NaxCoO2 · yH2O, exhibits a rich phase diagram, man-

ifesting intriguing magnetic ordering that is highly dependent on the sodium con-

centration. The work in this thesis has illustrated the three key areas of the phase

diagram that are of interest, namely the spin density wave magnetic ordering at

x ∼ 0.75, the static and dynamic magnetic behaviour of the x = 0.5 system and

the properties of the superconductivity found in the hydrated samples with x ∼
0.3.

At each stage of the analysis, it was clear that an explicit identification

of the x value for each sample was needed in order to draw significant conclu-

sions from the experimental data. The research that was carried out into sample

preparation and doping level monitoring techniques, fundamental to the work pre-

sented in subsequent chapters, was outlined in chapter 3. It was found that, at

the reaction temperatures used during the polycrystalline sample preparation, the

P3 ’γ’ growth phase was stable only for stoichiometries of 0.60< x <0.8, with

no detectable cobalt oxide impurities if, and only if, oxygen was flowing through

the furnace during the reaction procedure. Single crystal samples were subse-

quently manufactured from powder samples within this x range by the floating

zone method. The loss of sodium during the crystal formation was carefully mon-

itored, and found to occur during the melting of the polycrystalline seed rod, and
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not as a function of time within the furnace. Crystals with fewer stacking faults

were therefore produced by a two stage melting procedure, with the second growth

carried out at much slower speeds than recommended in the literature [122]. The

deintercalation process using iodine as a oxidising agent was investigated as a func-

tion of time and solution strength; an absolute change in sodium concentration

was observed to saturate at a value of (x − y) = 0.2 after a time of 1 week for the

largest single crystals and less than one day in powder samples, using a 1:1 mass

ratio of NaxCoO2 and I2. Other changes in x may be performed by directly scaling

the above empirical relation. The most accurate, and viable laboratory techniques

used to monitor changes in sodium concentrations were identified by simply moni-

toring the change in sample mass throughout the deintercalation process, coupled

with measurements of the c-axis lattice parameters made using x-ray diffraction.

In chapter 4 the magnetic, thermal and transport properties of the anhy-

drous NaxCoO2 materials were investigated over the range of 0.5< x <0.72. An

anomaly in the magnetic susceptibility of samples in the range of 0.68< x <0.72

was seen at 22 K, and ascribed to long-ranged antiferromagnetic ordering with the

moments oriented along the c-axis. The values of the high temperature magnetic

susceptibility in this doping regime are anisotropic, and Curie-Weiss fits to the data

indicate the magnetism has moments interposed between the values expected for

low and intermediate spin cobalt ions. The same anomaly is also present in the

heat capacity data, although the size of the jump is just a small fraction of that

expected for the magnetic ordering of (1 − x) low spin Co4+ atoms. The magnetic

ordering is additionally identified by a sharp downturn in the electronic transport

measured in the ab plane. The reduction in ρ suggests that the opening up of a

gap associated with the SDW leads to a decrease in the total scattering within

the ab plane while the conduction along c is unaffected. This was initially as-

signed to the removal of the e′g hole pockets at the FS, although the evidence

presented in section 2.3 and predicted in references [50, 51] now suggests this

band lies below the Fermi level at this doping level. It is therefore the reduction
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in electron-electron scattering within the ab plane with the formation of the SDW

that determines the transport properties. The overall behaviour of the magnetic

and thermal properties, as presented in sections 4.1.1 and 4.1.2, strongly indicates

the material is phase separated into magnetic and non-magnetic systems and that

changing the total stoichiometry produces a change in weight fractions of the two.

No indication of a change in TSDW was observed as a function of x, however mate-

rials with higher and lower ordering temperatures were manufactured with smaller

and larger sodium concentrations, respectively. These materials are believed to

belong to different allotropes of the NaxCoO2 family, a study of which is beyond

the scope of this thesis. Finally, the pressure dependence of the SDW magnetic

ordering suggests the magnetism at atmospheric pressure is supported by imper-

fect nesting within the FS, the topology of which is changed by the application of

pressure. Powder neutron diffraction measurements made under externally applied

pressure are scheduled for the near future, in order to monitor the morphology of

the CoO6 octahedra and the Co-O-Na-O-Co exchange pathways as a function of

P .

Further modifications to the magnetic ordering are seen with the applica-

tion of high magnetic fields and an additional reduction in temperature. A meta-

magnetic transition was visible in the c-axis magnetic susceptibility at an applied

field of ∼80 kOe. The absolute jump in χ represented an adjustment in the reori-

entation of the magnetic moments a few degrees from the ab plane, in agreement

with recent neutron diffraction results [75]. At low fields, a separate alteration to

the magnetic state was identified as the onset of a small ferromagnetic component

oriented along c at a temperature of 10 K. A large positive magnetoresistance of

∼40% at 2 K accompanies the entrance of this new magnetic state, which is at-

tributed to a temperature induced change in the FS morphology which supports

the increase in polarisation of one of the magnetic subsets in the SDW. Finally,

at temperatures of just 4 K, a broad peak in the heat capacity and a large peak

in χac indicates the onset of a low temperature glassy ground state, most likely
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originating from the mismatch between the lattice periodicity and the wavelength

of the SDW, the magnitude of which is controlled by the size of the FS nesting

vector that created the magnetic instability.

The latter part of the chapter concentrates on the properties of the half-

doped material, on which fewer facts about the magnetic ordering, and its origin,

are known. An antiferromagnetic transition at TM = 88 K and a modification to

the magnetic ordering at TMI = 53 K are visible in the magnetic susceptibility,

which increases with increasing temperature, contrary to that expected from a

localised moment, Curie-Weiss system. The latter ordering temperature is seen to

increase with increasing pressure, as found for the SDW phase, indicating the two

types of magnetic ordering to have similar origins. The temperature dependence

of the magnetic order parameter was mapped using neutron diffraction, an analysis

of which indicated the system to exhibit low dimensionality, in accordance with the

chains of magnetic ordering identified by previous neutron diffraction studies [28].

The notion of low dimensionality was further supported by a lack of observable

anomalies in the heat capacity data. Finally, the transport properties were mea-

sured as a function of temperature and field. The system appears to exhibit a weak

metal-insulator transition at TMI and a small magnetoresistance that varies with

both the direction of the applied field and current, that occurs below TMI and is

strongly modified at a lower temperature of ∼20 K where a hitherto unidentified

change in the magnetism is believed to exist [30].

In chapter 5, the structural properties of NaxCoO2 were investigated as

a function of temperature and sodium doping using powder neutron diffraction.

Materials above half doping were found to be intrinsically phase separated, the

heterogeneity of the two phases defined by the position of one of the two sodium

atoms that exist within the unit cell. The resulting phases were labelled as 2c and

6h after the respective sodium Wyckoff positions, the latter showing the lower

symmetry. The transfer of sodium from one phase to another was tracked and

found to occur at temperatures at which anomalies are present in both the heat
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capacity and transport measurements, TNa1 = 305 K and TNa2 = 340 K, and a

further, unexpected phase mixing temperature of ∼200 K in the x = 0.59 sample.

These results indicate that the 2c phase persists at lower sodium concentrations

and temperatures than predicted in the literature [10]. Finally, the presence of the

orthorhombic supercell was identified in the half doped x = 1
2

system, and a lattice

contraction around the metal-insulator transition at TMI = 53 K was observed.

Bond valence calculations revealed that the orthorhombic ordering of the Na ions

did not result in a significant charge disproportionation on the two cobalt sites, in

agreement with other recent neutron diffraction studies [32]; static charge ordering

can therefore be ruled out as the origin of the insulating transition.

Chapter 6 details a study into the intra-planar magnetic excitations at x = 1
2

utilising inelastic neutron scattering on both a time-of-flight and triple-axis ma-

chine. Dispersive excitations at points above an energy gap Eg = 11.5(5) meV

were observed at the superstructural Bragg reflections. The excitations are highly

damped, broadening with increasing energy, and disappear at h̄ω ≈ 35 meV, an

indication that the magnetism is itinerant. Tilting into the ac plane reduces the

value of Eg by 25%. Further experiments to measure the magnetic excitations

along the c-axis are also scheduled in the near future, after which the model cac-

ulated using linear spin wave theory may be tested and a full fit to the data will

be carried out in order to determine accurate values for the magnetic exchange

parameters and identify any spin gaps at the magnetic zone centres.

The final chapter investigates the superconducting material produced by

intercalating a sodium deficient sample with water. The magnetic and thermal

measurements reveal the onset of superconductivity to occur at a maximum tem-

perature of around 4.5 K, although TC proved to be sample dependent. The critical

temperature was shown to be independent of the sodium doping level, in contrast

to some publications, however the most recent reports [36, 39] indicate the super-

conducting properties rely on three independent parameters of the sodium, water

and oxonium content within the sample, the details of which cannot be disen-
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Figure 8.1: The data collected in this thesis work have been summarised in the above
phase diagram, which is plotted as a function of temperature and pressure. The invariant
TC(x) in the superconducting material is depicted by the blue rectangle. The two types
of magnetic ordering at x = 1

2 are indicated by the red and pink areas and the spin
density wave ordering boundary is represented by a black line. The two other TSDW

ordering temperatures are plotted as black diamonds.

tangled from just one measurement of TC (x). The macroscopic properties are

indicative of unconventional superconductivity, with a large value of the Ginzburg-

Landau parameter, but very low flux pinning properties, in contrast to the HTSC

cuprates. The low temperature heat capacity data can be plausibly fitted to both a

fully gapped s-wave state, or spin-triplet superconductivity with a superconducting

order parameter exhibiting point nodes. Finally, the presence of supercell ordering

due to short-ranged correlations of the water molecules was investigated using

single crystal neutron diffraction. A previously proposed orthorhombic supercell

based on broad peaks witnessed in neutron powder diffraction experiments [8] was

disproved, whilst a supercell based on a doubling of the parent hexagonal cell was

proven to exist. The width of the superstructural Bragg peaks confirmed the water

ordering existed within the basal planes over a distance of at least 5 unit cells.

The work presented in this thesis has furthered the existing knowledge of

the magnetic and superconducting phase diagram of NaxCoO2 ·yH2O, presented in
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figure 8.1, and yet has simultaneously highlighted the need for further experimental

and theoretical investigation. Work into the magnetic properties as a function

of applied pressure has revealed some interesting results, atypical of most SDW

systems that merit further investigation. The results of the future powder neutron

diffraction experiment are of interest not only in understanding the strengthening

of the magnetic response with P , but to how the structure affects the magnetic

behaviour as the sodium doping level is changed. In order to verify the analysis

used in the inelastic neutron scattering results presented both in this thesis, and

by other authors [16, 17], detailed knowledge of the magnetic exchange pathways

in the crystal structure are needed. Secondly, investigation into the magnetic

properties of the other NaxCoO2 structures is very much in its infancy; detailed

temperature, pressure and doping investigations into the magnetic states of these

materials are needed to complete the sodium cobaltate phase diagram. Finally,

throughout the work presented here, the greatest attention to detail has been

paid when reporting on experimental results as a function of doping, a feature

sadly lacking in many experimental reports that have been published to date,

leading to inconsistencies in the reported phase diagram morphologies, namely

the non-existent dome shaped SDW ordering. The same lack of clarity of the

sample content was acknowledged to exist in the superconducting material in the

final chapter. The presence of different types of pairing mechanisms in different

areas of the sodium/water/oxonium phase diagram is evidently the origin of the

contradictory experimental results presented so far; a clear understanding of the

role of each dopant (the latter of which has only recently been identified) on the

superconductivity doubtlessly requires further investigation.
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Appendix A

Linear Spin Wave Theory

The following work, which describes the derivation of the spin wave equations used

to model the excitations measured in chapter 6, was completed in collaboration

with Dr. Jim Hague [private communication]. His derivations are presented below

using my own notation.

Equation 1.8 may be expanded into components along the three base vec-

tors of the crystallographic unit cell:

H =

−2J
nn∑

<ij>

[SixSjx + SiySjy + SizSjz]

−2Jα
nnn∑

<ij>

[SixSjx + SiySjy + SizSjz]

−D
∑

i

(Siz)
2 (A.1)

An excitation in a magnetically ordered state, in the classical picture, involves the

flipping of individual spins. It is therefore useful to introduce the spin raising and

lowering operators:

S+ = Sx + iSy (A.2)

S− = Sx − iSy (A.3)

Using these new operators, the first two terms of the sum in equation A.1 may be
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written as:

SixSjx + SiySjy =
1

2
[Si−Sj+ + Si+Sj−] (A.4)

The problem was first addressed in 1940 by Holstein and Primakov [123] who

introduced new spin wave operators a†
i , which creates a spin wave excitation at

site i and ai, the corresponding annihilation operator.

Si− = (2S)1/2a†
i

(

1 − a†
iai

2S

)1/2

≈ (2S)1/2a†
i

(

1 − a†
iai

4S

)

(A.5)

Si+ = (2S)1/2

(

1 − a†
iai

2S

)1/2

ai ≈ (2S)1/2

(

1 − a†
iai

4S

)

ai (A.6)

Siz = S − a†
iai (A.7)

An antiferromagnet can be thought of as two geometrically interpenetrating sub-

lattices of ferromagnetic spins. It is therefore necessary to define the Holstein-

Primakov creation and annihilation operators for the second, antiparallel spin pop-

ulation:

Sj+ ≈ (2S)1/2b†j



1 − b†jbj

4S



 (A.8)

Sj− ≈ (2S)1/2



1 − b†jbj

4S



 bj (A.9)

Sjz = b†jbj − S (A.10)

The approximation in Si[j]+ and Si[j]− made by taking just the first two terms of

the binomial expansion of
√

1 − x is the feature that gives its name to linear spin

wave theory. It is important to note that this approximation becomes less valid

as x increases, i.e. as S decreases. In the case of spin half systems, Heisenberg

Hamiltonians containing the Holstein-Primakov approximation can provide a de-

cent fit to experimental data, however in these cases higher order terms in the

expansion also contribute to the spin operators and the spin waves appear with

finite lifetimes. In an inelastic neutron scattering experiment the excitation lifetime

exhibits itself as a Lorentzian broadening of the spin wave peak.

The next step in the spin wave analysis is to write each term of the Hamil-

tonian in equation A.1 in terms of the new creation and annihilation operators.
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For the easy axis anisotropy term we have:

−D
∑

i

S2
iz = −D

∑

i

(
S − a†

iai

) (
S − a†

iai

)

= −D
∑

i

(
S2 − 2Sa†

iai + a†
iaia

†
iai

)

= −D
∑

i

(
S2 − 2Sa†

iai + a†
i

(
1 + a†

iai

)
ai

)

= −D
∑

i

(
S2 − 2Sa†

iai + a†
iai + a†

ia
†
iaiai

)

≈ −D
∑

i

(
S2 − (2S − 1) a†

iai

)
(A.11)

where the interaction terms have been neglected for the same reasons as in the

approximation made above. Similarly, for the second magnetic sublattice:

−D
∑

j

S2
jz ≈ −D

∑

i

(
S2 − (2S − 1) b†jbj

)
(A.12)

For the rest of the formulation, only the term in the Hamiltonian relating to the

interaction between nearest neighbours is considered, as the mathematics for the

next nearest neighbour interactions are identical. It is expanded as before:

Hnn = −2J
∑

<ij>

Si.Sj

= −2J
∑

<ij>

[
1

2
(Si−Sj+ + Si+Sj−) + SizSjz

]

= −J
∑

<ij>

Si−Sj+ − J
∑

<ij>

Si+Sj− − 2J
∑

<ij>

SizSjz (A.13)

In order to express equation A.13 in terms of the Holstein-Primakov formalism, it

is useful to break the sum into bonds with neighbours of the same spin orientation

(denoted with ↑↑) and those of opposite spins (↑↓).

Hnn =

−2JS
∑

↑↓
a†

i

(

1 − a†
iai

4S

)

b†j



1 − b†jbj

4S





−2JS
∑

↑↑
a†

i

(

1 − a†
iai

4S

)

1 − a†
jaj

4S



 aj

−2JS
∑

↑↓

(

1 − a†
iai

4S

)

ai



1 − b†jbj

4S



 bj
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−2JS
∑

↑↑

(

1 − a†
iai

4S

)

aia
†
j



1 − a†
jaj

4S





−2J
∑

↑↓

(
S − a†

iai

) (
b†jbj − S

)

−2J
∑

↑↑

(
S − a†

iai

) (
S − a†

jaj

)
(A.14)

After multiplication, the higher order terms can be removed as justified previously,

leaving:

Hnn = −2JS
∑

↑↓

[
a†

ib
†
j + aibj + b†jbj + a†

iai − S
]

−2JS
∑

↑↑

[
a†

iaj + aia
†
j + S − a†

jaj − a†
iai

]
(A.15)

The Hamiltonian is expanded in a similar way for the second magnetic sublattice

and, again, the higher order terms are neglected:

Hnn = −2JS
∑

↑↓

[
bjai + b†ja

†
i + b†jbj + a†

iai − S
]

−2JS
∑

↑↑

[
bjb

†
i + b†jbi + S − b†jbj − b†ibi

]
(A.16)

The total Hamiltonian for both sublattices is simply the sum of equations A.15

and A.16. The addition may be simplified by noting that i and j are separate

sites and so operators on both of these sites commute.

H total
nn = −4JS

∑

↑↓

[
a†

ib
†
j + aibj + b†jbj + a†

iai − S
]

−4JS
∑

↑↑

[
a†

iaj + b†jbi + S − a†
iai − b†ibi

]
(A.17)

The next step in solving these equations is to Fourier transform the Hamiltonian.

In order to do so, the following Fourier decompositions of the operators are defined:

a†
j = N− 1

2

∑

q

e−iq.Rja†
q aj = N− 1

2

∑
q eiq.Rjaq

b†j = N− 1

2

∑

q

eiq.Rjb†q bj = N− 1

2

∑
q e−iq.Rjbq (A.18)

where q is the wavevector, R a position vector between spin sites and N the

number of spin sites. It is possible, using these FT identities to write down the
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FT of the Hamiltonian in equation A.17. For example, the summation containing

the term a†
iaj may be expressed as:

∑

↑↑
a†

iaj

=
∑

↑↑

1

N

∑

qk

e−iq.Ria†
qe

ik.Rjak

=
∑

↑↑

1

N

∑

qk

e−iq.Ria†
qe

ik.(Ri+δj)ak

=
∑

↑↑

1

N

∑

qk

ei(k−q).Ria†
qe

ik.δjak

=
∑

qk

δ (k − q) eik.δja†
qak

=
∑

q

eiq.δja†
qaq (A.19)

where the identity 1
N

∑
eiRi.(k−q) = δ (k − q) has been used and δj is the vector

between sites i and j. All the other terms in the Hamiltonian can be worked out

in a similar fashion. Due to the commutation relations, as described above, there

are just four independent terms in the Hamiltonian, which is now of the form:

H total
nn = a

∑

q

a†
qaq + b

∑

q

b†qbq + c
∑

q

a†
qb

†
q + d

∑

q

aqbq (A.20)

The standard approach used to solve this problem is to perform a Bogoliubov

transformation, where the FT of the operators are defined as:

a†
q = cosh (θq)α

†
q − sinh (θq)βq (A.21)

aq = cosh (θq)αq − sinh (θq)β
†
q (A.22)

b†q = − sinh (θq)αq + cosh (θq)β
†
q (A.23)

bq = − sinh (θq)α
†
q + cosh (θq)βq (A.24)

The Hamiltonian (equation A.20) can be written out in full as:

H total
nn =

∑

q

a
(
cosh (θq)α

†
q − sinh (θq)βq

) (
cosh (θq)αq − sinh (θq)β

†
q

)

+
∑

q

b
(
− sinh (θq)αq + cosh (θq)β

†
q

) (
− sinh (θq)α

†
q + cosh (θq)βq

)

+
∑

q

c
(
cosh (θq)α

†
q − sinh (θq)βq

) (
− sinh (θq)αq + cosh (θq)β

†
q

)
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+
∑

q

d
(
cosh (θq)αq − sinh (θq)β

†
q

) (
− sinh (θq)α

†
q + cosh (θq)βq

)

(A.25)

Each line of equation A.25 is multiplied out and like terms collected together.

Then, using the identity cosh (θq)
2 − sinh (θq)

2 = 1:

(a + b) cosh (θq) sinh (θq) − c cosh (θq)
2 + d sinh (θq)

2 = 0 (A.26)

(a + b) cosh (θq) sinh (θq) − d cosh (θq)
2 + c sinh (θq) = 0 (A.27)

Adding the above two equations:

2 (a + b) cosh (θq) sinh (θq) = (c + d)
(
cosh (θq)

2 + sinh (θq)
2
)

(a + b) sinh (2θq) = (c + d) cosh (2θq)

⇒ tanh (2θq) =
(c + d)

(a + b)
(A.28)

Now cosh (θq) and sinh (θq) can be rewritten in terms of tanh 2 (θq):

sinh (θq) cosh (θq) =
sinh (2θq)

2

=
1

2

tanh (2θq)√
1 − tanh (2θq)

2

=
1

2

(c + d)
√

(a + b)2 − (c + d)2
; (A.29)

sinh (θq)
2 =

1

2
(cosh (2θq) − 1)

=
1

2



 1
√

1 − tanh (2θq)
2
− 1





=
1

2



 (a + b)
√

(a + b)2 − (c + d)2
− 1



 ; (A.30)

cosh (θq)
2 =

1

2
(cosh (2θq) + 1)

=
1

2



 1
√

1 − tanh (2θq)
2

+ 1





=
1

2



 (a + b)
√

(a + b)2 − (c + d)2
+ 1



 (A.31)
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These identities may now be used to expand equation A.25:

H total
nn =

∑

q

α†
qαq



a − b

2
+

√
(a + b)2 − (c + d)2

2





+
∑

q

β†
qβq



b − a

2
+

√
(a + b)2 − (c + d)2

2





+
∑

q

√
(a + b)2 − (c + d)2

2
− (a + b)

2
(A.32)

There are therefore two dispersion modes, with frequencies of:

ω± = ±a − b

2
+

√
(a + b)2 − (c + d)2

2
(A.33)

The formalism is now in place to write down the spin dispersion of a system. All

that remains is to convert the individual terms in the Hamiltonian into their Fourier

transformed counterparts as defined by A.18. We first start with the easy-axis

anisotropy term (equations A.11 and A.12).

−D
∑

i

S2
iz − D

∑

j

S2
jz

= −D
∑

i

(
S2 − (2S − 1)a†

iai

)
− D

∑

j

(
S2 − (2S − 1)b†bjbj

)

= −DNS2 + D(2S − 1)
∑

q

(
b†qbq + a†

qaq

)
(A.34)

Next, the Hamiltonian for nearest neighbour interactions as defined in equa-

tion A.17:

H total
nn = 2JS2N (z↑↓ − z↑↑)

− 2JS
∑

q↑↓

(
e−iq.δ↑↓aqbq + eiq.δ↑↓a†

qb
†
q − z↑↓

(
b†qbq + a†

qaq

))

− 2JS
∑

q↑↑

(
eiq.δ↑↑b†qbq + eiq.δ↑↑a†

qaq − z↑↑
(
b†qbq + a†

qaq

))
(A.35)

where δ↑↓[↑↑] are the vectors between anti-parallel [parallel] spins and z↑↓[↑↑] are

the number of nearest neighbours with anti-parallel [parallel] spins. Collecting like

terms:

H total
nn = 2JS2N (z↑↓ − z↑↑) − 2JS

∑

q




∑

↑↓
e−iq.δ↑↓aqbq +

∑

↑↓
eiq.δ↑↓a†

qb
†
q




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−2JS
∑

q



b†qbq




∑

↑↑
e−iq.δ↑↑ − z↑↓ − z↑↑



+ a†
qaq




∑

↑↑
eiq.δ↑↑ − z↑↓ − z↑↑









(A.36)

Finally, everything is in place for the determination of a real spin wave excitation.

The Hamiltonian should be written down based on the possible exchange pathways

leading to magnetic ordering in the crystal structure. If the excitation is gapped, a

term for the anisotropy must be included. The components an, bn, cn and dn can

be written down for the n terms in the Hamiltonian based on the components of

the Fourier transformed creation and annihilation operators by directly comparing

the coefficients of equations A.34 and A.36 with equation A.20.

Explicitly, for a spin system with a Hamiltonian with two terms:

H = −2JS
nn∑

<ij>

Si.Sj − D
∑

i

S2
iz (A.37)

i.e. one containing interactions between nearest neighbour spins (denoted inter-

action 1) and a single axis anisotropy term (denoted interaction 2):

a1 = −2JS




∑

↑↑
eiq.δ↑↑ − z↑↓ − z↑↑





b1 = −2JS




∑

↑↑
e−iq.δ↑↑ − z↑↓ − z↑↑





c1 = −2JS
∑

↑↓
eiq.δ↑↓

d1 = −2JS
∑

↑↓
e−iq.δ↑↓

a2 = 2DS

b2 = 2DS

c2 = 0

d2 = 0 (A.38)

The coefficient terms are added and put into directly into equation A.33. The

resulting form of the dispersion is thus:

ω = S

√√√√√



2D − 2J




∑

↑↑
eiq.δ↑↑ − z↑↓ − z↑↑








2

−


2J
∑

↑↓
eiq.δ↑↓




2

(A.39)
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Appendix B

Configurational Entropy

Calculation

Configurational entropy in solid solutions describes the entropy involved during

an order-disorder transition, in which one or more atomic species are distributed

onto specific sites within a crystal lattice. There are an extremely large num-

ber of macroscopically indistinguishable configurational microstates in this case.

Specifically there are:

W =
N !

yN ! [(1 − y) N ]!
(B.1)

ways of of arranging yN atoms atoms of type A and (1 − y) N atoms of type

B over N sites, where 0≥ y ≥1. In case of the sodium ordering transition in

NaxCoO2 the order-disorder transition is modelled by the distribution of Na atoms

(type A) and Na vacancies (type B) over the 2b, 2c and 6h sites. The entropy is

simply calculated as S = kB ln W from equation B.1:

S = kB {ln (N !) − ln (yN !) − ln ([(1 − y) N ]!)} (B.2)

The above equation may be simplified using Stirling’s approximation ln N ! =

N ln N − N giving:

S

kB

= N ln (N) − N − [yN ln (yN) − yN ]

− [(1 − y) N ln ((1 − y) N) − (1 − y) N ]
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= −{yN ln (yN) − [(1 − y) N ln ((1 − y) N)] − N ln (N)} (B.3)

Using the definition of the molar gas constant R = kBNA equation B.3 can be

further simplified for one mole of the substance:

S = −R {y ln y + (1 − y) ln (1 − y)} (B.4)

For the x = 0.75 powder, the entropy involved in arranging half of the sodium

onto the 2b site and the remaining 0.25 fraction onto the 2c site is consequently

equal to:

S = −R
{

1

2
ln

1

2
+

1

2
ln

1

2
+ 0.25 ln 0.25 + 0.75 ln 0.75

}

= 1.255R (B.5)

which is equivalent to 10.43 J mol−1 K−1.
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Appendix C

The Reciprocal Lattice

In order to understand the effects of the different superlattices on the observed

Bragg reflections, it is necessary to understand the relative sizes and orientations

of the reciprocal lattices. The reciprocal lattice vectors of a unit cell (a∗, b∗ and

c∗) relate to the real space vectors (a, b and c) by the following equations:

a∗ =
b × c

a. (b × c)
b∗ =

c × a

a. (b × c)
c∗ =

a × b

a. (b × c)
(C.1)

where the denominator in the fractions equates to the real space unit cell volume

V =
√

3
2

a2c. Writing the vectors for the hexagonal unit cell (depicted by broken

blue lines in figure C.1) in terms of cartesian coordinates:

a = ax b = −1

2
ax +

√
3

2
ay c = c z (C.2)

and evaluating the cross products, the reciprocal hexagonal lattice vectors are

calculated as:

a∗ =
1

a
x +

1√
3a

y b∗ =
2√
3a

y c∗ =
1

c
z (C.3)

i.e. the reciprocal lattice is another rhombus but with a∗[b∗] rotated 30◦[-30◦]

from its original direction. The (2a× 2a) superstructural lattice is simply a direct

copy of the parent lattice but with half dimensions in reciprocal space. In the

(3a ×
√

3a) superlattice however, there is no rotation in transforming from the

real to reciprocal lattice and hence a∗
orth is not coincident with a∗

hex. Its unit cell
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a

b
*

a

*
b

Figure C.1: The real (broken lines) and reciprocal (shaded areas) lattices of the parent
hexagonal unit cell (blue), the (2a × 2a) superstructure cell (red) and the (3a ×

√
3a)

superstructure cell (green).

has dimensions of
√

3
6

a∗ along the hexagonal reciprocal direction (210) and 1
2
a∗

collinear with b∗
hex. The transformation matrix for translating from hexagonal to

orthorhombic (hkl) values is therefore:





h

k

l





orth

=





3 0 0

1 2 0

0 0 3









h

k

l





hex

(C.4)

187



Bibliography

[1] S. Blundell. Magnetism in Condensed Matter. Oxford University Press, New

York, 2001.

[2] P. Mohn. Magnetism in the Solid State: An Introduction. Springer, Berlin,

2006.

[3] M. Cryot and D. Pavuna. Introduction to Superconductivity and High TC

materials. World Scientific, Singapore, 1992.

[4] G. L. Squires. Introduction to the theory of thermal neutron scattering.

Dover Publications Inc. New York, 1996.

[5] W. Marshall and S. W. Lovesey. Theory of Thermal Neutron Scattering.

Oxford University Press, London, 1971.

[6] Y. Wang, N. S. Rogado, R. J. Cava, and N. P. Ong. Spin entropy as the

likely source of enhanced thermopower in NaxCo2O4. Nature, 423:425,

2003.

[7] K. Takada, H. Sakurai, E. Takayama-Muromachi, F. Izumi, R. A. Dilanian,

and T. Sasaki. Superconductivity in two dimensional CoO2 layers. Nature,

422:53, 2003.

[8] J. D. Jorgensen, M. Avdeev, D. G. Hinks, J. C. Burley, and S. Short. Crys-

tal structure of the sodium cobaltate deuterate superconductor NaxCoO2·

4xD2O (x ≈ (1/3)). Phys. Rev. B, 68:214517, 2003.

188



[9] M. Jansen and R. Hoppe. Notiz zur kenntnis der oxocobaltate des natriums.

Z. Anorg. Allg. Chem., 408:104, 1974.

[10] Q. Huang, M. L. Foo, Jr. R. A. Pascal, J. W. Lynn, B. H. Toby, Tao

He, H. W. Zandbergen, and R. J. Cava. Coupling between electronic and

structural degrees of freedom in the triangular lattice conductor NaxCoO2.

Phys. Rev. B, 70:184110, 2004.

[11] C. Fouassier, G. Matejka, J. M. Reau, and P Hagenmuller. New oxygenated

bronzes of the formula NaxCoO2 (x≤1). Cobalt-oxygen-sodium system. J.

Solid State Chem., 6:532, 1973.

[12] M. L. Foo, R. E. Schaak, V. L. Miller, T. Klimczuk, N. S. Rogado, Y. Wang,

G. C. Lau, C. Craley, H. W. Zandbergen, N. P. Ong, and R. J. Cava. Chem-

ical instability of the cobalt oxyhydrate superconductor under ambient con-

ditions. Solid State Commun., 127:33, 2003.

[13] D. N. Argyriou, P. G. Radaelli, C. J. Milne, N. Aliouane, L. C. Chapon,

A. Chemseddine, J. Veira, S. Cox, N. D. Mathur, and P. A. Midgley. Crystal

structure of the superconducting layered cobaltate NaxCoO2· y D2O. J.

Phys.: Condens. Matt., 17:3293, 2005.
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