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Determinants of Order 2: Definition

Consider again the pair of linear equations

a11x1 + a12x2 = b1

a21x1 + a12x2 = b2

with its associated coefficient matrix

A =

(
a11 a12

a21 a22

)
Let us define D := a11a22 − a21a12.

Provided that D 6= 0, there is a unique solution given by

x1 =
1

D
(b1a22 − b2a12), x2 =

1

D
(b2a11 − b1a21)

The number D is called the determinant of the matrix A,
and denoted by either det(A) or more concisely, |A|.
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Determinants of Order 2: Simple Rule

Thus, for any 2× 2 matrix A, its determinant D is

|A| =

∣∣∣∣a11 a12

a21 a22

∣∣∣∣ = a11a22 − a21a12

For this special case of order 2 determinants, a simple rule is:

1. multiply the diagonal elements together;

2. multiply the off-diagonal elements together;

3. subtract the product of the off-diagonal elements
from the product of the diagonal elements.

Note that

|A| = a11a22

∣∣∣∣1 0
0 1

∣∣∣∣+ a21a12

∣∣∣∣0 1
1 0

∣∣∣∣
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Cramer’s Rule in the 2× 2 Case
Using determinant notation, the solution to the equations

a11x1 + a12x2 = b1

a21x1 + a12x2 = b2

can be written in the alternative form

x1 =
1

D

∣∣∣∣b1 a12

b2 a22

∣∣∣∣ , x2 =
1

D

∣∣∣∣a11 b1

a21 b2

∣∣∣∣
This accords with Cramer’s rule for the solution to Ax = b,
which is the vector x = (xi )

n
i=1 each of whose components xi

is the fraction with:

1. denominator equal to the determinant D
of the coefficient matrix A (provided, of course, that D 6= 0);

2. numerator equal to the determinant of the matrix (A−i ,b)
formed from A by replacing its ith column
with the b vector of right-hand side elements.
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Determinants of Order 3: Definition

Determinants of order 3 can be calculated
from those of order 2 according to the formula

|A| = a11

∣∣∣∣a22 a23

a32 a33

∣∣∣∣− a12

∣∣∣∣a21 a23

a31 a33

∣∣∣∣+ a13

∣∣∣∣a21 a22

a31 a32

∣∣∣∣
=
∑3

j=1
(−1)1+ja1j |C1j |

where, for j = 1, 2, 3, the 2× 2 matrix C1j is the (1, j)-cofactor
obtained by removing both row 1 and column j from A.

The result is the following sum

|A| = a11a22a33 − a11a23a32 + a12a23a31

− a12a21a33 + a13a21a32 − a13a22a31

of 3! = 6 terms, each the product of 3 elements chosen
so that each row and each column is represented just once.
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Determinants of Order 3: Cofactor Expansion
The determinant expansion

|A| = a11a22a33 − a11a23a32 + a12a23a31

− a12a21a33 + a13a21a32 − a13a22a31

is very symmetric, suggesting (correctly)
that the cofactor expansion along the first row (a11, a12, a13)

|A| =
∑3

j=1
(−1)1+ja1j |C1j |

gives the same answer as the two cofactor expansions

|A| =
∑3

j=1
(−1)r+jarj |Crj | =

∑3

i=1
(−1)i+sais |Cis |

along, respectively:

I the r th row (ar1, ar2, ar3)

I the sth column (a1s , a2s , a3s)
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Determinants of Order 3: Alternative Expressions

The same result

|A| = a11a22a33 − a11a23a32 + a12a23a31

− a12a21a33 + a13a21a32 − a13a22a31

can be obtained as either of the two expansions

|A| =
∑3

j1=1

∑3

j2=1

∑3

j3=1
εj1j2j3a1j1a2j2a3j3

=
∑

π∈Π
sgn(π)

∏3

i=1
aiπ(i)

Here εj = εj1j2j3 ∈ {−1, 0, 1} denotes the Levi-Civita symbol
associated with the mapping i 7→ ji from {1, 2, 3} into itself.

Also, Π denotes the set
of all 3! = 6 possible permutations on {1, 2, 3},
with typical member π, whose sign is denoted by sgn(π).
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The Determinant Function

When n = 1, 2, 3, the determinant mapping A 7→ |A| ∈ R
specifies the determinant |A| of each n × n matrix A
as a function of its n row vectors (ai )

n
i=1.

For a general natural number n ∈ N, consider any mapping

Dn 3 A 7→ D(A) = D ((ai )
n
i=1) ∈ R

defined on the domain Dn of n × n matrices.

Notation: Let D(A/br ) denote
the new value D(a1, . . . , ar−1,br , ar+1, . . . , an) of the function D
after the r th row ar of the matrix A
has been replaced by the new row vector br .
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Row Multilinearity

Definition
The function Dn 3 A 7→ D(A) of A’s n rows (ai )

n
i=1

is (row) multilinear just in case,
for each row number i ∈ {1, 2, . . . , n},
each pair bi , ci ∈ Rn of new versions of row i ,
and each pair of scalars λ, µ ∈ R, one has

D(A/λbi + µci ) = λD(A/bi ) + µD(A/ci )

Formally, the mapping Rn 3 ai 7→ D(A/ai ) ∈ R should be linear,
for fixed each row i ∈ Nn.

That is, D is a linear function of the ith row vector ai on its own,
when all the other rows ah (h 6= i) are fixed.
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The Three Characterizing Properties

Definition
The function Dn 3 A 7→ D(A) is alternating
just in case
for every transposition matrix T, one has D(TA) = −D(A)
— i.e., interchanging any two rows reverses its sign.

Definition
The mapping Dn 3 A 7→ D(A) is of the determinant type
just in case:

1. D is multilinear in its rows;

2. D is alternating;

3. D(In) = 1 for the identity matrix In.

Exercise
Show that the mapping Dn 3 A 7→ |A| ∈ R
is of the determinant type provided that n ≤ 3.
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First Implication of Multilinearity in the n × n Case

Lemma
Suppose that Dn 3 A 7→ D(A) is multilinear in its rows.
For any fixed B ∈ Dn, the value of D(AB)
can be expressed as the linear combination

D(AB) =
n∑

j1=1

n∑
j2=1

. . .

n∑
jn=1

a1j1a2j2 · · · anjnD(Lj1j2...jnB)

of its values at all possible matrices

LjB = Lj1j2...jnB := (bjr )
n
r=1

whose rth row, for each r = 1, 2, . . . , n,
equals the jr th row bjr of the matrix B.
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Characterizing 2× 2 Determinants

1. In the case of 2× 2 matrices,
the lemma tells us that multilinearity implies

D(AB) = a11a21D(b1,b1) + a11a22D(b1,b2)

+ a12a21D(b2,b1) + a12a22D(b2,b2)

where b1 = (b11, b21) and b2 = (b12, b22) are the rows of B.

2. If D is also alternating, then D(b1,b1) = D(b2,b2) = 0
and D(B) = D(b1,b2) = −D(b2,b1), implying that

D(AB) = a11a22D(b1,b2) + a12a21D(b2,b1)
= (a11a22 − a12a21)D(B)

3. Imposing the additional restriction D(B) = 1 when B = I2,
we obtain the ordinary determinant D(A) = a11a22 − a12a21.

4. Then, too, one derives the product rule D(AB) = D(A)D(B).
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First Implication of Multilinearity: Proof

Each element of the product C = AB satisfies cik =
∑n

j=1 aijbjk .

Hence each row ci = (cik)nk=1 of C can be expressed
as the linear combination ci =

∑n
j=1 aijbj of B’s rows.

For each r = 1, 2, . . . , n and arbitrary selection bj1 , . . . ,bjr−1

of r − 1 rows from B, multilinearity therefore implies that

D(bj1 , . . . ,bjr−1 , cr , cr+1, . . . , cn)

=
∑n

jr=1
aijr D(bj1 , . . . ,bjr−1 ,bjr , cr+1, . . . , cn)

This equation can be used to show, by induction on k , that

D(C) =
n∑

j1=1

n∑
j2=1

. . .

n∑
jk=1

a1j1a2j2 · · · akjk D(bj1 , . . . ,bjk , ck+1, . . . , cn)

for k = 1, 2, . . . , n, including for k = n as the lemma claims.
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Additional Implications of Alternation

Lemma
Suppose Dn 3 A 7→ D(A) is both row multilinear and alternating.

Then for all possible n × n matrices A,B,
and for all possible permutation matrices Pπ, one has:

1. D(AB) =
∑

π∈Π

∏n
i=1 aiπ(i)D(PπB)

2. D(PπB) = sgn(π)D(B).

3. Under the additional assumption that D(In) = 1, one has:

determinant formula: D(A) =
∑

π∈Π sgn(π)
∏n

i=1 aiπ(i);

product rule: D(AB) = D(A)D(B)
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First Additional Implication of Alternation: Proof

Because D is alternating,
one has D(B) = 0 whenever two rows of B are equal.

It follows that for any matrix (bji )
n
i=1 = LjB

whose n rows are all rows of the matrix B,
one has D((bji )

n
i=1) = 0 unless these rows are all different.

But if all the n rows of (bji )
n
i=1 = LjB are different,

there exists a permutation π ∈ Π such that LjB = PπB.

Hence, after eliminating terms that are zero, the sum

D(AB) =
∑n

j1=1

∑n
j2=1 . . .

∑n
jn=1 a1j1a2j2 · · · anjnD((bjr )

n
r=1)

=
∑n

j1=1

∑n
j2=1 . . .

∑n
jn=1 a1j1a2j2 · · · anjnD(Lj1j2...jnB)

as stated in part 1 of the Lemma.
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Second Additional Implication: Proof

Because D is alternating, one has D(TPπB) = −D(PπB)
whenever T is a transposition matrix.

Suppose that π = τ1 ◦ · · · ◦ τq is one possible “factorization”
of the permutation π as the composition of transpositions.

But sgn(τ) = −1 for any transposition τ .

So sgn(π) = (−1)q by the product rule for signs of permutations.

Note that Pπ = T1T2 · · ·Tq

where Tp denotes the permutation matrix
corresponding to the transposition τp, for each p = 1, . . . , q

It follows that

D(PπB) = D(T1T2 · · ·TqB) = (−1)qD(B) = sgn(π)D(B)

as required.
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Third Additional Implication: Proof

In case D(In) = 1, applying parts 1 and 2 of the Lemma
(which we have already proved) with B = In gives immediately

D(A) =
∑

π∈Π

∏n

i=1
aiπ(i)D(Pπ) =

∑
π∈Π

sgn(π)
∏n

i=1
aiπ(i)

But then, applying parts 1 and 2 of the Lemma
for a general matrix B gives

D(AB) =
∑

π∈Π

∏n

i=1
aiπ(i)D(PπB)

=
∑

π∈Π
sgn(π)

∏n

i=1
aiπ(i)D(B) = D(A)D(B)

as an implication of the first equality on this slide.

This completes the proof of all three parts.
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Formal Definition and Cofactor Expansion

Definition
The determinant |A| of any n × n matrix A is defined
so that Dn 3 A 7→ |A| is the unique (row) multilinear
and alternating mapping that satisfies |In| = 1.

Definition
For any n × n determinant |A|, its rs-cofactor |Crs |
is the (n − 1)× (n − 1) determinant of the matrix Crs

obtained by omitting row r and column s from A.
The cofactor expansion of |A| along any row r or column s is

|A| =
∑n

j=1
(−1)r+jarj |Crj | =

∑n

i=1
(−1)i+sais |Cis |

Exercise
Prove that these cofactor expansions are valid, using the formula

|A| =
∑

π∈Π

∏n

i=1
sgn(π)aiπ(i)

University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 22 of 57



Outline

Determinants
Determinants of Order 2
Determinants of Order 3
Characterizing the Determinant Function
Rules for Determinants
Expansion by Alien Cofactors and the Adjugate Matrix
Minor Determinants

The Inverse Matrix
Definition and Existence
Orthogonal Matrices
Partitioned Matrices

University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 23 of 57



Eight Basic Rules (Rules A–H of EMEA, Section 16.4)
Let |A| denote the determinant of any n × n matrix A.

1. |A| = 0 if all the elements in a row (or column) of A are 0.

2. |A>| = |A|, where A> is the transpose of A.

3. If all the elements in a single row (or column) of A
are multiplied by a scalar α, so is its determinant.

4. If two rows (or two columns) of A are interchanged,
the determinant changes sign, but not its absolute value.

5. If two of the rows (or columns) of A are proportional,
then |A| = 0.

6. The value of the determinant of A is unchanged
if any multiple of one row (or one column)
is added to a different row (or column) of A.

7. The determinant of the product |AB| of two n × n matrices
equals the product |A| · |B| of their determinants.

8. If α is any scalar, then |αA| = αn|A|.
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The Transpose Rule 2: Verification
The transpose rule 2 is key: for any statement
about how |A| depends on the rows of A,
there is an equivalent statement
about how |A| depends on the columns of A.

Exercise
Verify Rule 2 directly for 2× 2 and then for 3× 3 matrices.

Proof of Rule 2 The expansion formula implies that

|A| =
∑

π∈Π
sgn(π)

∏n

i=1
aiπ(i) =

∑
π∈Π

sgn(π)
∏n

j=1
aπ−1(j)j

But the product rule for signs of permutations implies
that sgn(π) sgn(π−1) = sgn(ι) = 1, with sgn(π) = ±1.

Hence sgn(π−1) = 1/ sgn(π) = sgn(π).

So, because π ↔ π−1 is a bijection,

|A| =
∑

π−1∈Π
sgn(π−1)

∏n

j=1
a>jπ−1(j) = |A>|

after using the expansion formula with π replaced by π−1.
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Verification of Rule 6

Exercise
Verify Rule 6 directly for 2× 2 and then for 3× 3 matrices.

Proof of Rule 6 Recall the notation Er+αq for the matrix resulting
from adding the multiple of α times row q of I to its rth row.

Recall too that Er+αqA is the matrix that results
from applying the same row operation to the matrix A.

Finally, recall the formula |A| =
∑n

j=1 arj |Crj |
for the cofactor expansion of |A| along the rth row.

The corresponding cofactor expansion of Er+αqA is then

|Er+αqA| =
∑n

j=1
(arj + αaqj)|Crj | = |A|+ α|B|

where B is derived from A by replacing row r with row q.

Unless q = r , the matrix B will have its qth row repeated,
implying that |B| = 0 because the determinant is alternating.

So q 6= r implies |Er+αqA| = |A| for all α, which is Rule 6.
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Verification of the Other Rules

Apart from Rules 2 and 6,
note that we have already proved the product Rule 7,
whereas the interchange Rule 4 just restates alternation.

Now that we have proved Rule 2,
note that Rules 1 and 3 follow from multilinearity,
applied in the special case when one row of the matrix
is multiplied by a scalar.

Also, the proportionality Rule 5 follows
from combining Rule 4 with multilinearity.

Finally, Rule 8, concerning the effect of multiplying
all elements of a matrix by the same scalar, is easily checked
because the expansion of |A| is the sum of many terms,
each of which involves the product of exactly n elements of A.
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Expansion by Alien Cofactors

Expanding along either row r or column s gives

|A| =
∑n

j=1
arj |Crj | =

∑n

i=1
ais |Cis |

when one uses matching cofactors.

Expanding by alien cofactors, however,
from either the wrong row i 6= r
or the wrong column j 6= s, gives

0 =
∑n

j=1
arj |Cij | =

∑n

i=1
ais |Cij |

This is because the answer will be the determinant
of an alternative matrix in which:

I either row i has been duplicated and put in row r ;

I or column j has been duplicated and put in column s.
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The Adjugate Matrix

Definition
The adjugate (or “(classical) adjoint”) adjA of an order n square
matrix A has elements given by (adjA)ij = |Cji |.

It is therefore the transpose of the cofactor matrix C+

whose elements are the respective cofactors of A.
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Main Property of the Adjugate Matrix

Theorem
(adjA)A = A(adjA) = |A|In for every n × n square matrix A.

Proof.
The (i , j) elements of the two product matrices are

[(adjA)A]ij =
∑n

k=1
|Cki |akj and [A(adjA)]ij =

∑n

k=1
aik |Cjk |

These are expansions by:

I alien cofactors in case i 6= j , implying that they equal 0;

I matching cofactors in case i = j , implying that they equal |A|.
Hence [(adjA)A]ij = [A(adjA)]ij = |A|(In)ij for each pair (i , j).
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Minor Determinants: Definition

Definition
Given any m × n matrix A, a minor determinant of order k
is the determinant |Ai1i2...ik ,j1j2...jk | of a k × k submatrix (aij),
with 1 ≤ i1 < i2 < . . . < ik ≤ m and 1 ≤ j1 < j2 < . . . < jk ≤ n,
that is formed by selecting all the elements that lie both:

I in one of the chosen rows ir (r = 1, 2, . . . , k);

I in one of the chosen columns js (s = 1, 2, . . . , k).

Example

1. In case A is an n × n matrix:
I the whole determinant |A| is the only minor of order n;
I each of the n2 cofactors Cij is a minor of order n − 1;

2. In case A is an m × n matrix:
I each element of the mn elements of the matrix

is a minor of order 1;
I there are

(
m
k

)
·
(
n
k

)
minors of order k .
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Principal and Leading Principal Minors

Exercise
Verify that the set of elements that make up
the minor |Ai1i2...ik ,j1j2...jk | of order k
is completely determined by
its k diagonal elements aih,jh (h = 1, 2, . . . , k).

Definition
If A is an n × n matrix,
the minor |Ai1i2...ik ,j1j2...jk | of order k is:

I a principal minor if all its diagonal elements
are diagonal elements of A;

I a leading principal minor if its diagonal elements
are ahh (h = 1, 2, . . . , k).

Exercise
Explain why an n × n determinant has 2n − 1 principal minors.
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Definition of Inverse Matrix

Exercise
Suppose that A is any “invertible” n × n matrix
for which there exist n × n matrices B and C
such that AB = CA = I.

1. By writing CAB in two different ways, prove that B = C.

2. Use this result to show that the equal matrices B = C,
if they exist, must be unique.

Definition
The n × n matrix X is the unique inverse
of the invertible n × n matrix A
provided that AX = XA = In.

In this case we write X = A−1,
so A−1 denotes the unique inverse.

Big question: does the inverse exist?
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Existence Conditions

Theorem
An n × n matrix A has an inverse if and only if |A| 6= 0,
which holds if and only if
at least one of the equations AX = In and XA = In has a solution.

Proof.
Provided |A| 6= 0, the identity (adjA)A = A(adjA) = |A|In
shows that the matrix X := (1/|A|) adjA is well defined
and satisfies XA = AX = In, so X is the inverse A−1.

Conversely, if either XA = In or AX = In has a solution,
then the product rule for determinants implies
that 1 = |In| = |AX| = |XA| = |A||X|, and so |A| 6= 0.
The rest follows from the paragraph above.
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Singularity

So A−1 exists if and only if |A| 6= 0.

Definition

1. In case |A| = 0,
the matrix A is said to be singular;

2. In case |A| 6= 0,
the matrix A is said to be non-singular or invertible.

University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 38 of 57



Example and Application to Simultaneous Equations

Exercise
Verify that

A =

(
1 1
1 −1

)
=⇒ A−1 = C :=

(
1
2

1
2

1
2 −1

2

)
by using direct multiplication to show that AC = CA = I2.

Example

Suppose that a system of n simultaneous equations in n unknowns
is expressed in matrix notation as Ax = b.

Of course, A must be an n × n matrix.

Suppose A has an inverse A−1.

Premultiplying both sides of the equation Ax = b by this inverse
gives A−1Ax = A−1b, which simplifies to Ix = A−1b.

Hence the unique solution of the equation is x = A−1b.
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Cramer’s Rule: Statement

Notation
Given any m × n matrix A,
let [A−j ,b] denote the new m × n matrix
in which column j has been replaced by the column vector b.

Evidently [A−j , aj ] = A.

Theorem
Provided that the n × n matrix A is invertible,
the simultaneous equation system Ax = b
has a unique solution x = A−1b whose ith component
is given by the ratio of determinants xi = |[A−i ,b]|/|A|.
This result is known as Cramer’s rule.
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Cramer’s Rule: Proof

Proof.
Given the equation system AX = b,
each cofactor |Cji | of the coefficient matrix A
is also the (j , i) cofactor of the matrix |[A−i ,b]|.

Expanding the determinant |[A−i ,b]| by cofactors along column i
therefore gives

∑n
j=1 bj |Cji | =

∑n
j=1(adjA)ijbj ,

by definition of the adjugate matrix.

Hence the unique solution to the equation system has components

xi = (A−1b)i =
1

|A|
∑n

j=1
(adjA)ijbj =

1

|A|
|[A−i ,b]|

for i = 1, 2, . . . , n.
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Rule for Inverting Products

Theorem
Suppose that A and B are two invertible n × n matrices.

Then the inverse of the matrix product AB exists,
and is the reverse product B−1A−1 of the inverses.

Proof.
Using the associative law for matrix multiplication repeatedly gives:

(B−1A−1)(AB) = B−1(A−1A)B = B−1(I)B = B−1(IB) = B−1B = I

and

(AB)(B−1A−1) = A(BB−1)A−1 = A(I)A−1 = (AI)A−1 = AA−1 = I.

These equations confirm that X := B−1A−1 is the unique matrix
satisfying the double equality (AB)X = X(AB) = I.
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Rule for Inverting Chain Products

Exercise
Prove that, if A, B and C are three invertible n × n matrices,
then (ABC)−1 = C−1B−1A−1.

Then use mathematical induction to extend this result
in order to find the inverse of the product A1A2 · · ·Ak

of any finite chain of invertible n × n matrices.
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Matrices for Elementary Row Operations

Example

Consider the following two
out of the three possible kinds of elementary row operation:

1. of multiplying the r th row by α ∈ R,
represented by the matrix Sr (α);

2. of multiplying the qth row by α ∈ R,
then adding the result to row r ,
represented by the matrix Er+αq.

Exercise
Find the determinants and, when they exist, the inverses
of the matrices Sr (α) and Er+αq.
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Inverting Orthogonal Matrices

An n-dimensional square matrix Q is said to be orthogonal
just in case its columns form an orthonormal set
— i.e., they must be pairwise orthogonal unit vectors.

Theorem
A square matrix Q is orthogonal if and only if it satisfies Q>Q = I.

Proof.
The elements of the matrix product Q>Q satisfy

(Q>Q)ij =
∑n

k=1
q>ikqkj =

∑n

k=1
qkiqkj = qi · qj

where qi (resp. qj) denotes the ith (resp. jth) column vector of Q.

But the columns of Q are orthonormal iff qi · qj = δij
for all i , j = 1, 2, . . . , n, and so iff Q>Q = I.
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Exercises on Orthogonal Matrices

Exercise
Show that if the matrix Q is orthogonal,
then so is Q>.

Use this result to show that a matrix is orthogonal
if and only if its row vectors also form an orthonormal set.

Exercise
Show that any permutation matrix is orthogonal.
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Rotations in R2

Example

In R2, consider the anti-clockwise rotation through an angle θ
of the unit circle S1 = {(x1, x2) ∈ R2 | x2

1 + x2
2 = 1}.

It maps:

1. the first unit vector (1, 0) of the canonical basis
to the column vector (cos θ, sin θ)>;

2. the second unit vector (0, 1) of the canonical basis
to the column vector (− sin θ, cos θ)>.

So the rotation can be represented by the rotation matrix

Rθ :=

(
cos θ − sin θ
sin θ cos θ

)
with these vectors as its columns.
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Rotations in R2 Are Orthogonal Matrices

Because sin(−θ) = − sin(θ) and cos(−θ) = − cos(θ),
the transpose of Rθ satisfies R>θ = R−θ, and so is the clockwise
rotation through an angle θ of the unit circle S1.

Since clockwise and anti-clockwise rotations are inverse operations,
it is no surprise that R>θ Rθ = I.

We verify this algebraically by using matrix multiplication

R>θ Rθ =

(
cos θ sin θ
− sin θ cos θ

)(
cos θ − sin θ
sin θ cos θ

)
=

(
1 0
0 1

)
= I

because cos2 θ + sin2 θ = 1, thus verifying orthogonality.

Similarly

RθR
>
θ =

(
cos θ − sin θ
sin θ cos θ

)(
cos θ sin θ
− sin θ cos θ

)
=

(
1 0
0 1

)
= I
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Partitioned Matrices: Definition

A partitioned matrix is a rectangular array of different matrices.

Example

Consider the (m + `)× (n + k) matrix(
A B
C D

)
where the four submatrices A,B,C,D
are of dimension m × n, m × k , `× n and `× k respectively.

For any scalar α ∈ R,
the scalar multiple of a partitioned matrix is

α

(
A B
C D

)
=

(
αA αB
αC αD

)
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Partitioned Matrices: Addition

Suppose the two partitioned matrices(
A B
C D

)
and

(
E F
G H

)
have the property that the following four pairs
of corresponding matrices have equal dimensions:
(i) A and E; (ii) B and F; (iii) C and G; (iv) D and H.

Then the sum of the two matrices is(
A B
C D

)
+

(
E F
G H

)
=

(
A + E B + F
C + G D + H

)
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Partitioned Matrices: Multiplication

Provided that the two partitioned matrices(
A B
C D

)
and

(
E F
G H

)
along with their sub-matrices are all compatible for multiplication,
the product is defined as(

A B
C D

)(
E F
G H

)
=

(
AE + BG AF + BH
CE + DG CF + DH

)
This adheres to the usual rule for multiplying rows by columns.
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Transposes and Some Special Matrices

The rule for transposing a partitioned matrix is(
A B
C D

)>
=

(
A> C>

B> D>

)
So the original matrix is symmetric
iff A = A>, D = D>, B = C>, and C = B>.

It is diagonal iff A,D are both diagonal,
while B = 0 and C = 0.

The identity matrix is diagonal with A = I, D = I,
possibly identity matrices of different dimensions.
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Partitioned Matrices: Inverses, I
For an (m + n)× (m + n) partitioned matrix to have an inverse,
the equation(
A B
C D

)(
E F
G H

)
=

(
AE + BG AF + BH
CE + DG CF + DH

)
=

(
Im 0n×m

0m×n In

)
should have a solution for the matrices E,F,G,H, given A,B,C,D.

Assuming that A has an inverse, we can:

1. construct new first m equations
by premultiplying the old ones by A−1;

2. construct new second n equations by:
I premultiplying the new first m equations by C;
I then subtracting this product from the old second n equations.

The result is(
Im A−1B
0 D− CA−1B

)(
E F
G H

)
=

(
A−1 0n×m
−CA−1 In

)
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Partitioned Matrices: Inverses, II
To take the next step, assume the matrix X := D− CA−1B
also has an inverse X−1 = (D− CA−1B)−1.

Given

(
Im A−1B
0 D− CA−1B

)(
E F
G H

)
=

(
A−1 0n×m
−CA−1 In

)
,

we can then premultiply the second n equations by X−1,
then subtract A−1B times the new second n equations
from the old first m equations to obtain(

Im 0n×m
0m×n In

)(
E F
G H

)
=

(
E F
G H

)
= Z

where Z :=

(
A−1 + A−1BX−1CA−1 −A−1BX−1

−X−1CA−1 X−1

)
Exercise
Use direct multiplication twice in order to verify that(

A B
C D

)
Z = Z

(
A B
C D

)
=

(
Im 0n×m

0m×n In

)
University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 56 of 57



Partitioned Matrices: Extension

Exercise
Suppose that the two partitioned matrices

A = (Aij)
k×` and B = (Bij)

k×`

are both k × ` arrays of respective mi × nj matrices Aij ,Bij .

1. Under what conditions can the product AB
be defined as a k × ` array of matrices?

2. Under what conditions can the product BA
be defined as a k × ` array of matrices?

3. When either AB or BA can be so defined,
give a formula for its product, using summation notation.

4. Express A> as a partitioned matrix.

5. Under what conditions is the matrix A symmetric?
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