Lecture Notes 1: Matrix Algebra Part B: Determinants and Inverses

Peter J. Hammond
email: p.j.hammond@warwick.ac.uk

Autumn 2012, revised Autumn 2014

Lecture Outline

Determinants
Determinants of Order 2
Determinants of Order 3
Characterizing the Determinant Function
Rules for Determinants
Expansion by Alien Cofactors and the Adjugate Matrix
Minor Determinants

The Inverse Matrix
Definition and Existence
Orthogonal Matrices
Partitioned Matrices

Outline

Determinants
Determinants of Order 2
Determinants of Order 3
Characterizing the Determinant Function
Rules for Determinants
Expansion by Alien Cofactors and the Adjugate Matrix
Minor Determinants

The Inverse Matrix
Definition and Existence
Orthogonal Matrices
Partitioned Matrices

Determinants of Order 2: Definition

Consider again the pair of linear equations

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}=b_{1} \\
& a_{21} x_{1}+a_{12} x_{2}=b_{2}
\end{aligned}
$$

with its associated coefficient matrix

$$
\mathbf{A}=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)
$$

Let us define $D:=a_{11} a_{22}-a_{21} a_{12}$.
Provided that $D \neq 0$, there is a unique solution given by

$$
x_{1}=\frac{1}{D}\left(b_{1} a_{22}-b_{2} a_{12}\right), \quad x_{2}=\frac{1}{D}\left(b_{2} a_{11}-b_{1} a_{21}\right)
$$

The number D is called the determinant of the matrix \mathbf{A}, and denoted by either $\operatorname{det}(\mathbf{A})$ or more concisely, $|\mathbf{A}|$.

Determinants of Order 2: Simple Rule

Thus, for any 2×2 matrix \mathbf{A}, its determinant D is

$$
|\mathbf{A}|=\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|=a_{11} a_{22}-a_{21} a_{12}
$$

For this special case of order 2 determinants, a simple rule is:

1. multiply the diagonal elements together;
2. multiply the off-diagonal elements together;
3. subtract the product of the off-diagonal elements from the product of the diagonal elements.
Note that

$$
|\mathbf{A}|=a_{11} a_{22}\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right|+a_{21} a_{12}\left|\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right|
$$

Cramer's Rule in the 2×2 Case

Using determinant notation, the solution to the equations

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}=b_{1} \\
& a_{21} x_{1}+a_{12} x_{2}=b_{2}
\end{aligned}
$$

can be written in the alternative form

$$
x_{1}=\frac{1}{D}\left|\begin{array}{ll}
b_{1} & a_{12} \\
b_{2} & a_{22}
\end{array}\right|, \quad x_{2}=\frac{1}{D}\left|\begin{array}{ll}
a_{11} & b_{1} \\
a_{21} & b_{2}
\end{array}\right|
$$

This accords with Cramer's rule for the solution to $\mathbf{A x}=\mathbf{b}$, which is the vector $\mathbf{x}=\left(x_{i}\right)_{i=1}^{n}$ each of whose components x_{i} is the fraction with:

1. denominator equal to the determinant D of the coefficient matrix \mathbf{A} (provided, of course, that $D \neq 0$);
2. numerator equal to the determinant of the matrix $\left(\mathbf{A}_{-i}, \mathbf{b}\right)$ formed from \mathbf{A} by replacing its i th column with the \mathbf{b} vector of right-hand side elements.

Outline

Determinants
Determinants of Order 2
Determinants of Order 3
Characterizing the Determinant Function
Rules for Determinants
Expansion by Alien Cofactors and the Adjugate Matrix
Minor Determinants

The Inverse Matrix
Definition and Existence
Orthogonal Matrices
Partitioned Matrices

Determinants of Order 3: Definition

Determinants of order 3 can be calculated from those of order 2 according to the formula

$$
\begin{aligned}
|\mathbf{A}| & =a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right| \\
& =\sum_{j=1}^{3}(-1)^{1+j} a_{1 j}\left|\mathbf{C}_{1 j}\right|
\end{aligned}
$$

where, for $j=1,2,3$, the 2×2 matrix $\mathbf{C}_{1 j}$ is the $(1, j)$-cofactor obtained by removing both row 1 and column j from \mathbf{A}.

The result is the following sum

$$
\begin{aligned}
|\mathbf{A}|=a_{11} a_{22} a_{33}-a_{11} a_{23} a_{32} & +a_{12} a_{23} a_{31} \\
& -a_{12} a_{21} a_{33}+a_{13} a_{21} a_{32}-a_{13} a_{22} a_{31}
\end{aligned}
$$

of $3!=6$ terms, each the product of 3 elements chosen so that each row and each column is represented just once.

Determinants of Order 3: Cofactor Expansion

The determinant expansion

$$
\begin{aligned}
|\mathbf{A}|=a_{11} a_{22} a_{33}-a_{11} a_{23} a_{32} & +a_{12} a_{23} a_{31} \\
& -a_{12} a_{21} a_{33}+a_{13} a_{21} a_{32}-a_{13} a_{22} a_{31}
\end{aligned}
$$

is very symmetric, suggesting (correctly) that the cofactor expansion along the first row (a_{11}, a_{12}, a_{13})

$$
|\mathbf{A}|=\sum_{j=1}^{3}(-1)^{1+j} a_{1 j}\left|\mathbf{C}_{1 j}\right|
$$

gives the same answer as the two cofactor expansions

$$
|\mathbf{A}|=\sum_{j=1}^{3}(-1)^{r+j} a_{r j}\left|\mathbf{C}_{r j}\right|=\sum_{i=1}^{3}(-1)^{i+s} a_{i s}\left|\mathbf{C}_{i s}\right|
$$

along, respectively:

- the r th row $\left(a_{r 1}, a_{r 2}, a_{r 3}\right)$
- the sth column $\left(a_{1 s}, a_{2 s}, a_{3 s}\right)$

Determinants of Order 3: Alternative Expressions

The same result

$$
\begin{aligned}
|\mathbf{A}|=a_{11} a_{22} a_{33}-a_{11} a_{23} a_{32} & +a_{12} a_{23} a_{31} \\
& -a_{12} a_{21} a_{33}+a_{13} a_{21} a_{32}-a_{13} a_{22} a_{31}
\end{aligned}
$$

can be obtained as either of the two expansions

$$
\begin{aligned}
|\mathbf{A}| & =\sum_{j_{1}=1}^{3} \sum_{j_{2}=1}^{3} \sum_{j_{3}=1}^{3} \epsilon_{j_{1} j_{2} j_{3}} a_{1 j_{1}} a_{2 j_{2}} a_{3 j_{3}} \\
& =\sum_{\pi \in \Pi} \operatorname{sgn}(\pi) \prod_{i=1}^{3} a_{i \pi(i)}
\end{aligned}
$$

Here $\epsilon_{\mathbf{j}}=\epsilon_{j_{1} j_{2} j_{3}} \in\{-1,0,1\}$ denotes the Levi-Civita symbol associated with the mapping $i \mapsto j_{i}$ from $\{1,2,3\}$ into itself.

Also, Π denotes the set of all 3 ! $=6$ possible permutations on $\{1,2,3\}$, with typical member π, whose sign is denoted by $\operatorname{sgn}(\pi)$.

Outline

Determinants
Determinants of Order 2
Determinants of Order 3
Characterizing the Determinant Function Rules for Determinants
Expansion by Alien Cofactors and the Adjugate Matrix Minor Determinants

The Inverse Matrix
Definition and Existence
Orthogonal Matrices
Partitioned Matrices

The Determinant Function

When $n=1,2,3$, the determinant mapping $\mathbf{A} \mapsto|\mathbf{A}| \in \mathbb{R}$ specifies the determinant $|\mathbf{A}|$ of each $n \times n$ matrix \mathbf{A} as a function of its n row vectors $\left(\mathbf{a}_{i}\right)_{i=1}^{n}$.

For a general natural number $n \in \mathbb{N}$, consider any mapping

$$
\mathcal{D}_{n} \ni \mathbf{A} \mapsto D(\mathbf{A})=D\left(\left(\mathbf{a}_{i}\right)_{i=1}^{n}\right) \in \mathbb{R}
$$

defined on the domain \mathcal{D}_{n} of $n \times n$ matrices.
Notation: Let $D\left(\mathbf{A} / \mathbf{b}_{r}\right)$ denote the new value $D\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{r-1}, \mathbf{b}_{r}, \mathbf{a}_{r+1}, \ldots, \mathbf{a}_{n}\right)$ of the function D after the r th row \mathbf{a}_{r} of the matrix \mathbf{A} has been replaced by the new row vector \mathbf{b}_{r}.

Row Multilinearity

Definition

The function $\mathcal{D}_{n} \ni \mathbf{A} \mapsto D(\mathbf{A})$ of \mathbf{A} 's n rows $\left(\mathbf{a}_{i}\right)_{i=1}^{n}$ is (row) multilinear just in case, for each row number $i \in\{1,2, \ldots, n\}$, each pair $\mathbf{b}_{i}, \mathbf{c}_{i} \in \mathbb{R}^{n}$ of new versions of row i, and each pair of scalars $\lambda, \mu \in \mathbb{R}$, one has

$$
D\left(\mathbf{A} / \lambda \mathbf{b}_{i}+\mu \mathbf{c}_{i}\right)=\lambda D\left(\mathbf{A} / \mathbf{b}_{i}\right)+\mu D\left(\mathbf{A} / \mathbf{c}_{i}\right)
$$

Formally, the mapping $\mathbb{R}^{n} \ni \mathbf{a}_{i} \mapsto D\left(\mathbf{A} / \mathbf{a}_{i}\right) \in \mathbb{R}$ should be linear, for fixed each row $i \in \mathbb{N}_{n}$.

That is, D is a linear function of the i th row vector \mathbf{a}_{i} on its own, when all the other rows $\mathbf{a}_{h}(h \neq i)$ are fixed.

The Three Characterizing Properties

Definition
The function $\mathcal{D}_{n} \ni \mathbf{A} \mapsto D(\mathbf{A})$ is alternating just in case for every transposition matrix \mathbf{T}, one has $D(\mathbf{T A})=-D(\mathbf{A})$

- i.e., interchanging any two rows reverses its sign.

Definition

The mapping $\mathcal{D}_{n} \ni \mathbf{A} \mapsto D(\mathbf{A})$ is of the determinant type just in case:

1. D is multilinear in its rows;
2. D is alternating;
3. $D\left(\mathbf{I}_{n}\right)=1$ for the identity matrix \mathbf{I}_{n}.

Exercise

Show that the mapping $\mathcal{D}_{n} \ni \mathbf{A} \mapsto|\mathbf{A}| \in \mathbb{R}$ is of the determinant type provided that $n \leq 3$.

First Implication of Multilinearity in the $n \times n$ Case

Lemma

Suppose that $\mathcal{D}_{n} \ni \mathbf{A} \mapsto D(\mathbf{A})$ is multilinear in its rows.
For any fixed $\mathbf{B} \in \mathcal{D}_{n}$, the value of $D(\mathbf{A B})$
can be expressed as the linear combination

$$
D(\mathbf{A B})=\sum_{j_{1}=1}^{n} \sum_{j_{2}=1}^{n} \ldots \sum_{j_{n}=1}^{n} a_{1 j_{1}} a_{2 j_{2}} \cdots a_{n j_{n}} D\left(\mathbf{L}_{j_{1} j_{2} \ldots j_{n}} \mathbf{B}\right)
$$

of its values at all possible matrices

$$
\mathbf{L}_{\mathbf{j}} \mathbf{B}=\mathbf{L}_{j_{1} j_{2} \ldots j_{n}} \mathbf{B}:=\left(\mathbf{b}_{j_{r}}\right)_{r=1}^{n}
$$

whose r th row, for each $r=1,2, \ldots, n$, equals the j_{r} th row $\mathbf{b}_{j_{r}}$ of the matrix \mathbf{B}.

Characterizing 2×2 Determinants

1. In the case of 2×2 matrices, the lemma tells us that multilinearity implies

$$
\begin{aligned}
& D(\mathbf{A B})=a_{11} a_{21} D\left(\mathbf{b}_{1}, \mathbf{b}_{1}\right)+a_{11} a_{22} D\left(\mathbf{b}_{1}, \mathbf{b}_{2}\right) \\
&+a_{12} a_{21} D\left(\mathbf{b}_{2}, \mathbf{b}_{1}\right)+a_{12} a_{22} D\left(\mathbf{b}_{2}, \mathbf{b}_{2}\right)
\end{aligned}
$$

where $\mathbf{b}_{1}=\left(b_{11}, b_{21}\right)$ and $\mathbf{b}_{2}=\left(b_{12}, b_{22}\right)$ are the rows of \mathbf{B}.
2. If D is also alternating, then $D\left(\mathbf{b}_{1}, \mathbf{b}_{1}\right)=D\left(\mathbf{b}_{2}, \mathbf{b}_{2}\right)=0$ and $D(\mathbf{B})=D\left(\mathbf{b}_{1}, \mathbf{b}_{2}\right)=-D\left(\mathbf{b}_{2}, \mathbf{b}_{1}\right)$, implying that

$$
\begin{aligned}
D(\mathbf{A B}) & =a_{11} a_{22} D\left(\mathbf{b}_{1}, \mathbf{b}_{2}\right)+a_{12} a_{21} D\left(\mathbf{b}_{2}, \mathbf{b}_{1}\right) \\
& =\left(a_{11} a_{22}-a_{12} a_{21}\right) D(\mathbf{B})
\end{aligned}
$$

3. Imposing the additional restriction $D(\mathbf{B})=1$ when $\mathbf{B}=\mathbf{I}_{2}$, we obtain the ordinary determinant $D(\mathbf{A})=a_{11} a_{22}-a_{12} a_{21}$.
4. Then, too, one derives the product rule $D(\mathbf{A B})=D(\mathbf{A}) D(\mathbf{B})$.

First Implication of Multilinearity: Proof

Each element of the product $\mathbf{C}=\mathbf{A B}$ satisfies $c_{i k}=\sum_{j=1}^{n} a_{i j} b_{j k}$. Hence each row $\mathbf{c}_{i}=\left(c_{i k}\right)_{k=1}^{n}$ of \mathbf{C} can be expressed as the linear combination $\mathbf{c}_{i}=\sum_{j=1}^{n} a_{i j} \mathbf{b}_{j}$ of \mathbf{B} 's rows. For each $r=1,2, \ldots, n$ and arbitrary selection $\mathbf{b}_{j_{1}}, \ldots, \mathbf{b}_{j_{r-1}}$ of $r-1$ rows from \mathbf{B}, multilinearity therefore implies that

$$
\begin{aligned}
D\left(\mathbf{b}_{j_{1}}, \ldots, \mathbf{b}_{j_{r-1}},\right. & \left.\mathbf{c}_{r}, \mathbf{c}_{r+1}, \ldots, \mathbf{c}_{n}\right) \\
& =\sum_{j_{r}=1}^{n} a_{i j_{r}} D\left(\mathbf{b}_{j_{1}}, \ldots, \mathbf{b}_{j_{r-1}}, \mathbf{b}_{j_{r}}, \mathbf{c}_{r+1}, \ldots, \mathbf{c}_{n}\right)
\end{aligned}
$$

This equation can be used to show, by induction on k, that

$$
D(\mathbf{C})=\sum_{j_{1}=1}^{n} \sum_{j_{2}=1}^{n} \ldots \sum_{j_{k}=1}^{n} a_{1 j_{1}} a_{2 j_{2}} \cdots a_{k j_{k}} D\left(\mathbf{b}_{j_{1}}, \ldots, \mathbf{b}_{j_{k}}, \mathbf{c}_{k+1}, \ldots, \mathbf{c}_{n}\right)
$$

for $k=1,2, \ldots, n$, including for $k=n$ as the lemma claims.

Additional Implications of Alternation

Lemma

Suppose $\mathcal{D}_{n} \ni \mathbf{A} \mapsto D(\mathbf{A})$ is both row multilinear and alternating.
Then for all possible $n \times n$ matrices \mathbf{A}, \mathbf{B}, and for all possible permutation matrices \mathbf{P}^{π}, one has:

1. $D(\mathbf{A B})=\sum_{\pi \in \Pi} \prod_{i=1}^{n} a_{i \pi(i)} D\left(\mathbf{P}^{\pi} \mathbf{B}\right)$
2. $D\left(\mathbf{P}^{\pi} \mathbf{B}\right)=\operatorname{sgn}(\pi) D(\mathbf{B})$.
3. Under the additional assumption that $D\left(\mathbf{I}_{n}\right)=1$, one has: determinant formula: $D(\mathbf{A})=\sum_{\pi \in \Pi} \operatorname{sgn}(\pi) \prod_{i=1}^{n} a_{i \pi(i)}$; product rule: $D(\mathbf{A B})=D(\mathbf{A}) D(\mathbf{B})$

First Additional Implication of Alternation: Proof

Because D is alternating, one has $D(\mathbf{B})=0$ whenever two rows of \mathbf{B} are equal.

It follows that for any matrix $\left(\mathbf{b}_{j_{i}}\right)_{i=1}^{n}=\mathbf{L}_{\mathbf{j}} \mathbf{B}$ whose n rows are all rows of the matrix \mathbf{B}, one has $D\left(\left(\mathbf{b}_{j_{i}}\right)_{i=1}^{n}\right)=0$ unless these rows are all different.
But if all the n rows of $\left(\mathbf{b}_{j_{i}}\right)_{i=1}^{n}=\mathbf{L}_{\mathbf{j}} \mathbf{B}$ are different, there exists a permutation $\pi \in \Pi$ such that $\mathbf{L}_{\mathbf{j}} \mathbf{B}=\mathbf{P}^{\pi} \mathbf{B}$.
Hence, after eliminating terms that are zero, the sum

$$
\begin{aligned}
D(\mathbf{A B}) & =\sum_{j_{1}=1}^{n} \sum_{j_{2}=1}^{n} \cdots \sum_{j_{n}=1}^{n} a_{1 j_{1}} a_{2 j_{2}} \cdots a_{n j_{n}} D\left(\left(\mathbf{b}_{j_{r}}\right)_{r=1}^{n}\right) \\
& =\sum_{j_{1}=1}^{n} \sum_{j_{2}=1}^{n} \cdots \sum_{j_{n}=1}^{n} a_{1 j_{1}} a_{2 j_{2}} \cdots a_{n j_{n}} D\left(\mathbf{L}_{j_{1} j_{2} \ldots j_{n}} \mathbf{B}\right)
\end{aligned}
$$

as stated in part 1 of the Lemma.

Second Additional Implication: Proof

Because D is alternating, one has $D\left(\mathbf{T P}^{\pi} \mathbf{B}\right)=-D\left(\mathbf{P}^{\pi} \mathbf{B}\right)$ whenever \mathbf{T} is a transposition matrix.

Suppose that $\pi=\tau^{1} \circ \cdots \circ \tau^{q}$ is one possible "factorization" of the permutation π as the composition of transpositions.

But $\operatorname{sgn}(\tau)=-1$ for any transposition τ.
So $\operatorname{sgn}(\pi)=(-1)^{q}$ by the product rule for signs of permutations.
Note that $\mathbf{P}^{\pi}=\mathbf{T}^{1} \mathbf{T}^{2} \cdots \mathbf{T}^{q}$
where \mathbf{T}^{p} denotes the permutation matrix corresponding to the transposition τ^{p}, for each $p=1, \ldots, q$
It follows that

$$
D\left(\mathbf{P}^{\pi} \mathbf{B}\right)=D\left(\mathbf{T}^{1} \mathbf{T}^{2} \cdots \mathbf{T}^{q} \mathbf{B}\right)=(-1)^{q} D(\mathbf{B})=\operatorname{sgn}(\pi) D(\mathbf{B})
$$

as required.

Third Additional Implication: Proof

In case $D\left(\mathbf{I}_{n}\right)=1$, applying parts 1 and 2 of the Lemma
(which we have already proved) with $\mathbf{B}=\mathbf{I}_{\mathbf{n}}$ gives immediately

$$
D(\mathbf{A})=\sum_{\pi \in \Pi} \prod_{i=1}^{n} a_{i \pi(i)} D\left(\mathbf{P}^{\pi}\right)=\sum_{\pi \in \Pi} \operatorname{sgn}(\pi) \prod_{i=1}^{n} a_{i \pi(i)}
$$

But then, applying parts 1 and 2 of the Lemma for a general matrix B gives

$$
\begin{aligned}
D(\mathbf{A B}) & =\sum_{\pi \in \Pi} \prod_{i=1}^{n} a_{i \pi(i)} D\left(\mathbf{P}^{\pi} \mathbf{B}\right) \\
& =\sum_{\pi \in \Pi} \operatorname{sgn}(\pi) \prod_{i=1}^{n} a_{i \pi(i)} D(\mathbf{B})=D(\mathbf{A}) D(\mathbf{B})
\end{aligned}
$$

as an implication of the first equality on this slide.
This completes the proof of all three parts.

Formal Definition and Cofactor Expansion

Definition

The determinant $|\mathbf{A}|$ of any $n \times n$ matrix \mathbf{A} is defined so that $\mathcal{D}_{n} \ni \mathbf{A} \mapsto|\mathbf{A}|$ is the unique (row) multilinear and alternating mapping that satisfies $\left|\mathbf{I}_{n}\right|=1$.

Definition
For any $n \times n$ determinant $|\mathbf{A}|$, its $r s$-cofactor $\left|\mathbf{C}_{r s}\right|$ is the $(n-1) \times(n-1)$ determinant of the matrix $\mathbf{C}_{r s}$ obtained by omitting row r and column s from \mathbf{A}.
The cofactor expansion of $|\mathbf{A}|$ along any row r or column s is

$$
|\mathbf{A}|=\sum_{j=1}^{n}(-1)^{r+j} a_{r j}\left|\mathbf{C}_{r j}\right|=\sum_{i=1}^{n}(-1)^{i+s} a_{i s}\left|\mathbf{C}_{i s}\right|
$$

Exercise
Prove that these cofactor expansions are valid, using the formula

$$
|\mathbf{A}|=\sum_{\pi \in \Pi} \prod_{i=1}^{n} \operatorname{sgn}(\pi) a_{i \pi(i)}
$$

Outline

Determinants
Determinants of Order 2
Determinants of Order 3
Characterizing the Determinant Function
Rules for Determinants
Expansion by Alien Cofactors and the Adjugate Matrix
Minor Determinants

The Inverse Matrix
Definition and Existence
Orthogonal Matrices
Partitioned Matrices

Eight Basic Rules (Rules A-H of EMEA, Section 16.4)

Let $|\mathbf{A}|$ denote the determinant of any $n \times n$ matrix \mathbf{A}.

1. $|\mathbf{A}|=0$ if all the elements in a row (or column) of \mathbf{A} are 0 .
2. $\left|\mathbf{A}^{\top}\right|=|\mathbf{A}|$, where \mathbf{A}^{\top} is the transpose of \mathbf{A}.
3. If all the elements in a single row (or column) of \mathbf{A} are multiplied by a scalar α, so is its determinant.
4. If two rows (or two columns) of \mathbf{A} are interchanged, the determinant changes sign, but not its absolute value.
5. If two of the rows (or columns) of \mathbf{A} are proportional, then $|\mathbf{A}|=0$.
6. The value of the determinant of \mathbf{A} is unchanged if any multiple of one row (or one column) is added to a different row (or column) of \mathbf{A}.
7. The determinant of the product $|\mathbf{A B}|$ of two $n \times n$ matrices equals the product $|\mathbf{A}| \cdot|\mathbf{B}|$ of their determinants.
8. If α is any scalar, then $|\alpha \mathbf{A}|=\alpha^{n}|\mathbf{A}|$.

The Transpose Rule 2: Verification

The transpose rule 2 is key: for any statement about how $|\mathbf{A}|$ depends on the rows of \mathbf{A}, there is an equivalent statement about how $|\mathbf{A}|$ depends on the columns of \mathbf{A}.

Exercise

Verify Rule 2 directly for 2×2 and then for 3×3 matrices.
Proof of Rule 2 The expansion formula implies that

$$
|\mathbf{A}|=\sum_{\pi \in \Pi} \operatorname{sgn}(\pi) \prod_{i=1}^{n} a_{i \pi(i)}=\sum_{\pi \in \Pi} \operatorname{sgn}(\pi) \prod_{j=1}^{n} a_{\pi^{-1}(j) j}
$$

But the product rule for signs of permutations implies that $\operatorname{sgn}(\pi) \operatorname{sgn}\left(\pi^{-1}\right)=\operatorname{sgn}(\iota)=1$, with $\operatorname{sgn}(\pi)= \pm 1$.
Hence $\operatorname{sgn}\left(\pi^{-1}\right)=1 / \operatorname{sgn}(\pi)=\operatorname{sgn}(\pi)$.
So, because $\pi \leftrightarrow \pi^{-1}$ is a bijection,

$$
|\mathbf{A}|=\sum_{\pi^{-1} \in \Pi} \operatorname{sgn}\left(\pi^{-1}\right) \prod_{j=1}^{n} a_{j \pi^{-1}(j)}^{\top}=\left|\mathbf{A}^{\top}\right|
$$

after using the expansion formula with π replaced by π^{-1}.

Verification of Rule 6

Exercise

Verify Rule 6 directly for 2×2 and then for 3×3 matrices.
Proof of Rule 6 Recall the notation $\mathbf{E}_{r+\alpha q}$ for the matrix resulting from adding the multiple of α times row q of \mathbf{I} to its r th row.
Recall too that $\mathbf{E}_{r+\alpha q} \mathbf{A}$ is the matrix that results from applying the same row operation to the matrix \mathbf{A}.
Finally, recall the formula $|\mathbf{A}|=\sum_{j=1}^{n} a_{r j}\left|\mathbf{C}_{r j}\right|$ for the cofactor expansion of $|\mathbf{A}|$ along the r th row.
The corresponding cofactor expansion of $\mathbf{E}_{r+\alpha q} \mathbf{A}$ is then

$$
\left|\mathbf{E}_{r+\alpha q} \mathbf{A}\right|=\sum_{j=1}^{n}\left(a_{r j}+\alpha a_{q j}\right)\left|\mathbf{C}_{r j}\right|=|\mathbf{A}|+\alpha|\mathbf{B}|
$$

where \mathbf{B} is derived from \mathbf{A} by replacing row r with row q.
Unless $q=r$, the matrix \mathbf{B} will have its q th row repeated, implying that $|\mathbf{B}|=0$ because the determinant is alternating.
So $q \neq r$ implies $\left|\mathbf{E}_{r+\alpha q} \mathbf{A}\right|=|\mathbf{A}|$ for all α, which is Rule 6.

Verification of the Other Rules

Apart from Rules 2 and 6, note that we have already proved the product Rule 7, whereas the interchange Rule 4 just restates alternation.

Now that we have proved Rule 2, note that Rules 1 and 3 follow from multilinearity, applied in the special case when one row of the matrix is multiplied by a scalar.

Also, the proportionality Rule 5 follows from combining Rule 4 with multilinearity.

Finally, Rule 8, concerning the effect of multiplying all elements of a matrix by the same scalar, is easily checked because the expansion of $|\mathbf{A}|$ is the sum of many terms, each of which involves the product of exactly n elements of \mathbf{A}.

Outline

Determinants

Expansion by Alien Cofactors and the Adjugate Matrix Minor Determinants

The Inverse Matrix
Definition and Existence
Orthogonal Matrices
Partitioned Matrices

Expansion by Alien Cofactors

Expanding along either row r or column s gives

$$
|\mathbf{A}|=\sum_{j=1}^{n} a_{r j}\left|\mathbf{C}_{r j}\right|=\sum_{i=1}^{n} a_{i s}\left|\mathbf{C}_{i s}\right|
$$

when one uses matching cofactors.
Expanding by alien cofactors, however, from either the wrong row $i \neq r$ or the wrong column $j \neq s$, gives

$$
0=\sum_{j=1}^{n} a_{r j}\left|\mathbf{C}_{i j}\right|=\sum_{i=1}^{n} a_{i s}\left|\mathbf{C}_{i j}\right|
$$

This is because the answer will be the determinant of an alternative matrix in which:

- either row i has been duplicated and put in row r;
- or column j has been duplicated and put in column s.

The Adjugate Matrix

Definition
The adjugate (or "(classical) adjoint") $\operatorname{adj} \mathbf{A}$ of an order n square matrix \mathbf{A} has elements given by $(\operatorname{adj} \mathbf{A})_{i j}=\left|\mathbf{C}_{j i}\right|$.

It is therefore the transpose of the cofactor matrix \mathbf{C}^{+} whose elements are the respective cofactors of \mathbf{A}.

Main Property of the Adjugate Matrix

Theorem
$(\operatorname{adj} \mathbf{A}) \mathbf{A}=\mathbf{A}(\operatorname{adj} \mathbf{A})=|\mathbf{A}| \mathbf{I}_{n}$ for every $n \times n$ square matrix \mathbf{A}.
Proof.
The (i, j) elements of the two product matrices are

$$
[(\operatorname{adj} \mathbf{A}) \mathbf{A}]_{i j}=\sum_{k=1}^{n}\left|\mathbf{C}_{k i}\right| a_{k j} \text { and }[\mathbf{A}(\operatorname{adj} \mathbf{A})]_{i j}=\sum_{k=1}^{n} a_{i k}\left|\mathbf{C}_{j k}\right|
$$

These are expansions by:

- alien cofactors in case $i \neq j$, implying that they equal 0 ;
- matching cofactors in case $i=j$, implying that they equal $|\mathbf{A}|$. Hence $[(\operatorname{adj} \mathbf{A}) \mathbf{A}]_{i j}=[\mathbf{A}(\operatorname{adj} \mathbf{A})]_{i j}=|\mathbf{A}|\left(\mathbf{I}_{n}\right)_{i j}$ for each pair (i, j).

Outline

Determinants
Determinants of Order 2
Determinants of Order 3
Characterizing the Determinant Function
Rules for Determinants
Expansion by Alien Cofactors and the Adjugate Matrix
Minor Determinants

The Inverse Matrix
Definition and Existence
Orthogonal Matrices
Partitioned Matrices

Minor Determinants: Definition

Definition

Given any $m \times n$ matrix \mathbf{A}, a minor determinant of order k is the determinant $\left|\mathbf{A}_{i_{1} i_{2} \ldots i_{k}, j_{1} j_{2} \ldots j_{k}}\right|$ of a $k \times k$ submatrix $\left(a_{i j}\right)$, with $1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq m$ and $1 \leq j_{1}<j_{2}<\ldots<j_{k} \leq n$, that is formed by selecting all the elements that lie both:

- in one of the chosen rows $i_{r}(r=1,2, \ldots, k)$;
- in one of the chosen columns $j_{s}(s=1,2, \ldots, k)$.

Example

1. In case \mathbf{A} is an $n \times n$ matrix:

- the whole determinant $|\mathbf{A}|$ is the only minor of order n;
- each of the n^{2} cofactors $\mathbf{C}_{i j}$ is a minor of order $n-1$;

2. In case \mathbf{A} is an $m \times n$ matrix:

- each element of the $m n$ elements of the matrix is a minor of order 1 ;
- there are $\binom{m}{k} \cdot\binom{n}{k}$ minors of order k.

Principal and Leading Principal Minors

Exercise

Verify that the set of elements that make up
the minor $\left|\mathbf{A}_{i_{1} i_{2} \ldots i_{k}, j_{1} j_{2} \ldots j_{k}}\right|$ of order k
is completely determined by
its k diagonal elements $a_{i_{h}, j_{h}}(h=1,2, \ldots, k)$.
Definition
If \mathbf{A} is an $n \times n$ matrix, the minor $\left|\mathbf{A}_{i_{1} i_{2} \ldots i_{k}, j_{1} j_{2} \ldots j_{k}}\right|$ of order k is:

- a principal minor if all its diagonal elements are diagonal elements of \mathbf{A};
- a leading principal minor if its diagonal elements are $a_{h h}(h=1,2, \ldots, k)$.

Exercise

Explain why an $n \times n$ determinant has $2^{n}-1$ principal minors.

Outline

Determinants

Determinants of Order 2
Determinants of Order 3
Characterizing the Determinant Function Rules for Determinants
Expansion by Alien Cofactors and the Adjugate Matrix Minor Determinants

The Inverse Matrix
Definition and Existence
Orthogonal Matrices
Partitioned Matrices

Definition of Inverse Matrix

Exercise

Suppose that A is any "invertible" $n \times n$ matrix for which there exist $n \times n$ matrices \mathbf{B} and \mathbf{C}
such that $\mathbf{A B}=\mathbf{C A}=\mathbf{I}$.

1. By writing $\mathbf{C A B}$ in two different ways, prove that $\mathbf{B}=\mathbf{C}$.
2. Use this result to show that the equal matrices $\mathbf{B}=\mathbf{C}$, if they exist, must be unique.

Definition
The $n \times n$ matrix \mathbf{X} is the unique inverse of the invertible $n \times n$ matrix \mathbf{A} provided that $\mathbf{A X}=\mathbf{X A}=\mathbf{I}_{n}$.

In this case we write $\mathbf{X}=\mathbf{A}^{-1}$,
so \mathbf{A}^{-1} denotes the unique inverse.
Big question: does the inverse exist?

Existence Conditions

Theorem
An $n \times n$ matrix \mathbf{A} has an inverse if and only if $|\mathbf{A}| \neq 0$, which holds if and only if at least one of the equations $\mathbf{A X}=\mathbf{I}_{n}$ and $\mathbf{X A}=\mathbf{I}_{n}$ has a solution.

Proof.
Provided $|\mathbf{A}| \neq 0$, the identity $(\operatorname{adj} \mathbf{A}) \mathbf{A}=\mathbf{A}(\operatorname{adj} \mathbf{A})=|\mathbf{A}| \mathbf{I}_{n}$ shows that the matrix $\mathbf{X}:=(1 /|\mathbf{A}|)$ adj \mathbf{A} is well defined and satisfies $\mathbf{X A}=\mathbf{A X}=\mathbf{I}_{n}$, so \mathbf{X} is the inverse \mathbf{A}^{-1}.

Conversely, if either $\mathbf{X A}=\mathbf{I}_{n}$ or $\mathbf{A X}=\mathbf{I}_{n}$ has a solution, then the product rule for determinants implies that $1=\left|\mathbf{I}_{n}\right|=|\mathbf{A X}|=|\mathbf{X A}|=|\mathbf{A}||\mathbf{X}|$, and so $|\mathbf{A}| \neq 0$.
The rest follows from the paragraph above.

Singularity

So \mathbf{A}^{-1} exists if and only if $|\mathbf{A}| \neq 0$.

Definition

1. In case $|\mathbf{A}|=0$, the matrix \mathbf{A} is said to be singular;
2. In case $|\mathbf{A}| \neq 0$, the matrix \mathbf{A} is said to be non-singular or invertible.

Example and Application to Simultaneous Equations

Exercise
Verify that

$$
\mathbf{A}=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \Longrightarrow \mathbf{A}^{-1}=\mathbf{C}:=\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2}
\end{array}\right)
$$

by using direct multiplication to show that $\mathbf{A C}=\mathbf{C A}=\mathbf{I}_{2}$.

Example

Suppose that a system of n simultaneous equations in n unknowns is expressed in matrix notation as $\mathbf{A x}=\mathbf{b}$.

Of course, A must be an $n \times n$ matrix.
Suppose \mathbf{A} has an inverse \mathbf{A}^{-1}.
Premultiplying both sides of the equation $\mathbf{A x}=\mathbf{b}$ by this inverse gives $\mathbf{A}^{-1} \mathbf{A} \mathbf{x}=\mathbf{A}^{-1} \mathbf{b}$, which simplifies to $\mathbf{I x}=\mathbf{A}^{-1} \mathbf{b}$.

Hence the unique solution of the equation is $\mathbf{x}=\mathbf{A}^{-1} \mathbf{b}$.

Cramer's Rule: Statement

Notation

Given any $m \times n$ matrix A,
let $\left[\mathbf{A}_{-j}, \mathbf{b}\right]$ denote the new $m \times n$ matrix
in which column j has been replaced by the column vector \mathbf{b}.
Evidently $\left[\mathbf{A}_{-j}, \mathbf{a}_{j}\right]=\mathbf{A}$.
Theorem
Provided that the $n \times n$ matrix \mathbf{A} is invertible, the simultaneous equation system $\mathbf{A x}=\mathbf{b}$ has a unique solution $\mathbf{x}=\mathbf{A}^{-1} \mathbf{b}$ whose ith component is given by the ratio of determinants $x_{i}=\left|\left[\mathbf{A}_{-i}, \mathbf{b}\right]\right| /|\mathbf{A}|$.
This result is known as Cramer's rule.

Cramer's Rule: Proof

Proof.

Given the equation system $\mathbf{A X}=\mathbf{b}$, each cofactor $\left|C_{j i}\right|$ of the coefficient matrix \mathbf{A} is also the (j, i) cofactor of the matrix $\left|\left[\mathbf{A}_{-i}, \mathbf{b}\right]\right|$.

Expanding the determinant $\left|\left[\mathbf{A}_{-i}, \mathbf{b}\right]\right|$ by cofactors along column i therefore gives $\sum_{j=1}^{n} b_{j}\left|C_{j i}\right|=\sum_{j=1}^{n}(\operatorname{adj} \mathbf{A})_{i j} b_{j}$,
by definition of the adjugate matrix.
Hence the unique solution to the equation system has components

$$
x_{i}=\left(\mathbf{A}^{-\mathbf{1}} \mathbf{b}\right)_{i}=\frac{1}{|\mathbf{A}|} \sum_{j=1}^{n}(\operatorname{adj} \mathbf{A})_{i j} b_{j}=\frac{1}{|\mathbf{A}|}\left|\left[\mathbf{A}_{-i}, \mathbf{b}\right]\right|
$$

$$
\text { for } i=1,2, \ldots, n
$$

Rule for Inverting Products

Theorem

Suppose that \mathbf{A} and \mathbf{B} are two invertible $n \times n$ matrices.
Then the inverse of the matrix product $\mathbf{A B}$ exists, and is the reverse product $\mathbf{B}^{-1} \mathbf{A}^{-1}$ of the inverses.

Proof.
Using the associative law for matrix multiplication repeatedly gives:
$\left(B^{-1} \mathbf{A}^{-1}\right)(\mathbf{A B})=\mathbf{B}^{-1}\left(\mathbf{A}^{-1} \mathbf{A}\right) \mathbf{B}=\mathbf{B}^{-1}(\mathbf{I}) \mathbf{B}=\mathbf{B}^{-1}(\mathbf{I B})=\mathbf{B}^{-1} \mathbf{B}=\mathbf{I}$
and
$(\mathbf{A B})\left(\mathbf{B}^{-1} \mathbf{A}^{-1}\right)=\mathbf{A}\left(\mathbf{B} \mathbf{B}^{-1}\right) \mathbf{A}^{-1}=\mathbf{A}(\mathbf{I}) \mathbf{A}^{-1}=(\mathbf{A} \mathbf{I}) \mathbf{A}^{-1}=\mathbf{A A}^{-1}=\mathbf{I}$.
These equations confirm that $\mathbf{X}:=\mathbf{B}^{-1} \mathbf{A}^{-1}$ is the unique matrix satisfying the double equality $(\mathbf{A B}) \mathbf{X}=\mathbf{X}(\mathbf{A B})=\mathbf{I}$.

Rule for Inverting Chain Products

Exercise

Prove that, if \mathbf{A}, \mathbf{B} and \mathbf{C} are three invertible $n \times n$ matrices, then $(\mathbf{A B C})^{-1}=\mathbf{C}^{-1} \mathbf{B}^{-1} \mathbf{A}^{-1}$.

Then use mathematical induction to extend this result in order to find the inverse of the product $\mathbf{A}_{1} \mathbf{A}_{2} \cdots \mathbf{A}_{k}$ of any finite chain of invertible $n \times n$ matrices.

Matrices for Elementary Row Operations

Example

Consider the following two out of the three possible kinds of elementary row operation:

1. of multiplying the r th row by $\alpha \in \mathbb{R}$, represented by the matrix $\mathbf{S}_{r}(\alpha)$;
2. of multiplying the q th row by $\alpha \in \mathbb{R}$, then adding the result to row r, represented by the matrix $\mathbf{E}_{r+\alpha q}$.

Exercise

Find the determinants and, when they exist, the inverses
of the matrices $\mathbf{S}_{r}(\alpha)$ and $\mathbf{E}_{r+\alpha q}$.

Outline

Determinants

Determinants of Order 2
Determinants of Order 3
Characterizing the Determinant Function Rules for Determinants
Expansion by Alien Cofactors and the Adjugate Matrix Minor Determinants

The Inverse Matrix
Definition and Existence

Orthogonal Matrices

Partitioned Matrices

Inverting Orthogonal Matrices

An n-dimensional square matrix \mathbf{Q} is said to be orthogonal just in case its columns form an orthonormal set

- i.e., they must be pairwise orthogonal unit vectors.

Theorem
A square matrix \mathbf{Q} is orthogonal if and only if it satisfies $\mathbf{Q}^{\top} \mathbf{Q}=\mathbf{I}$.
Proof.
The elements of the matrix product $\mathbf{Q}^{\top} \mathbf{Q}$ satisfy

$$
\left(\mathbf{Q}^{\top} \mathbf{Q}\right)_{i j}=\sum_{k=1}^{n} q_{i k}^{\top} q_{k j}=\sum_{k=1}^{n} q_{k i} q_{k j}=\mathbf{q}_{i} \cdot \mathbf{q}_{j}
$$

where $\mathbf{q}_{i}\left(\right.$ resp. $\left.\mathbf{q}_{j}\right)$ denotes the i th (resp. j th) column vector of \mathbf{Q}.
But the columns of \mathbf{Q} are orthonormal iff $\mathbf{q}_{i} \cdot \mathbf{q}_{j}=\delta_{i j}$ for all $i, j=1,2, \ldots, n$, and so iff $\mathbf{Q}^{\top} \mathbf{Q}=\mathbf{I}$.

Exercises on Orthogonal Matrices

Exercise

Show that if the matrix \mathbf{Q} is orthogonal, then so is \mathbf{Q}^{\top}.

Use this result to show that a matrix is orthogonal if and only if its row vectors also form an orthonormal set.

Exercise

Show that any permutation matrix is orthogonal.

Rotations in \mathbb{R}^{2}

Example

In \mathbb{R}^{2}, consider the anti-clockwise rotation through an angle θ of the unit circle $S^{1}=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{1}^{2}+x_{2}^{2}=1\right\}$.
It maps:

1. the first unit vector $(1,0)$ of the canonical basis to the column vector $(\cos \theta, \sin \theta)^{\top}$;
2. the second unit vector $(0,1)$ of the canonical basis to the column vector $(-\sin \theta, \cos \theta)^{\top}$.

So the rotation can be represented by the rotation matrix

$$
\mathbf{R}_{\theta}:=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

with these vectors as its columns.

Rotations in \mathbb{R}^{2} Are Orthogonal Matrices

Because $\sin (-\theta)=-\sin (\theta)$ and $\cos (-\theta)=-\cos (\theta)$, the transpose of \mathbf{R}_{θ} satisfies $\mathbf{R}_{\theta}^{\top}=\mathbf{R}_{-\theta}$, and so is the clockwise rotation through an angle θ of the unit circle S^{1}.
Since clockwise and anti-clockwise rotations are inverse operations, it is no surprise that $\mathbf{R}_{\theta}^{\top} \mathbf{R}_{\theta}=\mathbf{I}$.
We verify this algebraically by using matrix multiplication

$$
\mathbf{R}_{\theta}^{\top} \mathbf{R}_{\theta}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\mathbf{I}
$$

because $\cos ^{2} \theta+\sin ^{2} \theta=1$, thus verifying orthogonality.
Similarly

$$
\mathbf{R}_{\theta} \mathbf{R}_{\theta}^{\top}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\mathbf{I}
$$

Outline

Determinants

Determinants of Order 2
Determinants of Order 3
Characterizing the Determinant Function Rules for Determinants
Expansion by Alien Cofactors and the Adjugate Matrix Minor Determinants

The Inverse Matrix
Definition and Existence
Orthogonal Matrices

Partitioned Matrices

Partitioned Matrices: Definition

A partitioned matrix is a rectangular array of different matrices.
Example
Consider the $(m+\ell) \times(n+k)$ matrix

$$
\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)
$$

where the four submatrices $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$
are of dimension $m \times n, m \times k, \ell \times n$ and $\ell \times k$ respectively.
For any scalar $\alpha \in \mathbb{R}$, the scalar multiple of a partitioned matrix is

$$
\alpha\left(\begin{array}{ll}
\mathbf{A} & \mathbf{B} \\
\mathbf{C} & \mathbf{D}
\end{array}\right)=\left(\begin{array}{ll}
\alpha \mathbf{A} & \alpha \mathbf{B} \\
\alpha \mathbf{C} & \alpha \mathbf{D}
\end{array}\right)
$$

Partitioned Matrices: Addition

Suppose the two partitioned matrices

$$
\left(\begin{array}{ll}
\mathbf{A} & \mathbf{B} \\
\mathbf{C} & \mathbf{D}
\end{array}\right) \text { and }\left(\begin{array}{ll}
\mathbf{E} & \mathbf{F} \\
\mathbf{G} & \mathbf{H}
\end{array}\right)
$$

have the property that the following four pairs of corresponding matrices have equal dimensions:
(i) \mathbf{A} and \mathbf{E}; (ii) \mathbf{B} and \mathbf{F}; (iii) \mathbf{C} and \mathbf{G}; (iv) \mathbf{D} and \mathbf{H}.

Then the sum of the two matrices is

$$
\left(\begin{array}{ll}
\mathbf{A} & \mathbf{B} \\
\mathbf{C} & \mathbf{D}
\end{array}\right)+\left(\begin{array}{ll}
\mathbf{E} & \mathbf{F} \\
\mathbf{G} & \mathbf{H}
\end{array}\right)=\left(\begin{array}{ll}
\mathbf{A}+\mathbf{E} & \mathbf{B}+\mathbf{F} \\
\mathbf{C}+\mathbf{G} & \mathbf{D}+\mathbf{H}
\end{array}\right)
$$

Partitioned Matrices: Multiplication

Provided that the two partitioned matrices

$$
\left(\begin{array}{ll}
\mathbf{A} & \mathbf{B} \\
\mathbf{C} & \mathbf{D}
\end{array}\right) \text { and }\left(\begin{array}{ll}
\mathbf{E} & \mathbf{F} \\
\mathbf{G} & \mathbf{H}
\end{array}\right)
$$

along with their sub-matrices are all compatible for multiplication, the product is defined as

$$
\left(\begin{array}{ll}
\mathbf{A} & \mathbf{B} \\
\mathbf{C} & \mathbf{D}
\end{array}\right)\left(\begin{array}{ll}
\mathbf{E} & \mathbf{F} \\
\mathbf{G} & \mathbf{H}
\end{array}\right)=\left(\begin{array}{ll}
\mathbf{A E}+\mathbf{B G} & \mathbf{A F}+\mathbf{B H} \\
\mathbf{C E}+\mathbf{D G} & \mathbf{C F}+\mathbf{D H}
\end{array}\right)
$$

This adheres to the usual rule for multiplying rows by columns.

Transposes and Some Special Matrices

The rule for transposing a partitioned matrix is

$$
\left(\begin{array}{ll}
\mathbf{A} & \mathbf{B} \\
\mathbf{C} & \mathbf{D}
\end{array}\right)^{\top}=\left(\begin{array}{ll}
\mathbf{A}^{\top} & \mathbf{C}^{\top} \\
\mathbf{B}^{\top} & \mathbf{D}^{\top}
\end{array}\right)
$$

So the original matrix is symmetric iff $\mathbf{A}=\mathbf{A}^{\top}, \mathbf{D}=\mathbf{D}^{\top}, \mathbf{B}=\mathbf{C}^{\top}$, and $\mathbf{C}=\mathbf{B}^{\top}$.

It is diagonal iff \mathbf{A}, \mathbf{D} are both diagonal, while $\mathbf{B}=\mathbf{0}$ and $\mathbf{C}=\mathbf{0}$.

The identity matrix is diagonal with $\mathbf{A}=\mathbf{I}, \mathbf{D}=\mathbf{I}$, possibly identity matrices of different dimensions.

Partitioned Matrices: Inverses, I

For an $(m+n) \times(m+n)$ partitioned matrix to have an inverse, the equation

$$
\left(\begin{array}{ll}
\mathbf{A} & \mathbf{B} \\
\mathbf{C} & \mathbf{D}
\end{array}\right)\left(\begin{array}{ll}
\mathbf{E} & \mathbf{F} \\
\mathbf{G} & \mathbf{H}
\end{array}\right)=\left(\begin{array}{l}
\mathbf{A E}+\mathbf{B G} \\
\mathbf{A F}+\mathbf{B H} \\
\mathbf{C E}+\mathbf{D G} \\
\mathbf{C F}+\mathbf{D H}
\end{array}\right)=\left(\begin{array}{cc}
\mathbf{I}_{m} & \mathbf{0}_{n \times m} \\
\mathbf{0}_{m \times n} & \mathbf{I}_{n}
\end{array}\right)
$$

should have a solution for the matrices $\mathbf{E}, \mathbf{F}, \mathbf{G}, \mathbf{H}$, given $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$.
Assuming that \mathbf{A} has an inverse, we can:

1. construct new first m equations by premultiplying the old ones by \mathbf{A}^{-1};
2. construct new second n equations by:

- premultiplying the new first m equations by \mathbf{C};
- then subtracting this product from the old second n equations.

The result is

$$
\left(\begin{array}{cc}
\mathbf{I}_{m} & \mathbf{A}^{-1} \mathbf{B} \\
\mathbf{0} & \mathbf{D}-\mathbf{C A}^{-1} \mathbf{B}
\end{array}\right)\left(\begin{array}{cc}
\mathbf{E} & \mathbf{F} \\
\mathbf{G} & \mathbf{H}
\end{array}\right)=\left(\begin{array}{cc}
\mathbf{A}^{-1} & \mathbf{0}_{n \times m} \\
-\mathbf{C A}^{-1} & \mathbf{I}_{n}
\end{array}\right)
$$

Partitioned Matrices: Inverses, II

To take the next step, assume the matrix $\mathbf{X}:=\mathbf{D}-\mathbf{C A}^{-1} \mathbf{B}$ also has an inverse $\mathbf{X}^{-1}=\left(\mathbf{D}-\mathbf{C A}^{-1} \mathbf{B}\right)^{-1}$.
Given $\left(\begin{array}{cc}\mathbf{I}_{m} & \mathbf{A}^{-1} \mathbf{B} \\ \mathbf{0} & \mathbf{D}-\mathbf{C A}^{-1} \mathbf{B}\end{array}\right)\left(\begin{array}{cc}\mathbf{E} & \mathbf{F} \\ \mathbf{G} & \mathbf{H}\end{array}\right)=\left(\begin{array}{cc}\mathbf{A}^{-1} & \mathbf{0}_{n \times m} \\ -\mathbf{C A}^{-1} & \mathbf{I}_{n}\end{array}\right)$,
we can then premultiply the second n equations by \mathbf{X}^{-1}, then subtract $\mathbf{A}^{-1} \mathbf{B}$ times the new second n equations from the old first m equations to obtain

$$
\begin{aligned}
&\left(\begin{array}{cc}
\mathbf{I}_{m} & \mathbf{0}_{n \times m} \\
\mathbf{0}_{m \times n} & \mathbf{I}_{n}
\end{array}\right)\left(\begin{array}{ll}
\mathbf{E} & \mathbf{F} \\
\mathbf{G} & \mathbf{H}
\end{array}\right)=\left(\begin{array}{cc}
\mathbf{E} & \mathbf{F} \\
\mathbf{G} & \mathbf{H}
\end{array}\right)=\mathbf{Z} \\
& \text { where } \mathbf{Z}:=\left(\begin{array}{cc}
\mathbf{A}^{-1}+\mathbf{A}^{-1} \mathbf{B} \mathbf{X}^{-1} \mathbf{C} \mathbf{A}^{-1} & -\mathbf{A}^{-1} \mathbf{B X}^{-1} \\
-\mathbf{X}^{-1} \mathbf{C A}^{-1} & \mathbf{X}^{-1}
\end{array}\right)
\end{aligned}
$$

Exercise
Use direct multiplication twice in order to verify that

$$
\left(\begin{array}{ll}
\mathbf{A} & \mathbf{B} \\
\mathbf{C} & \mathbf{D}
\end{array}\right) \mathbf{Z}=\mathbf{Z}\left(\begin{array}{ll}
\mathbf{A} & \mathbf{B} \\
\mathbf{C} & \mathbf{D}
\end{array}\right)=\left(\begin{array}{cc}
\mathbf{I}_{m} & \mathbf{0}_{n \times m} \\
\mathbf{0}_{m \times n} & \mathbf{I}_{n}
\end{array}\right)
$$

Partitioned Matrices: Extension

Exercise

Suppose that the two partitioned matrices

$$
\mathbf{A}=\left(\mathbf{A}_{i j}\right)^{k \times \ell} \quad \text { and } \quad \mathbf{B}=\left(\mathbf{B}_{i j}\right)^{k \times \ell}
$$

are both $k \times \ell$ arrays of respective $m_{i} \times n_{j}$ matrices $\mathbf{A}_{i j}, \mathbf{B}_{i j}$.

1. Under what conditions can the product $\mathbf{A B}$ be defined as a $k \times \ell$ array of matrices?
2. Under what conditions can the product BA be defined as a $k \times \ell$ array of matrices?
3. When either $\mathbf{A B}$ or $\mathbf{B A}$ can be so defined, give a formula for its product, using summation notation.
4. Express \mathbf{A}^{\top} as a partitioned matrix.
5. Under what conditions is the matrix \mathbf{A} symmetric?
