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Example of Two Equations in Two Unknowns
It is easy to check that

x + y = 10

x − y = 6

}
=⇒ x = 8, y = 2

More generally, one can:

1. add the two equations, to eliminate y ;

2. subtract the second equation from the first, to eliminate x .

This leads to the following transformation

x + y = b1

x − y = b2

}
=⇒

{
2x = b1 + b2

2y = b1 − b2

of the two equation system with general right-hand sides.

Obviously the solution is

x = 1
2(b1 + b2), y = 1

2(b1 − b2)
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Using Matrix Notation, I

Matrix notation allows the two equations

1x + 1y = b1

1x − 1y = b2

to be expressed as (
1 1
1 −1

)(
x
y

)
=

(
b1

b2

)
or as Az = b, where

A =

(
1 1
1 −1

)
, z =

(
x
y

)
, and b =

(
b1

b2

)
.

Here A, z,b are respectively: (i) the coefficient matrix;
(ii) the vector of unknowns; (iii) the vector of right-hand sides.
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Using Matrix Notation, II

Also, the solution x = 1
2(b1 + b2), y = 1

2(b1 − b2)
can be expressed as

x = 1
2b1 + 1

2b2

y = 1
2b1 − 1

2b2

or as

z =

(
x
y

)
=

(
1
2

1
2

1
2 −1

2

)(
b1

b2

)
= Cb, where C =

(
1
2

1
2

1
2 −1

2

)
.
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Two General Equations
Consider the general system

ax + by = u = 1u + 0v
cx + dy = v = 0u + 1v

of two equations in two unknowns, filled in with 1s and 0s.

In matrix form, these equations can be written as(
a b
c d

)(
x
y

)
=

(
1 0
0 1

)(
u
v

)
.

In case a 6= 0, we can eliminate x from the second equation
by adding −c/a times the first row to the second.

After defining the scalar constant D := a[d + (−c/a)b] = ad − bc,
then clearing fractions, we obtain the new equality(

a b
0 D/a

)(
x
y

)
=

(
1 0
−c/a 1

)(
u
v

)
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Two General Equations, Subcase 1A
In Subcase 1A when D := ad − bc 6= 0,
multiply the second row by a to obtain(

a b
0 D

)(
x
y

)
=

(
1 0
−c a

)(
u
v

)
Adding −b/D times the second row to the first yields(

a 0
0 D

)(
x
y

)
=

(
1 + (bc/D) −ab/D
−c 1

)(
u
v

)
Recognizing that 1 + (bc/D) = (D + bc)/D = ad/D,
then dividing the two rows/equations by a and D respectively,
we obtain (

x
y

)
=

(
1 0
0 1

)(
x
y

)
=

1

D

(
d −b
−c a

)(
u
v

)
which implies the unique solution

x = (1/D)(du − bv) and y = (1/D)(av − cu)
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Two General Equations, Subcase 1B
In Subcase 1B when D := ad − bc = 0,
the multiplier −ab/D is undefined and the system(

a b
0 D/a

)(
x
y

)
=

(
1 0
−c/a 1

)(
u
v

)
collapses to (

a b
0 0

)(
x
y

)
=

(
u

v − c/a

)
.

This leaves us with two “subsubcases”:

if c 6= av , then the left-hand side of the second equation is 0,
but the right-hand side is non-zero,
so there is no solution;

if c = av , then the second equation reduces to 0 = 0,
and there is a continuum of solutions
satisfying the one remaining equation ax + by = u,
or x = (u − by)/a where y is any real number.
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Two General Equations, Case 2

In the final case when a = 0, simply interchanging the two
equations (

a b
c d

)(
x
y

)
=

(
1 0
0 1

)(
u
v

)
.

gives (
c d
0 b

)(
x
y

)
=

(
1 0
0 1

)(
v
u

)
.

Provided that b 6= 0, one has y = u/b and,
assuming that c 6= 0, also x = (v − dy)/c = (bv − du)/bc.

On the other hand, if b = 0,
we are back with two possibilities like those of Subcase 1B.
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Vectors and Inner Products

Let x = (xi )
m
i=1 ∈ Rm denote a column m-vector of the form

x1
x2
...

xm

 .

Its transpose is the row m-vector

x> = (x1, x2, . . . , xm).

Given a column m-vector x and row n-vector y> = (yj)
n
j=1 ∈ Rn

where m = n, the dot or scalar or inner product is defined as

y>x := y · x :=
∑n

i=1
yixi .

But when m 6= n, the scalar product is not defined.
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Exercise on Quadratic Forms

Exercise
Consider the quadratic form f (w) := w>w
as a function f : Rn → R of the column n-vector w.

Explain why f (w) ≥ 0 for all w ∈ Rn,
with equality if and only if w = 0,
where 0 denotes the zero vector of Rn.
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Net Quantity Vectors
Suppose there are n commodities numbered from i = 1 to n.

Each component qi of the net quantity vector q = (qi )
n
i=1 ∈ Rn

represents the quantity of the ith commodity.

Often each such quantity is non-negative.

But general equilibrium theory often uses only by the sign of qi

to distinguish between

I a consumer’s demands and supplies of the ith commodity;

I or a producer’s outputs and inputs of the ith commodity.

This sign is taken to be

positive for demands or outputs;

negative for supplies or inputs.

In fact, qi is taken to be

I the consumer’s net demand for the ith commodity;

I the producer’s net supply or net outputs of the ith commodity.

Then q is the net quantity vector.
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Price Vectors

Each component pi of the (row) price vector p> ∈ Rn

indicates the price per unit of commodity i .

Then the scalar product

p>q = p · q =
∑n

i=1
piqi

is the total value of the net quantity vector q
evaluated at the price vector p.

In particular, p>q indicates

I the net profit (or minus the net loss) for a producer;

I the net dissaving for a consumer.
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Definitions

Consider any two n-vectors x = (xi )
n
i=1 and y = (yi )

n
i=1 in Rn.

Their sum s := x + y and difference d := x− y
are constructed by adding or subtracting the vectors
component by component — i.e.,

s = (xi + yi )
n
i=1 and d = (xi − yi )

n
i=1

The scalar product λx of any scalar λ ∈ R
and vector x = (xi )

n
i=1 ∈ Rn is constructed by multiplying

each component of the vector x by the scalar λ — i.e.,

λx = (λxi )
n
i=1
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Algebraic Fields

Definition
An algebraic field (F,+, ·) of scalars is a set F that,
together with the two binary operations + of addition
and · of multiplication, satisfies the following axioms
for all a, b, c ∈ F:

1. F is closed under + and ·: both a + b and a · b are in F.

2. + and · are associative: both a + (b + c) = (a + b) + c
and a · (b · c) = (a · b) · c .

3. + and · both commute: a + b = b + a and a · b = b · a.

4. There are identity elements 0, 1 ∈ F for + and · respectively:
for all a ∈ F, one has a + 0 = a and 1 · a = a, with 0 6= 1.

5. There are inverse operations − for + and −1 for · such that:
a + (−a) = 0 and a · a−1 = 1 provided that a 6= 0.

6. The distributive law: a · (b + c) = (a · b) + (a · c).
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Examples of Algebraic Fields

Exercise
Verify that the following well known sets are algebraic fields:

I R, the set of all real numbers;

I Q, the set of all rational numbers
— i.e., those that can be expressed as the ratio r = p/q
of integers p, q ∈ Z with q 6= 0.
(Check that Q is closed under addition and multiplication,
and that each non-zero rational
has a rational multiplicative inverse.)

I C, the set of all complex numbers
— i.e., those that can be expressed as c = a + ib,
where a, b ∈ R and i is defined to satisfy i2 = −1.

I the set of all rational complex numbers
— i.e., those that can be expressed as c = a + ib,
where a, b ∈ Q and i is defined to satisfy i2 = −1.
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General Vector Spaces

Definition
A vector space V over an algebraic field F
is a combination 〈V ,F,+, ·〉 of:

I a set V of vectors;

I the field F of scalars;

I the binary operation

V × V 3 (u, v) 7→ u + v ∈ V

of vector addition

I the binary operation

F× V 3 (α,u) 7→ αu ∈ V

of scalar multiplication

which are required to satisfy
all of the following eight vector space axioms.
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Eight Vector Space Axioms

1. Addition is associative: u + (v + w) = (u + v) + w

2. Addition is commutative: u + v = v + u

3. Additive identity: There exists a zero vector 0 ∈ V
such that v + 0 = v for all v ∈ V .

4. Additive inverse: For every v ∈ V , there exists
an additive inverse −v ∈ V of v such that v + (−v) = 0.

5. Scalar multiplication is distributive w.r.t. vector addition:
α(u + v) = αu + αv

6. Scalar multiplication is distributive w.r.t. field addition:
(α + β)v = αv + βv

7. Scalar and field multiplication are compatible: α(βv) = (αβ)v

8. 1 ∈ F is an identity element for scalar multiplication: 1v = v
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Some Finite Dimensional Vector Spaces

Exercise
Given an arbitrary algebraic field F, let Fn denote
the space of all lists 〈ai 〉ni=1 of n elements ai ∈ F
— i.e., the n-fold Cartesian product of F with itself.
Show how to construct the respective binary operations

Fn × Fn 3 (x, y) 7→ x + y ∈ Fn

F× Fn 3 (λ, x) 7→ λx ∈ Fn

of addition and scalar multiplication
so that (Fn,F,+,×) is a vector space.

Show too that subtraction and division by a (non-zero) scalar
can be defined by v −w = v + (−1)w and v/α = (1/α)v.

From now on we consider real vector spaces over the real field R,
and especially the space (Rn,R,+,×) of n-vectors over R.
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Linear Functions: Definition

Definition
A linear combination of vectors is the weighted sum

∑k
h=1 λhx

h,
where xh ∈ V and λh ∈ F for h = 1, 2, . . . , k .

Exercise
By induction on k, show that the vector space axioms
imply that any linear combination of vectors in V
must also belong to V .

Definition
A function V 3 u 7→ f (u) ∈ F is linear provided that

f (λu + µv) = λf (u) + µf (v)

whenever u, v ∈ V and λ, µ ∈ V .
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Key Properties of Linear Functions

Exercise
Use induction on k to show
that if the function f : V → F is linear, then

f

(∑k

h=1
λhx

h

)
=
∑k

h=1
λhf (xh)

for all linear combinations
∑k

h=1 λhx
h in V

— i.e., f preserves linear combinations.

Exercise
In case V = Rn and F = R, show that
any linear function is homogeneous of degree 1,
meaning that f (λv) = λf (v) for all λ ∈ R and all v ∈ Rn.

What is the corresponding property in case V = Qn and F = Q?
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Affine Functions

Definition
A function g : V → F is said to be affine
if there is a scalar additive constant α ∈ F
and a linear function f : V → F such that g(v) ≡ α + f (v).

Exercise
Under what conditions is an affine function g : R→ R linear
when its domain R is regarded as a vector space?
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An Economic Aggregation Theorem

Suppose that a finite population of households h ∈ H
with respective non-negative incomes yh ∈ Q+ (h ∈ H)
have non-negative demands xh ∈ R (h ∈ H)
which depend on household income via a function yh 7→ fh(yh).

Given total income Y :=
∑

h yh, under what conditions
can their total demand X :=

∑
h xh =

∑
h fh(yh)

be expressed as a function X = F (Y ) of Y alone?

The answer is an implication of Cauchy’s functional equation.

In this context the theorem asserts that this aggregation condition
implies that the functions fh (h ∈ H) and F must be co-affine.

This means there exists a common multiplicative constant ρ ∈ R,
along with additive constants αh (h ∈ H) and A, such that

fh(yh) ≡ αh + ρyh (h ∈ H) and F (Y ) ≡ A + ρY
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Cauchy’s Functional Equation: Proof of Sufficiency

Theorem
Except in the trivial case when H has only one member,
Cauchy’s functional equation F (

∑
h yh) ≡

∑
h fh(yh) is satisfied

for functions F , fh : Q→ R if and only if:

1. there exists a single function φ : Q→ R such that

F (q) = F (0) + φ(q) and fh(q) = fh(0) + φ(q) for all h ∈ H

2. the function φ : Q→ R is linear,
implying that the functions F and fh are co-affine.

Proof.
Suppose fh(yh) ≡ αh + ρyh for all h ∈ H, and F (Y ) ≡ A + ρY .
Then Cauchy’s functional equation F (

∑
h yh) ≡

∑
h fh(yh)

is obviously satisfied provided that A =
∑

h αh.
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Cauchy’s Functional Equation: Beginning the Proof

Lemma
The mapping Q 3 q 7→ φ(q) := F (q)− F (0) ∈ R must satisfy;

1. φ(q) ≡ fi (q)− fi (0) for all i ∈ H and q ∈ Q;

2. φ(q + q′) ≡ φ(q) + φ(q′) for all q, q′ ∈ Q.

Proof.
To prove part 1, consider any i ∈ H and all q ∈ Q.

Note that Cauchy’s equation F (
∑

h yh) ≡
∑

h fh(yh)
implies that F (q) = fi (q) +

∑
h 6=i fh(0)

and also F (0) = fi (0) +
∑

h 6=i fh(0).

Now subtract the second equation from the first to obtain

φ(q) = F (q)− F (0) = fi (q)− fi (0)
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Cauchy’s Functional Equation: Continuing the Proof

Lemma
The mapping Q 3 q 7→ φ(q) := F (q)− F (0) ∈ R must satisfy;

1. φ(q) ≡ fi (q)− fi (0) for all i ∈ H and q ∈ Q;

2. φ(q + q′) ≡ φ(q) + φ(q′) for all q, q′ ∈ Q.

Proof.
To prove part 2, consider any i , j ∈ H and any q, q′ ∈ Q.

Note that Cauchy’s equation F (
∑

h yh) ≡
∑

h fh(yh) implies that

F (q + q′) = fi (q) + fj(q′) +
∑

h∈H\{i ,j} fh(0)

F (0) = fi (0) + fj(0) +
∑

h∈H\{i ,j} fh(0)

Now subtract the second equation from the first,
and use the equation φ(q) = F (q)− F (0) = fi (q)− fi (0),
to obtain φ(q + q′) = φ(q) + φ(q′).
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Cauchy’s Functional Equation: Resuming the Proof

Because φ(q + q′) ≡ φ(q) + φ(q′),
for any k ∈ N one has φ(kq) = φ((k − 1)q) + φ(q).

As an induction hypothesis, which is trivially true for k = 2,
suppose that φ((k − 1)q) = (k − 1)φ(q).

Confirming the induction step, the hypothesis implies that

φ(kq) = φ((k − 1)q) + φ(q) = (k − 1)φ(q) + φ(q) = kφ(q)

So φ(kq) = kφ(q) for every k ∈ N and every q ∈ Q.

Putting q′ = kq implies that φ(q′) = kφ(q′/k).

Interchanging q and q′, it follows that φ(q/k) = (1/k)φ(q).
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Cauchy’s Functional Equation: Completing the Proof

So far we have proved that, for every k ∈ N and every q ∈ Q,
one has both φ(kq) = kφ(q) and φ(q/k) = (1/k)φ(q).

Hence, for every rational r = m/n ∈ Q
one has φ(mq/n) = mφ(q/n) = (m/n)φ(q) and so φ(rq) = rφ(q).

In particular, φ(r) = rφ(1), so φ is linear on its domain Q
(though not on the whole of R without additional assumptions
such as continuity or monotonicity).

The rest of the proof is routine checking of definitions.
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Norm as Length
Pythagoras’s theorem implies that the length

of the typical vector x = (x1, x2) ∈ R2 is
√

x2
1 + x2

2

or, perhaps less clumsily, (x2
1 + x2

2 )1/2.

In R3, the same result implies that the length
of the typical vector x = (x1, x2, x3) is[(

(x2
1 + x2

2 )1/2
)2

+ x2
3

]1/2
= (x2

1 + x2
2 + x2

3 )1/2.

An obvious extension to Rn is the following:

Definition
The length of the typical n-vector x = (xi )

n
i=1 ∈ Rn

is its (Euclidean) norm

‖x‖ :=
(∑n

i=1
x2
i

)1/2
=
√
x>x =

√
x · x
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Unit n-Vectors, the Unit Sphere, and Unit Ball

Definition
A unit vector u ∈ Rn is a vector with unit norm
— i.e., its components satisfy

∑n
i=1 u2

i = ‖u‖ = 1.

The set of all such unit vectors forms a surface
called the unit sphere of dimension n − 1
(one less than n because of the defining equation),
defined as

Sn−1 := {x ∈ Rn |
∑n

i=1
x2
i = 1}

The unit ball B ⊂ Rn is the solid set

B := {x ∈ Rn |
∑n

i=1
x2
i ≤ 1}

of all points bounded by the surface of the unit sphere Sn−1 ⊂ Rn.
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Cauchy–Schwartz Inequality

Theorem
For all pairs a,b ∈ Rn, one has |a · b| ≤ ‖a‖‖b‖.

Proof.
Define the function R 3 ξ 7→ f (ξ) :=

∑n
i=1(aiξ + bi )

2 ∈ R.

Clearly f is the quadratic form f (ξ) ≡ Aξ2 + Bξ + C
where A :=

∑n
i=1 a2i = ‖a‖2, B := 2

∑n
i=1 aibi = 2a · b,

and C :=
∑n

i=1 b2
i = ‖b‖2.

There is a trivial case when A = 0 because a = 0.

Otherwise, A > 0 and so completing the square gives

f (ξ) ≡ Aξ2 + Bξ + C = A[ξ + (B/2A)]2 + C − B2/4A

But the definition of f implies that f (ξ) ≥ 0 for all ξ ∈ R,
so 0 ≤ f (−B/2A) = C − B2/4A, implying that 1

4B2 ≤ AC

and so |a · b| = |12B| ≤
√

AC = ‖a‖‖b‖.
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The Angle Between Two Vectors
Consider the triangle in Rn whose vertices are the vectors x, y, 0.

Its three sides or edges have respective lengths ‖x‖, ‖y‖, ‖x− y‖,
where the last follows from the parallelogram law.

Note that ‖x− y‖2 Q ‖x‖2 + ‖y‖2 according as the angle at 0 is:
(i) acute; (ii) a right angle; (iii) obtuse. But

‖x− y‖2 − ‖x‖2 − ‖y‖2 =
n∑

i=1

(xi − yi )
2 −

n∑
i=1

x2
i −

n∑
i=1

y2
i

= −2
n∑

i=1

xiyi = −2x · y

So the three cases (i)–(iii) occur according as x · y R 0.

Using the Cauchy–Schwartz inequality, one can define the angle
between x and y as the unique solution θ = arccos (x · y/‖x‖‖y‖)
in the interval [0, π] of the equation cos θ = x · y/‖x‖‖y‖ ∈ [−1, 1].
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Orthogonal and Orthonormal Sets of Vectors

Case (ii) suggests defining two vectors x, y ∈ Rn

as orthogonal iff x · y = 0.

A set of k vectors {x1, x2, . . . , xk} ⊂ Rn is said to be:

I pairwise orthogonal just in case x · y = 0 whenever j 6= i ;

I orthonormal just in case, in addition,
all k elements of the set are unit vectors.

On the set {1, 2, . . . , n}, define the Kronecker delta function

{1, 2, . . . , n} × {1, 2, . . . , n} 3 (i , j) 7→ δij ∈ {0, 1}

by

δij :=

{
1 if i = j

0 otherwise

Then the set of k vectors {x1, x2, . . . , xk} ⊂ Rn is orthonormal
if and only if xi · xj = δij for all pairs i , j ∈ {1, 2, . . . , k}.
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The Canonical Basis of Rn

Example

A prominent orthonormal set is the canonical basis of Rn,
defined as the set of n different n-vectors ei (i = 1, 2, . . . , n)
whose respective components (e ij )

n
j=1

satisfy e ij = δij for all j ∈ {1, 2, . . . , n}.

Exercise
Show that each n-vector x = (xi )

n
i=1 is a linear combination

x = (xi )
n
i=1 =

∑n

i=1
xiei

of the canonical basis vectors,
with the multiplier attached to each basis vector ei
equal to the respective component xi (i = 1, 2, . . . , n).
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The Canonical Basis in Commodity Space

Example

Consider the case when each vector x ∈ Rn is a quantity vector,
whose components are (xi )

n
i=1,

where xi indicates the net quantity of commodity i .

Then the ith unit vector ei of the canonical basis of Rn

represents a commodity bundle
that consists of one unit of commodity i ,
but nothing of every other commodity.

In case the row vector p> ∈ Rn

is a price vector for the same list of n commodities,
the value p>ei of the ith unit vector ei must equal pi ,
the price (of one unit) of the ith commodity.
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Linear Functions

Theorem
If the function f : Rn → R is linear,
there exists y ∈ Rn such that f (x) = y>x.

Proof.
Because x equals the linear combination

∑n
i=1 xiei

of the n canonical basis vectors, linearity of f implies that

f (x) = f
(∑n

i=1
xiei
)

=
∑n

i=1
xi f (ei ) = y>x

where y is the column vector whose components
are yi = f (ei ) for i = 1, 2, . . . , n.
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Linear Transformations: Definition

Definition
The vector-valued function

Rn 3 x 7→ F (x) = (Fi (x))mi=1 ∈ Rm

is a linear transformation
just in case each component function Fi : Rn → R is linear
— or equivalently, iff F (λx + µy) = λF (x) + µF (y)
for every linear combination λx + µy of every pair x, y ∈ Rn.
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Linear Transformations: Representation

Theorem
For any linear transformation F : Rn → Rm,
there exist vectors yi ∈ Rm for i = 1, 2, . . . , n
such that each component function satisfies Fi (x) = y>i x.

Proof.
Because x equals the linear combination

∑n
i=1 xiei

of the n canonical basis vectors, linearity of Fi implies that

Fi (x) = Fi

(∑n

j=1
xjej

)
=
∑n

j=1
xjFi (ej) = y>i x

where y>i is the row vector whose components
are (yi )j = Fi (ej) for i = 1, 2, . . . ,m and j = 1, 2, . . . , n.

Consider the m × n array whose n columns
are the m-vectors F (ej) = (Fi (ej))mi=1 for j = 1, 2, . . . , n.
This is a matrix representation of the linear transformation F .
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Linear Combinations and Dependence: Definitions

Definition
A linear combination of the finite set {x1, x2, . . . , xk} of vectors
is the scalar weighted sum

∑k
h=1 λhx

h,
where λh ∈ R for h = 1, 2, . . . , k.

The finite set {x1, x2, . . . , xk} of vectors is linearly independent
just in case the only solution of the equation

∑k
h=1 λhx

h = 0
is the trivial solution λ1 = λ2 = · · · = λk = 0.

Alternatively, if the equation has a non-trivial solution,
then the set of vectors is linearly dependent.
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Characterizing Linear Dependence

Theorem
The finite set {x1, x2, . . . , xk} of vectors is linearly dependent
if and only if at least one of the vectors, say x1 after reordering,
can be expressed as a linear combination of the others
— i.e., there exist scalars αh (h = 2, 3, . . . , k)
such that x1 =

∑k
h=2 αhx

h.

Proof.
If x1 =

∑k
h=2 αhx

h, then (−1)x1 +
∑k

h=2 αhx
h = 0,

so
∑k

h=1 λhx
h = 0 has a non-trivial solution.

Conversely, suppose
∑k

h=1 λhx
h = 0 has a non-trivial solution.

After reordering, we can suppose that λ1 6= 0.

Then x1 =
∑k

h=2 αhx
h,

where αh = −λh/λ1 for h = 2, 3, . . . , k .
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Dimension

Definition
The dimension of a vector space V is the size
of any maximal set of linearly independent vectors,
if this number is finite.

Otherwise, if there is an infinite set of linearly independent vectors,
the dimension is infinite.

Exercise
Show that the canonical basis of Rn is linearly independent.

Example

The previous exercise shows that the dimension of Rn is at least n.

Later, we will show that
any set of k > n vectors in Rn is linearly dependent.

This implies that the dimension of Rn is exactly n.
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Matrices as Rectangular Arrays

An m × n matrix A = (aij)
m×n is a (rectangular) array

A =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

...
am1 am2 . . . amn

 = ((aij)
m
i=1)nj=1 = ((aij)

n
j=1)mi=1

An m × 1 matrix is a column vector with m rows and 1 column.

A 1× n matrix is a row vector with 1 row and n columns.

The m × n matrix A consists of:

n columns in the form of m-vectors
aj = (aij)

m
i=1 ∈ Rm for j = 1, 2, . . . , n;

m rows in the form of n-vectors
a>i = (aij)

n
j=1 ∈ Rn for i = 1, 2, . . . ,m

which are transposes of column vectors.
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The Transpose of a Matrix

The transpose of the m × n matrix A = (aij)m×n
is the n ×m matrix

A> = (a>ij )n×m = (aji )n×m =


a11 a21 . . . an1
a12 a22 . . . an2

...
...

...
a1m a2m . . . anm


which results from transforming
each column m-vector aj = (aij)

m
i=1 (j = 1, 2, . . . , n) of A

into the corresponding row m-vector a>j = (a>ji )mi=1 of A>.

Equivalently, for each i = 1, 2, . . . ,m,
the ith row n-vector a>i = (aij)

n
j=1 of A

is transformed into the ith column n-vector ai = (aji )
n
j=1 of A>.

Either way, one has a>ij = aji for all relevant pairs i , j .

University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 51 of 92



Rows Before Columns

VERY Important Rule: Rows before columns!

This order really matters.

Reversing it gives a transposed matrix.

Exercise
Verify that the double transpose of any m × n matrix A
satisfies (A>)> = A
— i.e., transposing a matrix twice recovers the original matrix.
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Multiplying a Matrix by a Scalar

A scalar, usually denoted by a Greek letter,
is simply a real number α ∈ R.

The product of any m × n matrix A = (aij)
m×n

and any scalar α ∈ R
is the new m × n matrix denoted by αA = (αaij)

m×n,
each of whose elements αaij results
from multiplying the corresponding element aij of A by α.
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Matrix Multiplication

The matrix product of two matrices A and B
is defined (whenever possible) as the matrix C = AB = (cij)

m×n

whose element cij in row i and column j
is the inner product cij = a>i bj of:

I the ith row vector a>i of the first matrix A;

I the jth column vector bj of the second matrix B.

Again: rows before columns!

Note that the resulting matrix product C must have:

I as many rows as the first matrix A;

I as many columns as the second matrix B.

Yet again: rows before columns!
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Compatibility for Matrix Multiplication

Question: when is this definition of matrix product possible?

Answer: whenever A has as many columns as B has rows.

This condition ensures that every inner product a>i bj is defined,
which is true iff (if and only if) every row of A
has exactly the same number of elements as every column of B.

In this case, the two matrices A and B
are compatible for multiplication.

Specifically, if A is m × ` for some m,
then B must be `× n for some n.

Then the product C = AB is m × n,
with elements cij = a>i bj =

∑`
k=1 aikbkj

for i = 1, 2, . . . ,m and j = 1, 2, . . . , n.
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Laws of Matrix Multiplication

Exercise
Verify that the following laws of matrix multiplication hold
whenever the matrices are compatible for multiplication.

associative: A(BC) = (AB)C;

distributive: A(B + C) = AB + AC and (A + B)C = AC + BC;

transpose: (AB)> = B>A>.

shifting scalars: α(AB) = (αA)B = A(αB) for all α ∈ R.

Exercise
Let X be any m × n matrix, and z any column n-vector.

1. Show that the matrix product z>X>Xz is well-defined,
and that its value is a scalar.

2. By putting w = Xz in the previous exercise
regarding the value of the quadratic form w>w,
what can you conclude about the value of the scalar z>X>Xz?
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Exercise for Econometricians

Exercise
An econometrician has access to data series involving values

I yt (t = 1, 2, . . . ,T ) of one endogenous variable;

I xti (t = 1, 2, . . . ,T and i = 1, 2, . . . , k)
of k different exogenous variables
— sometimes called explanatory variables or regressors.

The data is to be fitted into the linear regression model

yt =
∑k

i=1
bixti + et

whose scalar constants bi (i = 1, 2, . . . , k)
are unknown regression coefficients,
and each scalar et is the error term or residual.
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Exercise for Econometricians, Continued

1. Discuss how the regression model can be written
in the form y = Xb + e for suitable column vectors y, b, e.

2. What are the dimensions of these vectors,
and of the exogenous data matrix X?

3. Why do you think econometricians use this matrix equation,
rather than the alternative y = bX + e?

4. How can the equation accommodate the constant term α
in the alternative equation yt = α +

∑k
i=1 bixti + et?
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Matrix Multiplication Does Not Commute
The two matrices A and B commute just in case AB = BA.

Note that typical pairs of matrices DO NOT commute,
meaning that AB 6= BA — i.e., the order of multiplication matters.

Indeed, suppose that A is `×m and B is m × n,
as is needed for AB to be defined.

Then the reverse product BA is undefined
except in the special case when n = `.

Hence, for both AB and BA to be defined,
where B is m × n, the matrix A must be n ×m.

But then AB is n × n, whereas BA is m ×m.

Evidently AB 6= BA unless m = n.

Thus all four matrices A, B, AB and BA are m ×m = n × n.

We must be in the special case
when all four are square matrices of the same dimension.
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Matrix Multiplication Does Not Commute, II

Even if both A and B are n × n matrices,
implying that both AB and BA are also n × n,
one can still have AB 6= BA.

Here is a 2× 2 example:

Example

(
0 1
1 0

)(
0 0
0 1

)
=

(
0 1
0 0

)
6=
(

0 0
1 0

)
=

(
0 0
0 1

)(
0 1
1 0

)

Exercise
For matrix multiplication,
why are there two different versions of the distributive law?
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More Warnings Regarding Matrix Multiplication

Exercise
Let A,B,C denote three matrices. Give examples showing that:

1. The matrix AB might be defined, even if BA is not.

2. One can have AB = 0 even though A 6= 0 and B 6= 0.

3. If AB = AC and A 6= 0, it does not follow that B = C.
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Square Matrices

A square matrix has an equal number of rows and columns,
this number being called its dimension.

The (principal) diagonal
of a square matrix A = (aij)n×n of dimension n
is the list (aii )

n
i=1 = (a11, a22, . . . , ann) of its diagonal elements aii .

The other elements aij with i 6= j are the off-diagonal elements.

A square matrix is often expressed in the form

A =


a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann


with some extra dots along the diagonal.
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Symmetric Matrices

A square matrix A is symmetric if it is equal to its transpose —
i.e., if A> = A.

Example

The product of two symmetric matrices need not be symmetric.(
0 1
1 0

)(
0 0
0 1

)
=

(
0 1
0 0

)
but

(
0 0
0 1

)(
0 1
1 0

)
=

(
0 0
1 0

)
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Two Exercises with Symmetric Matrices

Exercise
Let x be a column n-vector.

1. Find the dimensions of x>x and of xx>.

2. Show that one is a non-negative number
which is positive unless x = 0,
and that the other is a symmetric matrix.

Exercise
Let A be an m × n-matrix.

1. Find the dimensions of A>A and of AA>.

2. Show that both A>A and of AA> are symmetric matrices.

3. Show that m = n is a necessary condition for A>A = AA>.

4. Show that m = n with A symmetric
is a sufficient condition for A>A = AA>.
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Diagonal Matrices

A square matrix A = (aij)
n×n is diagonal just in case

all of its off diagonal elements aij with i 6= j are 0.

A diagonal matrix of dimension n can be written in the form

D =


d1 0 0 . . . 0
0 d2 0 . . . 0
0 0 d3 . . . 0
...

...
...

. . .
...

0 0 0 . . . dn

 = diag(d1, d2, d3, . . . , dn) = diag d

where the n-vector d = (d1, d2, d3, . . . , dn) = (di )
n
i=1

consists of the diagonal elements of D.

Obviously, any diagonal matrix is symmetric.
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Multiplying by Diagonal Matrices

Example

Let D be a diagonal matrix of dimension n.

Suppose that A and B are m× n and n×m matrices, respectively.

Then E := AD and F := DB are well defined
as matrices of dimensions m × n and n ×m, respectively.

By the law of matrix multiplication, their elements are

eij =
∑n

k=1
aikdkj = aijdjj and fij =

∑n

k=1
dikbkj = diibij

Thus, post-multiplying A by D is the column operation
of simultaneously multiplying every column aj of A
by its matching diagonal element djj .

Similarly, pre-multiplying B by D is the row operation
of simultaneously multiplying every row b>i of B
by its matching diagonal element dii .
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Two Exercises with Diagonal Matrices

Exercise
Let D be a diagonal matrix of dimension n.
Give conditions that are both necessary and sufficient
for each of the following:

1. AD = A for every m × n matrix A;

2. DB = B for every n ×m matrix B.

Exercise
Let D be a diagonal matrix of dimension n,
and C any n × n matrix.

An earlier example shows that
one can have CD 6= DC even if n = 2.

1. Show that C being diagonal
is a sufficient condition for CD = DC.

2. Is this condition necessary?
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The Identity Matrix

The identity matrix of dimension n is the diagonal matrix

In = diag(1, 1, . . . , 1)

whose n diagonal elements are all equal to 1.

Equivalently, it is the n × n-matrix A = (aij)
n×n

whose elements are all given by aij = δij
for the Kronecker delta function (i , j) 7→ δij
defined on {1, 2, . . . , n}2.

Exercise
Given any m × n matrix A, verify that ImA = AIn = A.
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Uniqueness of the Identity Matrix

Exercise
Suppose that the two n× n matrices X and Y respectively satisfy:

1. AX = A for every m × n matrix A;

2. YB = B for every n ×m matrix B.

Prove that X = Y = In.

(Hint: Consider each of the mn different cases where A (resp. B)
has exactly one non-zero element that is equal to 1.)

The results of the last two exercises together serve to prove:

Theorem
The identity matrix In is the unique n × n-matrix such that:

I InB = B for each n ×m matrix B;

I AIn = A for each m × n matrix A.
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How the Identity Matrix Earns its Name

Remark
The identity matrix In earns its name because it represents
a multiplicative identity on the “algebra” of all n × n matrices.

That is, In is the unique n × n-matrix with the property
that InA = AIn = A for every n × n-matrix A.

Typical notation suppresses the subscript n in In
that indicates the dimension of the identity matrix.
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Permutations and Their Signs

Definition
Given Nn = {1, . . . , n} where n ≥ 2,
a permutation of Nn is a bijective mapping π : Nn → Nn.
The family of all permutations Π includes:

I the identity mapping ι defined by ι(h) = h for all h ∈ Nn;

I for each π ∈ Π, a unique inverse π−1 ∈ Π
for which π−1 ◦ π = π ◦ π−1 = ι

Definition

1. Given any permutation π on Nn, an inversion of π
is a pair (x , y) ∈ Nn such that i > j and π(i) < π(j).

2. A permutation π : Nn → Nn is either even or odd
according as it has an even or odd number of inversions.

3. The sign or signature of a permutation σ, denoted by sgn(π),
is defined as: +1 if π is even; and −1 if π is odd.

University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 75 of 92



A Product Rule for the Signs of Permutations

Theorem
For any two permutations π, ρ ∈ Π, one has

sgn(π ◦ ρ) = sgn(π) sgn(ρ)

The proof on the next slides uses the following:

Definition
First, define the signum or sign function

R \ {0} 3 x 7→ s(x) :=

{
+1 if x > 0

−1 if x < 0

Next, for each permutation π ∈ Π, let S(π) denote the matrix

whose elements satisfy sij(π) =

{
−1 if i > j and π(i) < π(j)

+1 otherwise

Finally, let
⊗

S(π) :=
∏n

i=1

∏n
j=1 sij(π).
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A Product Formula for the Sign of a Permutation

Lemma
For all π ∈ Π one has sgn(π) =

∏
i>j s(π(i)− π(j)) =

⊗
S(π).

Proof.
Let p := #{(i , j) ∈ Nn × Nn | i > j & π(i) < π(j)}
denote the number of inversions of π.

By definition, sgn(π) = (−1)p = ±1 according as p is even or odd.

But the definitions on the previous slide imply that

p = #{(i , j) ∈ Nn × Nn | i > j & s(π(i)− π(j)) = −1}
= #{(i , j) ∈ Nn × Nn | sij(π) = −1}

Therefore

sgn(π) = (−1)p =
∏

i>j s(π(i)− π(j))

=
∏n

i=1

∏n
j=1 sij(π) =

⊗
S(π)
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Proving the Product Rule
Suppose the three permutations π, ρ, σ ∈ Π satisfy σ = π ◦ ρ.

Then
sgn(σ)

sgn(ρ)
=

⊗
S(σ)⊗
S(ρ)

=
∏n

i=1

∏n
j=1

sij(σ)

sij(ρ)
and also s(σ(i)− σ(j)) = s(π(ρ(i))− π(ρ(j))).

The definition of the two matrices S(σ) and S(ρ) implies
that their elements satisfy sij(σ)/sij(ρ) = 1 whenever i ≤ j .

In particular, sij(σ)/sij(ρ) = 1 unless both i > j
and also s(σ(i)− σ(j)) = −s(ρ(i)− ρ(j)).

Hence, given any i , j ∈ Nn with i > j , one has sij(σ)/sij(ρ) = −1
if and only if s(π(ρ(i))− π(ρ(j))) = −s(ρ(i)− ρ(j)),
or equivalently, if and only if:

either ρ(i) > ρ(j) and (ρ(i), ρ(j)) is an inversion of π;

or ρ(i) < ρ(j) and (ρ(j), ρ(i)) is an inversion of π.

Let p denote the number of inversions of the permutation π.

Then sgn(σ)/ sgn(ρ) = (−1)p = sgn(π),
implying that sgn(σ) = sgn(π) sgn(ρ).
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Transpositions
For each disjoint pair k , ` ∈ {1, 2, . . . , n},
the transposition mapping i 7→ τk`(i) on {1, 2, . . . , n}
is the permutation defined by

τk`(i) :=


` if i = k ;

k if i = `;

i otherwise;

Evidently τk` = τ`k and τk` ◦ τ`k = ι, the identity permutation,
and so τ ◦ τ = ι for every transposition τ .

It is also evident that τ has only one inversion, so sgn(τ) = −1.

Exercise
Show that transpositions of more than two elements
may not commute because, for example,

τ12 ◦ τ23 = π231 6= τ23 ◦ τ12 = π312
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Permutations are Products of Transpositions

Theorem
Any permutation π ∈ Π on Nn := {1, 2, . . . , n}
is the product of at most n − 1 transpositions.

We will prove the result by induction on n.

As the induction hypothesis,
suppose the result holds for permutations on Nn−1.

Any permutation π on N2 := {1, 2} is either the identity,
or the transposition τ12, so the result holds for n = 2.
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Proof of Induction Step
For general n, let:

I j := π−1(n) denote the element that π moves to the end;
I τjn denote the transposition that interchanges j and n.

By construction, the permutation π ◦ τjn
must satisfy π ◦ τjn(n) = π(τjn(n)) = π(j) = n.

So the restriction π̃ of π ◦ τjn to Nn−1 is a permutation on Nn−1.

By the induction hypothesis, for all k ∈ Nn−1 one has

π̃(k) = π ◦ τjn(k) = τ1 ◦ τ2 ◦ . . . ◦ τq(k)

where q ≤ n − 2 is the number of transpositions in the product.

For p = 1, . . . , q, because τp interchanges only elements of Nn−1,
one can extend its definition so that τp(n) = n.

Then π ◦ τjn(k) = τ1 ◦ τ2 ◦ . . . ◦ τq(k) for k = n as well, so

π = (π ◦ τjn) ◦ τ−1jn = τ1 ◦ τ2 ◦ . . . ◦ τq ◦ τ−1jn

Hence π is the product of at most q + 1 ≤ n − 1 transpositions.

This completes the proof by induction on n.
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Permutation Matrices: Definition

Definition
For each permutation π ∈ Π on {1, 2, . . . , n}, let Pπ denote
the unique associated n-dimensional permutation matrix
which is derived by applying π to the rows of the identity matrix In.

That is, for each i = 1, 2, . . . , n,
the ith row vector of the identity matrix In
is moved to become row π(i) of Pπ.

This definition implies that the only nonzero element
in row i of Pπ occurs not in column j = i ,
as it would in the identity matrix,
but in column j = π−1(i) where i = π(j).

Hence the matrix elements pπij of Pπ

are given by pπij = δi ,π(j) for i , j = 1, 2, . . . , n.
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Permutation Matrices: Examples

Example

The two 2× 2 permutation matrices are:

P12 = I2; P21 =

(
0 1
1 0

)
.

The 3! = 6 permutation matrices in 3 dimensions are:

P123 = I3; P132 =

1 0 0
0 0 1
0 1 0

 ; P213 =

0 1 0
1 0 0
0 0 1

 ;

P231 =

0 1 0
0 0 1
1 0 0

 ; P312 =

0 0 1
1 0 0
0 1 0

 ; P321 =

0 0 1
0 1 0
1 0 0

 .

Their signs are respectively +1, −1, −1, +1, +1 and −1.
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Permutation Matrices: Exercise

Exercise
Suppose that π, ρ are permutations in Π,
whose composition is the function π ◦ ρ defined by

{1, 2, . . . , n} 3 i 7→ (π ◦ ρ)(i) = π(ρ(i)) ∈ {1, 2, . . . , n}

Show that:

1. the mapping i 7→ π(ρ(i)) is a permutation on {1, 2, . . . , n};
2. the associated permutation matrices satisfy Pπ◦ρ = PπPρ.
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Transposition Matrices

A special case of a permutation matrix
is a transposition Th,i of rows h and i .

As the matrix I with rows h and i transposed, it satisfies

(Th,i )rs =


δrs if r 6∈ {h, i}
δis if r = h

δhs if r = i

Exercise
Prove that:

1. any transposition matrix T = Th,i is symmetric;

2. Th,i = Ti ,h;

3. Th,iTi ,h = Ti ,hTh,i = I.
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More on Permutation Matrices

Theorem
Any permutation matrix P = Pπ satisfies:

1. P =
∏q

s=1T
s for the product

of some collection of q ≤ n − 1 transposition matrices.

2. PP> = P>P = I

Proof.
The permutation π is the composition τ1 ◦ τ2 ◦ · · · ◦ τq
of q ≤ n − 1 transpositions τ s (for s ∈ S := {1, 2, . . . , q}).

It follows that Pπ =
∏q

s=1T
s where Ts = Pτ

s
for s ∈ S .

Furthermore, because each Ts is symmetric,
the transpose (Pπ)> equals the reversed product Tq · · ·T2T1.

But each transposition Ts also satisfies TsTs = I, so

PP> = T1T2 · · ·TqTq · · ·T2T1 = T1T2 · · ·Tq−1Tq−1 · · ·T2T1 = I

by induction on q, and similarly P>P = I.
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A First Elementary Row Operation
Suppose that row r of the m ×m identity matrix Im
is multiplied by a scalar α ∈ R, leaving all other rows unchanged.

The result is the m ×m diagonal matrix Sr (α)
whose diagonal elements are all 1,
except the (r , r) element which is α.

Hence the elements of Sr (α) satisfy

(Sr (α))ij =

{
δij if i 6= r

αδij if i = r

Exercise
For the particular m ×m matrix Sr (α)
and the general m × n matrix A,
show that the transformed m × n matrix Sr (α)A
is the result of multiplying row r of A by the scalar α,
leaving all other rows unchanged.
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A Second Elementary Row Operation

Suppose a multiple of α times row q of the identity matrix Im
is added to its rth row, leaving all the other m− 1 rows unchanged.

The resulting m ×m matrix Er+αq equals Im,
but with an extra non-zero element equal to α
in the (r , q) position.

Its elements therefore satisfy

(Er+αq)ij =

{
δij if i 6= r

δrj + αδqj if i = r

Exercise
For the particular m ×m matrix Er+αq

and the general m × n matrix A,
show that the transformed m × n matrix Er+αqA
is the result of adding the multiple of α times its row q
to the rth row of matrix A, leaving all other rows unchanged.
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Levi-Civita Symbols

For any n ∈ N, define the set Nn := {1, 2, . . . , n}
of the first n natural numbers.

Definition
The Levi-Civita symbol εj = εj1j2...jn ∈ {−1, 0, 1}
is defined for all (ordered) lists j = (j1, j2, . . . , jn) ∈ (Nn)n.

Its value depends on whether the mapping Nn 3 i 7→ ji ∈ Nn

is an even or an odd permutation of the ordered list (1, 2, . . . , n),
or is not a permutation at all. Specifically,

εj = εj1j2...jn :=


+1 if i 7→ ji is an even permutation

−1 if i 7→ ji is an odd permutation

0 if i 7→ ji is not a permutation
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The Levi-Civita Matrix

Definition
Given the Levi-Civita mapping Nn 3 i 7→ ji ∈ Nn := {1, 2, . . . , n},
the associated n × n Levi-Civita matrix Lj has elements defined by

(Lj)rs = (Lj1j2...jn)rs := δjr ,s

This implies that the rth row of Lj equals row jr of the matrix In.

That is, Lj = (ej1 , ej2 , . . . , ejn)> is the n × n matrix
produced by stacking the n row vectors e>jr (r = 1, 2, . . . , n)
of the canonical basis on top of each other,
with repetitions allowed.

For a general n × n matrix A, the matrix LjA = Lj1j2...jnA
is the result of stacking the n row vectors a>jr (r = 1, 2, . . . , n)
of A on top of each other, with repetitions allowed.

Specifically, (LjA)rs = ajr s for all r , s ∈ {1, 2, . . . , n}.
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