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ABSTRACT: This assessment of recent theoretical work on endogenous growth identifies three

different engines of long-run growth: (i) the asymptotic average product of capital is positive; (ii)

labor productivity increases as an external effect of capital accumulation; (iii) there are feedback

effects on the cost of accumulating knowledge or innovating. A general model encompassing all

three is considered, and then used to review different proposed determinants of long-run growth

rates. The contribution of endogenous growth theory has been to create a framework in which to

explain why economic institutions and policies can have long-run effects on growth rates.
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I . Introduction

Progress in economic science often takes the form of explaining what was previously

inexplicable. That is, variables which had earlier been treated as exogenous become endogenized.

Their values become determined, at least in principle, within an economic model.

Much early economic analysis restricted itself to the short run, in which the stock of capital

equipment and workers’ skills were treated as exogenously fixed by history. Progress toward a

theory of growth came from adding a theory of investment which would determine endogenous

changes in capital stocks, and a comparable theory of skill or “human capital” acquisition for

workers. In the medium term, rates of economic growth are obviously affected by a vast range of

factors, including saving behavior, measures to stimulate private investment, provision of public

goods whose benefits extend into the future, and policies affecting banking, finance, international

trade, health, education, etc. Hence there is no shortage of ways to explain why growth occurs in

the medium term, or how fast such growth can be. Accordingly, there is no shortage of medium

term endogenous growth models.

In the long run, however, the situation is quite different. For thirty years, overlapping

generations of students have been taught by their predecessors that long run growth rates, if they

are not zero, are determined by exogenous, non-economic factors such as population growth and

the rate of scientific discovery. Indeed, as is well known, the orthodox neoclassical model of

growth with no exogenous technological progress implies that the economy will reach a steady

state in the long run with zero growth in income per head. Thus, according to this model, measures

to promote growth can only enhance short- and medium-run growth rates, as well as long-run

levels of consumption and output; it became the prevailing view that long-run growth rates could

not really be affected at all by economic policy. In this sense, the engine of growth was seen as

entirely exogenous. The long-run rate of growth was endogenous only in a trivial sense, since it

was entirely determined by exogenous technical progress or population growth.
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Recently, a serious challenge to this orthodoxy has been mounted. Actually, related ideas could

already be found in earlier work on growth theory and development by Stigler (1951), Haavelmo

(1954, 1956), Tobin (1955), Solow (1956), Myrdal (1957), Schultz (1961, pp. 5–6; 1962) and

Arrow (1962), amongst those we know now were destined to win Nobel prizes later on.1 Yet it

took the recent work of Romer (1986, 1987, 1990), Krugman (1987), Prescott and Boyd (1987a,

b), Lucas (1988) and others to set off a revolution. These authors developed various models in

which long-run growth rates could be determined by the same kind of factors that had previously

been regarded as affecting only short- or medium-term growth. In the process, they created what

has come to be called “endogenous growth theory” in which the engine of growth has become part

of the model itself: it results from the maximizing actions of individual economic agents. This is

like the transformation from a carriage with an exogenous horse to a horseless carriage or

automobile with its own built-in source of motive power.

This paper surveys these recent developments in the theory of economic growth. In our view,

three major themes have emerged. The first concerns how to modify the orthodox neoclassical

model so that endogenous long-run growth in income per capita becomes possible. The classic

works in the new growth literature, including Romer (1986, 1990), Lucas (1988), Jones and

Manuelli (1990), Rebelo (1991), and Grossman and Helpman (1991a), all emphasize this theme.

Second, there has been considerable analysis of how the growth rate can be affected by

variables such as public goods, finance, trade, taxes, demographic parameters, income distribution

and social norms, all of which played no role in the traditional neoclassical theory. Recently, many

papers have appeared that take an endogenous growth model, extend it to incorporate at least one

of these extra variables, and then perform a comparative static analysis of how these variables

influence long-run growth.

Finally, the third major theme concerns how growth can be propagated across countries that are

linked through flows of goods, capital and ideas. For instance, if technological innovation is the
                                                
1 See Gunnar Myrdal’s “principle of circular and cumulative causation.” One distinguishing feature of the new theory
is its reliance on external economies of scale. This is an idea that had been explored by Alfred Marshall, Allyn
Young, Tibor Scitovsky, Nicholas Kaldor, Albert Hirschman, Nathan Rosenberg, and many others besides those
whose works we mention explicitly in the paper.
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engine of growth, then it would seem that the growth potential of countries that have not reached

the technological frontier is larger than for the innovating countries. These issues, however, are far

from being well understood.

As can readily be appreciated, the new growth literature is already enormous. Indeed, several

other symposia and surveys have already appeared, or will do so shortly.2 For this reason, and

due to limitations of space and time, our survey is restricted in many ways. First, we will not

review systematically the literature on the third major issue concerning how growth is propagated

internationally, though our discussion of the relation between trade and growth is of some

relevance. In some sense, this means that we leave aside the development issues that are most

pertinent to relatively poor countries. Second, given our own comparative advantage, we focus on

the theoretical part of the literature, virtually excluding all mention of its very important empirical

side. Finally, the survey attempts to be self-contained and to derive most of its results analytically;

as a consequence, the number of models and papers which can be reviewed in any detail is quite

small and so many important contributions will not be mentioned at all. We believe that this is a

price worth paying, however, since it permits us to be more rigorous and didactic in explaining

what we think is most important.3

In what follows, section 2 begins by reviewing the orthodox neoclassical growth model. Then

sections 3, 4 and 5 are devoted to the first major theme. They present three different and

fundamental departures from the orthodox model that all allow endogenous long-run growth of

income per capita. These three sections cover the major basic features of the new growth theory.

Next, section 6 develops a more general model that embodies all these three different

approaches. It also derives some general results about how several different exogenous variables

affect the growth rate. This allows a better understanding of the essential aspects of the three

different approaches to endogenous growth that were outlined in sections 3–5. Thereafter, section
                                                
2 We have noticed surveys or prominent lectures by  Lucas (1988, 1993), Romer (1991), Stern (1991), Sala-i-Martin
(1990a, b), Helpman (1992), Hahn (1992), Solow (1993), and other symposia in a supplementary issue of the
Journal of Political Economy, 1990, in the May 1991 issue of the Quarterly Journal Economics, in the Winter
1992 issue of the Oxford Review of Economic Policy, and in the December 1992 issue of the Journal of Economic
Theory. There have even been newspaper articles in the Economist (4th January 1992, p. 17) and by Brittan (1993).
3 For a much more extensive survey, see Gans (1989).
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7 briefly reviews the main literature on specific determinants of growth, linking its predictions to

the results of section 6 wherever possible. The final section 8 is a concluding assessment.

II. The Orthodox Neoclassical Model of Purely Exogeneous Growth

Neoclassical growth theory has many significant predecessors. These include the “classical”

growth theories of Smith, Ricardo, Malthus, Marx, etc. (see Harris, 1987). There are also the

“Keynesian” growth models of Harrod (1939) and Domar (1946).4 Tobin’s (1955) paper was a

significant addition to this line of work, as it made the growth rate depend on the elasticity of labor

supply, amongst other variables. Modern endogenous growth theory, however, takes as its point

of departure the very similar orthodox neoclassical equilibrium growth models of Solow (1956)

and Swan (1956).5 In their purest form, these predict that the capital–labor ratio converges to some

long-run equilibrium value, as do the real wage, the rate of return to capital, and the level of

income per capita. These long-run equilibrium values do depend on the saving rate. But the long-

run rate of growth of output is in a sense exogenous, being equal to the rate of population growth.

In the long run, consumption per capita converges to a stationary equilibrium value. Policies to

enhance growth can only influence the short term.

Let L denote the amount of available labor. In many growth models it is assumed that L grows

at a fixed exponential exogenous rate. Yet, as biologist Paul Ehrlich (1968) for one has pointed out

so strikingly, were population growth to continue indefinitely without the physical size of our heirs

shrinking to zero, then ultimately the human race could not be contained within any sphere

expanding more slowly than the speed of light! In any case, since the question is whether income

per head can grow, this exogenous population growth rate will not materially affect most of our

results.6 So for simplicity most of the rest of the paper will simply assume it is zero. Moreover we

will often refer to L as a non-reproducible resource because it has an exogenous supply that is

                                                
4 This is actually somewhat preceded by the work of Fel’dman (1928), as Domar (1957) eventually acknowledged.
5 See also the collections of articles by Newman (1968), Stiglitz and Uzawa (1969), and Sen (1970), as well as the
thorough survey by Hahn and Matthews (1964).
6In some endogenous growth models such as Romer (1990), population growth may lead to an explosive rate of
output growth.  See Jones (1993).
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fixed in the long-run. Indeed, a somewhat similar model, with L representing the rate of depletion

of an exhaustible resource rather than labor supply, was used by writers such as Dasgupta and

Heal (1974), Solow (1974), and Stiglitz (1974). In their analysis of growth with exhaustible

resources, the value of this L had to converge to zero in the limit. It turns out that the possibilities

for long-run growth are much the same as when L is a fixed quantity of labor.

To see why income per capita cannot grow for ever in the orthodox neoclassical growth model,

note first that it postulates a constant returns to scale (CRS) production function. Specifically,

when output Y is measured net of capital depreciation, it is given by a function

Y = F(K, L) (1)

of L and of a single capital good K. In this one sector growth model, net investment is given by

K̇  = F(K, L) - C (2)

where C denotes consumption and a dot over any variable is used to denote its time derivative.

Differentiating (1) with respect to time gives

Ẏ  = F1(K, L) K̇ (3)

where Fi will always denote the partial derivative of F with respect to the i-th argument. Suppose

that net investment K̇ is a positive constant proportion s of net output Y. Hence, using (3), and

indicating the proportional growth rate of any variable by a hat, output grows at rate

Ŷ  = Ẏ /Y = sF1(K, L) (4)

Section 6 below will present a growth model in which s is determined by the intertemporal

maximization of infinitely lived representative agents. For the purposes of this section, however,

the original and only slightly cruder assumption (due to Harrod, Domar, Solow, and Swan) of a

fixed s for all time is sufficient to establish the main points.

At this stage, in order to ensure existence of a steady state with a positive level of output,

neoclassical growth theory has usually invoked the Inada (1963) conditions. There are two of

these. The first lower condition requires that F1(K, L) → ∞ as K → 0. More interesting for us,

however, is the second upper condition requiring that

F1(K, L) → 0 as K → ∞ (5)
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Given this upper condition, (4) implies that the rate of growth of output tends to zero in the limit.

Provided that s ≤ 1, this is true no matter what the value of s may be. Indeed, it remains true even

when s(t) varies with t, but with s(t) ≤ 1 for all t.

The next three sections consider three different modifications of the neoclassical model that

make long-run growth possible. Of these, the first involves simply dropping the crucial upper

Inada condition (5). The second modification asserts that a by-product of capital accumulation is an

increase in the productivity of labor or of other non-reproducible factors. Reasons given for this

have included: (i) learning by doing; (ii) government provision of public services financed out of

taxation; (iii) capital accumulation allowing a deeper division of labor. The third modification also

relies on an accumulation process having a by-product, but emphasizes how increasing knowledge

or “human capital” makes innovation and/or education less costly.

III. Inessential non-reproducible factors: the AK model

The simplest departure from the previous model with no technical change is to relax the upper

Inada condition (5), so that the marginal productivity of capital does not tend to zero as the

capital–labor ratio goes to infinity. This assumption means that only reproducible factors are

“essential” in the sense that, as their input levels approach zero, so the marginal products of other

factors also converge to zero.

In a prominent example of this approach, Jones and Manuelli (1990) explicitly assume that

F1(K, L) → µ > 0 as K → ∞ (6)

In this case, (4) and (6) together imply that the growth rate of Y is bounded away from zero and

becomes sµ > 0 in the limit. The long-run rate of output growth is endogenous, being determined

by the rate of capital accumulation.

A notable example that satisfies (6) is the constant elasticity of substitution (CES) function

F(K, L) = [αKρ + (1-α)Lρ]1/ρ,   0 < ρ ≤ 1 (7)
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Of course, (7) takes on the Cobb-Douglas form F(K,L) = KαL1−α when ρ = 0. As is well known,

the condition ρ ≤ 1 is necessary for F to be concave. Moreover, ρ > 0 implies that, as K → ∞, so

F1(K, L) = αKρ−1[αKρ + (1-α)Lρ](1/ρ)−1 = α[α + (1-α)(L/K)ρ](1/ρ)−1 → α1/ρ > 0 (8)

On the other hand, it is easily checked that F1(K, L) → 0 as K → ∞ when ρ ≤ 0. In fact ρ > 0

ensures that the elasticity of substitution σ = (1 − ρ)–1 exceeds 1: this is necessary for the share of

capital in output to be bounded away from zero as the capital–labor ratio goes to infinity. Actually,

Solow (1956, p. 77) himself considers this possibility (especially when ρ = 1/2), and describes the

economy as “highly productive” in this case.

Another simple example satisfying (6) is

F(K, L) = µK + BKαL1-α,   0 < α < 1,  µ > 0 (9)

Rebelo (1991), as well as Barro and Sala-i-Martin (1992), postulate a model in which the

production function is as in (9), but with B = 0, so that only reproducible resources are used as

inputs. This is often referred to as the “AK model” because the production function can be

expressed as F(K, L) = AK. Of course, it gives the same asymptotic properties as if B > 0 in (9),

since the second term becomes relatively unimportant in the limit as K → ∞.

Rebelo also shows that even when non-reproducible resources are essential in production, as

they are in the Cobb-Douglas case, growth is still possible as long as there is at least one capital

good whose production uses only reproducible resources. This can be seen in a two sector growth

model, with output C of the consumption good being produced according to a Cobb-Douglas

production function using capital KC and labor L, so that

C = KC
αL1-α,   0 < α < 1 (10)

while the investment sector uses only capital and exhibits CRS, so that

K̇  = aKI ,  a > 0 (11)

where KC + KI = K. To see how growth is then possible in the long run, just note that if a

constant fraction φ of the capital stock goes to produce investment goods, then KI = φK, while KC

= (1-φ)K. Hence (10), (11) and φ jointly determine the constant growth rate
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Ĉ  = α K̂ C = α K̂ = αaφ (12)

The same principle lies behind the Lucas (1988) model of growth through skill acquisition or

human capital accumulation. In his model, which is based in turn on work originally carried out by

Uzawa (1965), skill augments the efficiency of labor. Moreover, skill is passed from generation to

overlapping generation. In addition, externalities allow individuals to accumulate skill more easily

when their parents’ human capital stock is higher. Also, individuals spend fractions u of their time

producing output and 1-u increasing their human capital H. So the model is described by

K̇  + C = Y = F(K, uLH) (13)

Ḣ  = ξ(1-u)LH (14)

where ξ is a positive parameter that indicates how effective is time spent learning.7 For any u < 1,

long run balanced growth is obviously possible at a rate g given by

g = Ĉ= K̂ = Ĥ = ξ(1-u)L (15)

provided that u and the savings ratio s = K̇ / Y can both be chosen to satisfy

K̇ = gK = sY = sF(K, uLH) (16)

for all time. Thus, according to (15), the long-run rate of growth is determined by: (i) the

exogenous supply of labor L; (ii) the proportion 1-u of labor effort that goes into acquiring skills;

(iii) the rate of learning parameter ξ.

IV. Increasing labor productivity as an external effect of capital accumulation

The second modification of the neoclassical growth model is most clearly expressed by

introducing a continuum of identical representative agents. Each agent’s output is assumed to be

given by a CRS production function

y = F(k, E l) (17)

                                                
7 Lucas also assumes that the productivity of any worker’s own human capital increases with the social average level
of human capital.  Concretely, he assumes a production function of the form y = F(K, uLH) g(H), where g' > 0.
This is done to make the results of the model appear more realistic.  It is not necessary for the economy to be able to
grow in the long run.  Another difference from our formulation is that Lucas also has another reproducible asset —
physical capital.  Again, this is not the main insight of his model and so we omit it from this discussion. Both
physical and human capital do appear, however, in the general model we set out in section VI.
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where, for that agent, k is the stock of available capital and  l  is the input of labor. Here E

represents the efficiency of labor, which is common to all agents. In fact it is assumed that

E = A(K) (18)

where A(K) is an increasing function of the aggregate capital stock K. That is, labor (or any other

non-reproducible resource) becomes more productive as a direct external effect of capital

accumulation (cf. Swan 1956, p. 338). Aggregating over all identical agents implies that

Y = F(K, A(K)L) (19)

Three main justifications for this assumption will be discussed in the ensuing subsections.

First, however, we investigate the conditions under which this general one sector model allows

long-run growth. When investment is a constant fraction s of output, (19) implies that the growth

rate of aggregate output is

Ŷ = Ẏ / Y = (F1 + F2 A'(K) L) K̇ / Y = sF1(K, A(K)L) + sF2(K, A(K)L) A'(K) L (20)

Suppose that, because of the usual upper Inada condition (5), the term sF1 in (20) tends to zero as

K → ∞. Even so, there can still be long run growth provided that the term sF2A'(K)L is bounded

away from zero. Because of CRS, the partial derivative F2 is homogeneous of degree zero, and so 

F2(K, A(K)L) A'(K) L = F2(1, A(K)L/K) A'(K) L (21)

A sufficient condition for the expression in (21) to be bounded away from zero is that A'(K)L

converges to b > 0 as K → ∞. For then A(K)L / K → b also, and so F2(1, A(K)L / K) A'(K) L

tends to F2(1, b) b. Finally, therefore, the asymptotic growth rate of output is

Ŷ  = sF2(1, b) b > 0 (22)

which depends once again on the asymptotic rate of saving s, as well as on the parameter b.

IV.1 Learning by Doing and Social Knowledge

One justification for the technological possibilities described by (19) was originally offered by

Haavelmo (1954; 1956, pp. 36-39) in a growth model with a single aggregate linear production

function. He postulated that aggregate learning by doing results from the investment process, so

that the present level of education or knowledge of the workforce is a function of the capital stock.

This was before Arrow (1962) gave prominence to the same idea in a more plausible growth model
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with vintage capital and fixed coefficients, along the lines that had recently been pioneered by

Johansen (1959), Salter (1960) and Solow (1960).8

Thereafter, following Levhari (1966), Sheshinski (1967) reformulated Arrow’s model to

exclude vintage effects, so that it became described by (19). He then imposed both the upper and

lower Inada conditions on the function F — as Arrow had done in an extreme way by assuming

fixed coefficients. Sheshinski also assumed that there would be diminishing returns to cumulative

investment in the generation of knowledge, in the sense that A(K)/K → 0 as K → ∞. In this case,

if σ denotes the rate of growth of L, while A(K) = Kη with η < 1, then it is possible for both Y

and K to grow at any common rate g satisfying

Y0 e
gt = F(K0 e

gt, K0 L0 e(gη + σ)t) (23)

for all t. This makes it clear that constant growth is only possible at a rate satisfying g = g η + σ,

and so g = σ/(1-η). Hence the growth rate in income per capita, which is g - σ = ση/(1-η), must be

increasing in the population growth rate and zero when there is no population growth.

In his 1986 paper Romer made the accumulation of knowledge result at least in part from

private decisions, and not simply remain an unintended consequence of aggregate past investment

as it had been in Arrow’s interpretation. In effect Romer regarded K, the aggregate stock of

knowledge, as a public good from which individual producers could benefit directly. More

importantly, Romer considered the possibility that η > 1. Then A(K)/K = Kη−1 → ∞ as K → ∞

and so, as shown above, there can be positive long-run growth even when population is constant.

Indeed, long-run growth is also possible in the possibly more plausible case when η = 1.

In these models it should be noted that, even though there may be increasing returns to scale in

the aggregate, each agent remains with a production function that is concave and has constant

returns to scale in the variables under that agent’s control. As Chipman (1970) and Romer (1986)

point out, perfect competition therefore remains possible, with each producer taking both prices

and the aggregate capital stock (or labor productivity) as fixed. In fact, capital accumulation is like

                                                
8 Arrow cites other closely related ideas that had appeared previously, including Verdoorn’s (1949, 1980) law and the
Swedish “Horndal effect” (dating back to the 1830s) noted by Lundberg (1961) — see also David (1975, ch. 3).
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a public good to which each producer contributes privately by investing. Evidently the resulting

equilibrium allocation will usually be far from efficient.

IV.2 Public Services

Another justification for (18), inspired by Barro (1990), is that E represents public services

which enhance labor productivity. For simplicity it is assumed that these services are produced

with the same production function as private goods and are financed by a proportional income tax,

so that E = τY. Then the aggregate form of equation (17) implies that E = τY = τF(K, EL). Thus 1

= τ F(K/E, L) because of CRS. Therefore E = cK,where c is the positive constant given implicitly

by 1 = τ F(1/c, L). This is a special case of (18), of course.

Notice that this formulation makes public services non-rivalrous. This is because an increase in

L that leaves E constant would not cause each worker to have fewer public services. However,

having these services be public is not a necessary condition for this formulation to allow long-run

growth. For if instead public services were to become private to each worker, with G as the total

level of such services, then we would have E = G/L. It is easy to check that with this modification

the results are similar to those above, except that the constant c is given by 1 = τ F(1/c, 1).

IV.3 Division of Labor

The final justification to be considered here holds that a deeper division of labor between

different specialized tasks increases the productivity of non-reproducible resources. But, to borrow

from the memorable title of ch. III of Adam Smith’s      Wealth       of       Nations   , “the division of labour is

limited by the extent of the market.”9 And of course the market can be expected to become more

extensive if the capital stock increases. Thus, it is assumed that capital accumulation allows an

increase in the productivity of non-reproducible resources — an increase that will actually occur if

production is organized efficiently.10

                                                
9 Of course, Stigler (1951) honored Smith by choosing the very same title.
10 The model presented in this section is adapted from Rodríguez-Clare (1993). It is related to Becker and Murphy
(1992), though they give quite different interpretations.  The model differs from Romer (1990) who assumes that the
fixed requirement to produce a new variety of z involves essential non-reproducible factors and hence externalities in
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A simple formulation of this idea postulates that output is produced from capital KY in the final

output sector and from an intermediate input Z according to a CRS production function

Y = F(KY, Z) (24)

Following Dixit and Stiglitz (1977), assume that Z is produced using quantities z(j) (0≤j<∞) of a

continuum of varieties of an intermediate good according to a strictly concave production function

Z = [
0

∞
∫ z(j)αdj]1/α,   0 < α < 1, (25)

with constant elasticity of substitution exceeding one. Assume also that each variety of intermediate

good z(j) is produced from K(j) units of capital and L(j) units of labor according to

z j
K j

L j K j
( )

( )

( ) ( )
=

<
≥





0 1

1

      if 

 if 
(26)

Since producing z(j) involves set-up costs, perfect competition is no longer possible; instead, there

will be a monopolistically competitive equilibrium. In fact, this section will only investigate the

conditions under which growth is possible. Accordingly we focus on allocations that are

instantaneously efficient at each time, rather than going through the more involved derivation of

equilibrium that can be found in Rodríguez-Clare (1993). Of course we do not assume

intertemporal efficiency, since dynamic externalities make that goal unattainable in equilibrium.

Another implication of set-up costs is that instantaneous efficiency requires not all varieties of

the intermediate good to be made available. Since all varieties require the same technology and

enter the production of Z symmetrically, it loses no generality to represent the set of available

varieties by the interval [0, n] of the real line. Given that the unit of capital is defined as the amount

needed to produce each variety of intermediate good, it follows that n must be equal to KZ, the

quantity of capital used in the intermediate goods sector.

In fact the production functions (25) and (26) imply that there are returns from the division of

labor in the production of intermediate goods. To see this note that, because of strict concavity

(0<α<1) and the symmetric way in which different varieties of z appear in (25), instantaneous

                                                                                                                                                            
the research sector are need to generate the possibility of long run growth. Yang and Borland (1991) also give the
division of labor an essential role in the growth process, but let growth itself be driven by learning by doing.
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efficiency requires all firms producing final goods to use the same quantity of all available

varieties. Thus z(j) = z for all j ≤ n. Then (26) implies that L(j) = z for all such j. Hence the total

amount of labor devoted to the production of intermediate goods must be LZ = nz. Because LZ =

L, it follows that z(j) = z = L/n for all j ≤ n. Thus (25) implies that

Z = [
0

n
∫ zα dj ]1/α = n1/αz = n1/α (L/n) = nφL, where φ = (1-α)/α (27)

Finally then, the production relation (24) can be written as

Y = F(KY, nφL) = F(KY, KZ
φL) (28)

which shows how an increase in the measure n = KZ of varieties available increases the efficiency

of labor in producing final goods. This property of the production function in (25) and (26) is

commonly referred to as love of variety for inputs. It arises because different inputs are imperfect

substitutes for each other and so, if fewer varieties of intermediate goods are made available, then

the firm will have to use those that are available more intensively. There is a loss of output due to

imperfect substitution.11

In the special case when F(KY, Z) = KY
βZ1-β it follows from (28) that Y = KY

βKZ
φ(1-β)L1-β.

Then it is easily shown that a instantaneously efficient capital allocation requires KY = K-KZ = τK,

where τ ≡ β/(β+φ(1-β)).12 In this case the maximum production of Y given K is

Y = F(τK, [(1-τ)K]φL) (29)

It is obvious that (29) is a special case of the general model described by equation (19). The

corresponding micro version of (29) is y = F(τk, [(1-τ)K]φ  l), which is a particular form of (17).

                                                
11 One alternative modelling strategy would be to assume that each firm producing a final good needs different inputs
at different times. At any time, a given producer of the final good wants an ideal specialized input; if, however, that
input is not available in the market, the firm will buy the “closest” one it finds and transform it, at a cost, into the
desired input.  The more varieties of the input that are available, the less the firm will have to spend on this
transformation and hence the more efficient the firm will be. This alternative model is based on a reinterpretation of
Lancaster (1979) proposed by Weitzman (1991).  
12With a more general production function F, even one that is homothetic, the amount of capital KY allocated
directly to producing output Y would not be proportional to K, and would also depend on L. Then (19) would need
replacing by Y = F(K, A(K,L)L), but with L fixed the difference is trivial. Here we restrict ourselves to the
Cobb–Douglas case in order to simplify the exposition.
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V. Feedback Effects on the Cost of Learning or Innovation

A third departure from the neoclassical growth model postulates that a by-product of earlier

accumulation is a decrease in the cost of later accumulation. For instance, the higher is the “stock

of knowledge”, the lower is the cost of accumulating more knowledge. Formally

Y = F(K, L, HY) (30)

K̇  = G(HI) h(K) (31)

where L is the size of the labor force, HY is the amount of human capital devoted to producing

output, and HI is the level of human capital devoted to the accumulation sector. Of course HY + HI

= H, where H is the total stock of human capital in the economy. In addition, it is assumed that F

and G are both concave CRS production functions, while the function h is increasing. In this

formulation, K usually stands for the stock of knowledge. The model has no externalities.

It is clear from (31) that if h(K)/K is bounded away from zero and G(HI) > 0, then

K̂ = G(HI) h(K)/K (32)

will be positive in the limit as K → ∞. So a positive and constant asymptotic growth rate of K is

possible. But notice then how (30) implies that

Ŷ  = Ẏ / Y = F1(K, L, HY) K̇ / Y = [KF1(K, L, HY)/ Y] K̂ (33)

So when K̂ is positive in the limit, a necessary and sufficient condition for a constant and positive

rate of growth of output to be possible is that the ratio KF1(K, L, HY)/Y, which represents the

“share of knowledge” in the value of output, should be bounded away from zero in the limit as K

goes to infinity.

Two important special cases of this model are now discussed.

V.1 Expanding Input Variety

Romer (1990) assumes that some firms undertake research with the deliberate intention of

“discovering” new varieties of intermediate inputs. But an unintentional consequence of this

research is that it becomes easier for other firms to innovate. His model can be expressed by means

of the accumulation equation (31) together with the following three equations, whose meaning

should be clear from the preceding analysis
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Y = LY
βHY

δ-βZ1-δ,    0 < β < δ < 1 (34)

Z = [
0

∞
∫ z(j)αdj]1/α,    0 < α < 1 (35)

z j
K j

L j K j
( )

( )

( ) ( )
=

<
≥





0 1

1

      if 

 if 
(36)

Here L and H represent the levels of unskilled and skilled labor respectively. As before, we

represent the set of varieties available on the market by the interval [0, n], where now n = K since

K is only used to produce intermediate goods. Therefore, K can be interpreted as the measure of

both the stock of knowledge and the variety of intermediate goods.

As in the previous section, the production system (34)–(36) exhibits love of variety for inputs.

Also as in the derivation of (27) above, it can be seen that instantaneously efficient production here

requires z(j) = z = LZ/K for all j ≤ K. Hence Z = [
0

n
∫ (LZ/K)αdj ]1/α = [n (LZ/K)α]1/α = KφLZ,

where φ is the constant (1-α)/α. So

Y = LY
βHY

δ-β(KφLZ)1−δ (37)

Now an efficient allocation of labor requires that LY = ζL, where ζ = β/(β+1-δ). The system

(34)–(36) can therefore be reduced to a version of (30) given by

Y = aKφ(1-δ)Lβ+(1−δ)HY
δ-β (38)

where a ≡ ζβ(1-ζ)1-δ. This must be supplemented by the accumulation equation (31), of course.

V.2 Improving Input Quality

Romer’s approach postulates innovation of new capital goods that make production of final

goods less costly. In contrast, Grossman and Helpman (1991b, c), together with Aghion and

Howitt (1992), have developed “quality ladder” models where innovation improves the quality of

existing varieties of capital goods.13 Since Grossman and Helpman assume that innovation

                                                
13In Aghion and Howitt, technical progress improves the quality of intermediate goods. Together with Segerstrom,
Anant and Dinopoulos (1990) and Segerstrom (1991), they emphasize the links between endogenous innovation and
Schumpeter’s process of “creative destruction.” Most of Grossman and Helpman’s work postulates upgrading the
qualities of consumer goods. Such formulations are formally equivalent to ours because what matters in the end is
the efficiency of capital goods in producing Gorman–Lancaster consumption characteristics. The capital goods
formulation is more natural for our discussion, since we have been emphasizing intertemporal production
possibilities throughout.
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increases the quality of each good by some fixed proportion, in effect they obtain an equation for

“knowledge accumulation” similar to (31). This can be seen in the following simple model that

captures their main insights.

Output is assumed to be produced with a Cobb-Douglas production function

Y = DβLY
1-β,   0 < β < 1 (39)

that uses labor LY and a composite input D. The latter is “assembled” from a continuum of varieties

of inputs according to the function

D = exp 
0

1
∫ ln[λm(j)x(j)] dj = K exp 

0

1
∫ ln[x(j)] dj (40)

where K is the stock of knowledge, which is given by

K = exp
0

1
∫ ln[λm(j)] dj = λ exp

0

1
∫ m(j) dj (41)

In these last two equations λ represents the proportional quality improvement that each innovation

brings to input variety j, while m(j) measures the number of innovations that have happened to

input variety j. Hence λm(j) represents the quality of input variety j, measured as usual in efficiency

units per physical unit.

Each input x(j) is produced from labor according to the simple production function x(j) = L(j),

where x(j) and L(j) should be interpreted as output and input density functions on the interval [0,

1]. As before, (40) implies that it is instantaneously efficient to spread labor evenly across the

different input varieties. Thus x(j) = x = L(j) = LX for all j in [0, 1]. Then (39) and (40) imply that

D = KLX and Y = (KLX)β LY
1-β (42)

Instantaneous efficiency then requires that labor be distributed between sectors in constant

proportions, with LX = βL and LY = (1-β)L. It follows that

Y = bKβL, where b ≡ ββ(1-β)1-β (43)

In the research sector, human capital is used to generate innovations to the different varieties of

the input x. The innovation process is random, and described by a particular Poisson process.

Putting H(j) units of human capital into research on variety j for a small time interval of length dt

produces a quality upgrade with marginal probability aH(j)dt, where a is some positive constant.
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This quality upgrade increases m(j) to m(j) + 1.14 Because the different varieties of the input x

enter (40) and (41) symmetrically, and because quality improvements are all proportional, it is

instantaneously efficient to spread human capital evenly across varieties. Thus H(j) = H for all j.

From (34) and the properties of the Poisson distribution (see Grossman and Helpman, 1991a, p.

97), it can then be seen that the stock of knowledge grows according to

K̇ = aHK (44)

V.3 Summary

Recapitulating, we see that all three models (30)–(31), (31) with (34)–(36), and (43)–(44)

basically amount to one common specification of technology. This requires final goods to be

produced according to (30), where K represents the “stock of knowledge,” which grows according

to the equation K̇ = G(HI) h(K), as in (31) above.

VI. Endogenizing the Growth Rate

VI.1 A More General Growth Model

This section attempts to integrate into one single model the three types of growth models

explored in sections III–V above. Moreover, section VII below will use the general analysis of this

section in order to interpret earlier results on particular determinants of growth such as trade,

finance, fiscal policy, social norms, etc.

The more general model we are about to present still uses very special functional forms, even

though Hahn (1992) and others have rightly seen these as a serious limitation of most endogenous

growth theory. However, what really matters for long-run growth is the asymptotic behaviour of

the model as the economy becomes large. So it would actually be possible to reach similar

conclusions after replacing the specific global functional forms we use with more general

functions, while concentrating on their asymptotic elasticities and marginal products, etc. Such
                                                
14The more mathematically inclined reader may realize that there is a technical difficulty here, because a continuum
of independent random variables produces non-measurable outcomes in a way that makes the integrals in (40) and
(41) almost surely ill-defined. There are technical remedies, however, the easiest of which involves abandoning strict
stochastic independence so as to make these formulae still applicable.
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techniques are illustrated by the careful work of Brock and Gale (1969) and McFadden (1973) on

the existence of optimal growth paths.

In our general model, but with specific functional forms,   lY is the amount and u (=  lY /  l) is

the proportion of labor which each agent devotes to production of final output (as opposed to

education). Each agent’s output y is assumed to depend on own physical capital k, own knowledge

h, and efficiency units of labor E  lY, where E is the common level of efficiency for all producers.

As in section 4, labor has its efficiency enhanced by aggregate capital accumulation according to

the equation

E = Kφ,   φ > 0 (45)

Here it is important to recall that φ can be greater than one.

Each agent’s concave production function is assumed to have a constant elasticity of

substitution among factors that is greater one. Thus

y = F(k, h, E lY) = A[βkα + δhα + (1-β-δ)(Kφu l)α]1/α (46)

where α,β,δ ∈  [0,1] with 0 < α < 1. Later, we shall also consider the Cobb–Douglas case when

α → 0,  and so y = Akβhδ(Kφu  l)1-β-δ with elasticity of substitution equal to one.

Output can either be consumed or invested to accumulate capital, so y = c + k̇ . Also, apart

from being used to produce output, labor can also be allocated to each agent’s own research sector,

where it increases the stock of knowledge according to the equation

ḣ  = ξ( l- lY)hγ = ξ(1-u) lhγ,  ξ > 0,  γ ∈  [0,1] (47)

As in the particular models of section 5, a higher aggregate stock of knowledge makes research

less costly. If one interprets h as the stock of human capital instead of knowledge, and (1-u)  l  as

the quantity of labor allocated to education, this formulation also captures the most important

aspects of models in which skill acquisition is the engine of growth.

Compared to the neoclassical growth model, (46) and (47) incorporate all three departures that

were considered in sections III to V. For example: if α > 0, then none of the factors is essential for

production; if φ > 0, then the productivity of labor in the Y sector increases as a by-product of

capital accumulation; while if γ > 0, then the productivity of labor in research increases as a by-
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product of previous research. If any of the three parameters α, φ, or γ were zero, however, the

corresponding features would revert to those in the neoclassical model of Section II.

VI.2 Endogenous Growth

In order to determine the growth rate, this section also introduces, for the first time in this

paper, an explicit intertemporal utility function. The continuum of identical and infinitely lived

representative agents each maximize a utility integral over time by choosing independently how

much income to save at all times, as well as what proportion u of labor time to devote to producing

output. This kind of assumption has become standard in endogenous growth theory. It allows the

equilibrium growth rate to be determined as a function of more fundamental demand side

parameters, especially the discount rate and the degree of aversion to changes in consumption.

Let ε ≥ 0 denote each representative agent’s constant rate of relative fluctuation aversion (cf. the

usual measure of relative risk aversion), and ρ > 0 the common instantaneous discount rate. Then

each agent wants to maximize the intertemporal utility integral

U = 
0

∞
∫  e-ρtv(c) dt, where v(c) = (1-ε)-1c1-ε,  ε > 0,  ε ≠  1 (48)

The special case ε = 1, in which the instantaneous utility function v(c) reduces to ln c, has received

much attention in the recent literature.

Since E in (45) and (46) represents an externality, each agent does not take into account how

this will be affected by private actions: instead, the time path K(t) of aggregate capital is taken as

given. Therefore, each agent faces the same optimal control problem whose present value

Hamiltonian v(c) + r k̇  + q ḣ  can be expressed as

(1-ε)-1c1-ε + r{Α[βkα + δhα + (1-β-δ)(Kφu  l)α]1/α - c} + qξ(1-u)  lhγ (49)

Here r and q are the co-state variables of k and h respectively. Thus r is the shadow price of

capital, while q is that of knowledge. As in Romer (1986) and Lucas (1988), an equilibrium can

now be characterized by holding fixed the aggregate capital stock K in the usual conditions for this

optimization problem, and then imposing the condition that K = k because all agents make the same

choices in equilibrium. Necessary conditions for an equilibrium are that

c-ε = r (50)
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rAα(1-β-δ)(Kφ
  l)αuα-1y1-α = qξ  lhγ (51)

and also

ṙ  = ρr - rA
αβkα-1y1-α (52)

q̇  = ρq - rA
αδhα-1y1-α - qξ(1-u)  lγhγ-1 (53)

where y is given by (46). Here, of course, (50) and (51) are the first order conditions for

maximizing the Hamiltonian with respect to c and u respectively, while (52) and (53) are the co-

state equations for K and h respectively.15 Because (49) is concave in the current choice variables

c, and u, equations (50) and (51) are sufficient for an appropriate global maximum at each instant

of time. Sufficient conditions for intertemporal optimality are more subtle because the awkward last

term (1-u)  lhγ in (49) creates a non-concavity. However, it follows from the results of Seierstad

and Sydsæter (1977) that the path derived will be optimal provided that: (a) the maximized

Hamiltonian is concave in the two state variables k and h; (b) the standard transversality condition

e-ρt (rk + qh) → 0 as t → ∞ (54)

is also satisfied. Unfortunately condition (a) in particular seems quite hard to verify in this model,

except in special cases.

Recall the general notation x̂  for the growth rate of any variable x. Then (50) implies that

ĉ = - r̂  / ε (55)

Some manipulation of (52) together with (46) and the equilibrium condition K = k gives

r̂  = ρ - Aβ[β + δ(h/k)α + (1-β-δ)(kφ-1u  l)α](1-α)/α (56)

Equation (55) implies that for steady growth with ĉ  constant, the RHS of (56) must be constant. It

is then obvious that there can never be balanced growth in this model, since no constant growth

rate of h and k leaves this expression constant.

                                                
15 It should be pointed out that really (51) is necessary only for an interior equilibrium, with 0 < u < 1. But we
shall be more concerned with (51) as one of a set of sufficient conditions.
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VI.3 First Case: α > 0 and γ < 1

In this case, the growth rate of h necessarily tends to zero because γ < 1. In the long run agents

may as well choose u = 1. Then, if there is sustained growth of output, the economy necessarily

approaches an asymptotic state in which c, y and k all grow at the same constant proportional rate g

while h/k approaches zero. Moreover, as long as -ρ + r̂  + g < 0 so that the transversality condition

e-ρt rk → 0 as t →  ∞ is satisfied, the sufficient conditions for optimality described above will be

met by any path satisfying (50)–(53): the awkward last term of (49) becomes zero.

In the subcase when φ < 1 also, the term kφ becomes relatively insignificant in the limit, and so

we are essentially left with the “AK model” of section 3. Then (55) and (56) imply that as k → ∞ ,

so r̂  tends to ρ - Aβ1/α and ĉ → g, where

g ≡ (Aβ1/α - ρ)/ε (57)

The transversality condition requiring that -ρ + r̂  + g < 0 is also satisfied asymptotically in case

g < ρ - r̂  = Aβ1/α. This requires that Aβ1/α - ρ < εAβ1/α and so ρ > (1 − ε)Aβ1/α. Hence, when

φ and γ are both strictly less than one, sustained consumption growth at rate g > 0 occurs on a

guaranteed optimal path if and only if Aβ1/α > ρ > (1 − ε)Aβ1/α. Of course, when ε ≥ 1 it is

sufficient that Aβ1/α > ρ > 0, a condition similar in spirit to that derived by Jones and Manuelli

(1990). This says that equilibrium consumption grows if and only if the marginal product of

physical capital remains above the discount rate as the capital stock goes to infinity. On the other

hand, if 0 < Aβ1/α ≤ ρ, then the rate of discount is so high that equilibrium consumption will not

grow, even though such growth is feasible. But when ρ ≤ (1 − ε)Aβ1/α, the transversality

condition (54) is violated, and the utility integral diverges on the asymptotic growth path. Then it is

likely that no equilibrium exists because it is not optimal for any agent to follow the path whose

asymptotic properties we have characterized given that all other agents follow the same path.

A knife-edge subcase occurs when γ < 1 and φ = 1. The analysis is very similar to that in the

previous paragraph, with the difference that the asymptotic growth rate becomes

g = (A* - ρ)/ε,  where A* ≡ Aβ[β + (1-β-δ)  l
α](1-α)/α (58)

Furthermore, the revised condition for existence of a growth equilibrium is A∗  > ρ > (1 − ε)A∗ .
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The last subcase to be considered is when γ < 1 and φ > 1. Provided that k → ∞ as t → ∞ ,

(55) and (56) imply that r̂→ -∞ and so ĉ → ∞. Then (46) and the equilibrium condition K = k

together imply that ŷ  = φ k̂ . Therefore any equilibrium path must have all the growth rates ŷ , k̂

and ĉ converging to infinity as t → ∞. Perpetual increasing returns lead to ever accelerating

growth. As long as α > 0 there is no (finite) asymptotic growth rate to determine in this case.

Indeed, as Solow (1993) has observed in a very similar connection, there is even the possibility

that output, consumption, and capital could all become infinitely large in a finite time.

VI.4 Second Case: α → 0

 Since our aim is to determine steady state growth rates, we now restrict our analysis even

further to the special case in which the production function is Cobb–Douglas. The equilibrium

conditions (50)–(53) then need to be expressed in their limiting forms as α  → 0, which we denote

by (50')–(53'). Imposing the equilibrium condition K = k on (52') gives

r̂  = ρ - βy/k = ρ - Aβk-ψhδ(u  l)1-β-δ (59)

where ψ ≡ 1 - (1-β-δ)φ - β = (1 - β)(1 - φ) + δφ. Because of (55), steady growth of consumption

at rate g = ĉ = - r̂  / ε requires

ψ k̂  = δ ĥ  (60)

To avoid rather perverse cases in which one of the variables h and k is required to shrink while the

other expands, analysis will be restricted to the case when ψ ≥ 0 because φ ≤ (1-β)/(1-β-δ).

The first subcase is when φ = (1-β)/(1-β-δ) and so ψ = 0. Then a steady state requires h to

be constant and so (47) implies that u = 1. When γ ≥ 1 steady state growth is impossible, since it

would not be an equilibrium to have u = 1. So we consider what happens when γ < 1.

Because u = 1 and ψ = 0, it follows from (46) and the condition K = k that y = Akhδ
  l

1-β-δ. So

a steady state evidently requires growth at rate g = ĉ = ŷ  = k̂  = - r̂  / ε. In addition, when α → 0,

(51') becomes

r(1-β-δ)y = qξu  lhγ (61)
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Taking the growth rates of all the variables in this equation when u = 1 and h is constant implies

that q̂= r̂  + ŷ  = g(1-ε). Since equation (53') gives q̂= ρ - rδy / qh when u = 1, it follows that

(1-ε)g = ρ - rδy / qh (62)
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Eliminating the ratio ry / qh from equations (61) and (62) then gives

(1-ε)g = ρ – 
  

δξ
β δ

γlh −1

− −1
(63)

when u = 1. Imposing the conditions g =  - r̂  / ε, ψ = 0 and u = 1 on equation (59) then gives

-εg = ρ - Aβhδ
  l

1-β-δ (64)

Here (63) and (64) are two simultaneous equations in g and in h*, the asymptotic stationary level

of h. By subtracting (64) from (63) it is easy to see that

g = Aβhδ
  l

1-β-δ – 
  

δξ
β δ

γlh −1

− −1
(65)

but in the general case there is no analytical solution for h*. In the special case when ε = 1,

however, (63) implies that, for γ < 1, the stationary value of h is

h* ≡ [δξ  l /ρ(1-β-δ)]1/(1-γ) (66)

and then (64) determines the steady state growth rate as

g = Aβ(h*)δ  l
1-β-δ - ρ (67)

Finally, when ε = 1, it is easy to check that the transversality condition (54) is satisfied

provided that ρ > 0.

The second subcase is when φ < (1-β)/(1-β-δ) and so ψ > 0. Then (60) implies that ĥ  must

be positive if the economy is growing. So γ < 1 would make long-run growth impossible. In case

γ = 1, however, we look for balanced growth at a rate satisfying g = ĉ = ŷ  = k̂  = δ ĥ / ψ = - r̂  / ε

(where the last two equations follow from (47) and (60)), and with u constant. Then using (47),

(59) and (60) yields

r̂  = - εg =  - ε(δ/ψ) ξ(1-u)  l , and so g = (δ/ψ) ξ(1-u)  l  while ξu  l  = ξ  l  - ψg/δ (68)

Moreover, (53') together with (51') — or (61) with γ = 1 — implies that

q̂   = ρ - ξ(1-u)  l  - rδy / qh = ρ - ξ(1-u)  l  - ξu  lδ/(1-β-δ) (69)

Next, differentiating (51') or (61) with γ = 1 and u constant gives r̂  + ŷ  = q̂  + ĥ  and so

(1-ε)g = q̂  + ψg/δ = q̂+ ξ(1-u) l  = ρ - 
  

ξ δ
β δ
ul

1 − −
 = ρ - 

  

ξ δ ψ
β δ

l −
− −

g
1

(70)

Solving (70) for g gives the result that

g = 
( )

( )( )
1

1 1
− − −

− − − −
β δ ρ ξ δ

ε β δ ψ
l

 = 
ξ δ β δ ρ

β δ ε φ δ
l − − −
− − − +

( )
( )( )

1
1

(71)
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where the second equality was derived using the definition of ψ. This solution is valid, and gives a

positive growth rate, in case both numerator and denominator are positive, which they could be

even if φ > 1.

Finally, the transversality condition (54) is satisfied provided that -ρ +  r̂  + k̂  and -ρ +  q̂  + ĥ

are both negative. It is routine to check that the second of these conditions is automatically satisfied

because u > 0, while the first is also satisfied in case

ρ > 
( )

( )( )
1

1 1
−

− − − +
ε ξ δ

β δ φ δ
l

(72)

VI.4 Summary of Results

The most important clear cut results of this section are as follows:

Case (i) γ < 1, φ < 1, α  > 0: In this case there is no equilibrium with long-run growth when

Aβ1/α ≤ ρ or when ρ ≤ (1-ε)Aβ1/α. But when Aβ1/α > ρ > (1-ε)Aβ1/α, the growth rate

converges in the limit to (Aβ1/α - ρ)/ε > 0. This case corresponds to a model like those of Jones

and Manuelli (1990) or Rebelo (1991) in which capital accumulation by itself generates long-run

growth; that is, a neoclassical growth model without the upper Inada condition.

Case (ii) γ < 1, φ = (1-β )/(1-β -δ), ε = 1  and α → 0: Here the steady state growth rate is

g = Aβ[ξδ  l /ρ(1-β-δ)]δ/(1-γ)
 l
1-β-δ - ρ (73)

provided that ρ > 0. In this case accumulation of h eventually stops, and the long-run engine of

growth is a balance of capital accumulation with learning by doing; this is what makes φ equal to

(1-β)/(1-β-δ). This case is formally equivalent to Romer (1986).

Case (iii) γ = 1, φ < (1-β )/(1-β -δ) and α → 0: Here the steady state growth rate is:

g = Error! ) (74)

provided that (72) is satisfied. In this case capital accumulation is only possible in the long run

because h grows, and this is the true engine of growth.

In all three cases, when there is a steadily growing equilibrium, the long-run growth rate of

consumption is decreasing in the discount rate, as is hardly surprising. Other parameters affect

growth differently for the different cases. In cases (i) and (ii) capital accumulation is the engine of
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growth, and so it is intuitively reasonable that growth should be increasing in A. In cases (ii) and

(iii), however, growth is increasing in both the size of the economy, as measured by each agent’s

stock of the fixed factor   l , and the productivity of labor in education, as measured by ξ . This

happens for different reasons in the two cases.

In case (ii), where capital accumulation combined with learning by doing is the engine of

growth, a higher   l  affects growth by increasing the steady state value h* of h, as indicated by

(66). In turn, this occurs because a higher  l  increases the marginal product of h, and hence in

equilibrium more resources will be devoted to increasing h. A similar argument explains why and

how ξ affects the growth rate in case (ii).

On the other hand, in case (iii), human capital accumulation is the engine of growth. In this

case either a higher l  or a higher ξ affect the growth rate through a simpler mechanism: for each

given 1-u, they both increase the growth rate of h. Finally, note that in case (iii) growth is

increasing in the externalities from physical capital accumulation (φ) and, except possibly in rare

cases when ε < φ, is decreasing in the share 1-β-δ of E in final output. The explanation for this

last result is that a higher share of E in final output causes a reallocation of labor from this sector to

the education sector, thus decreasing the rate of growth of h.

VII. Fundamental Determinants of the Rate of Growth

The previous section showed how the long run growth rate is determined by such parameters

as the discount rate (ρ), the productivity of resources in production (A), the size of the economy

(L), the intensity with which fixed resources are used in production (1-β-δ), the productivity of the

research sector (ξ), as well as the strength of externalities in production (φ) and in research (γ).

Indeed, we have come a long way from the standard neoclassical growth model, where all these

factors could have at most level effects.

The fundamental determinants of the rate of growth have not yet been properly considered,

however, since it can be argued that many of these parameters are really determined endogenously

by more fundamental variables like fiscal, trade and financial policy, the efficiency of the financial
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system, demographic variables and social norms. This section reviews some of the literature that

has attempted to open up these black boxes. Wherever possible, these ideas will be linked to the

general growth model of the previous section.

VII.1 Trade and Growth

Here the topic that has received most attention concerns how growth is affected by trade

through its impact on the allocation of resources across sectors. Krugman (1987) and Lucas (1988)

capture this in a simple model in which growth arises from learning by doing. They postulate a

fixed quantity of labor L, which the economy allocates between the production of two goods z1

and z2. Producing one unit of good zi requires qi units of labor. Because of learning by doing in

each sector, dqi/dt = -νiLiqi, where Li is the quantity of labor allocated to the production of good i

and νi is a positive parameter that measures the rate of learning by doing in sector i. Suppose that

ν1 > ν2. When preferences exhibit a constant elasticity of substitution between the two goods,

equilibrium in a closed economy involves a constant ratio Li/L. So the growth rate of output is a

weighted average of ν1 and ν2, with the weights given by Li/L. If the economy is too small to

affect international prices, then as it opens up to international trade, preferences in the economy no

longer matter for the allocation of labor in equilibrium. Indeed, the economy will specialize in the

good for which it has a static comparative advantage. If for some reason the comparative advantage

of the economy is initially in good 2, the growth rate will decrease to ν2. If the comparative

advantage is in good 1 instead, the growth rate will increase to ν1. In terms of the model developed

in section 6, this is similar in spirit to having trade affect the learning-by-doing parameter φ. Young

(1991) develops a more detailed and complete model along these lines.

In Grossman and Helpman (1991a, ch. 6), trade affects growth through a similar mechanism.

Growth arises because new varieties of non-tradable intermediate goods are introduced, then used

to produce two final goods. Innovation uses human capital intensively, and so does one of the final

goods. If the economy has a static comparative advantage in the human capital-intensive good, then

as the economy opens up to international trade, human capital will flow from the innovation sector
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to the production of this final good, thereby lowering the rate of growth. Of course, if the

comparative advantage is in the good that uses human capital with low intensity, the growth rate

will increase as the economy opens up to international trade. In terms of our model of section 6,

trade affects growth by altering the share (1-β-δ) of labor in the production of final goods.

A different effect of trade on growth is analysed by Stokey (1991). She considers a model in

which growth arises from investment in education, which allows workers to produce more

sophisticated (i.e., valuable) goods. Opening the economy up to international trade changes the

relative prices of different goods, thus also changing the incentives for education. For instance,

suppose the economy starts with a relatively low human capital stock. Then international trade will

cause the prices of more sophisticated goods to drop relative to those of simpler goods for this

economy, thus lowering both the incentives to become educated and the growth rate. The relation

between this result and the analysis of section VI is harder to explain. However, the effect of trade

on growth in this model is like the effect of a change in the share of human capital in the

production of final goods (δ): that is, it affects the returns to human capital accumulation.

A different link between trade and growth is analysed by Grossman and Helpman (1991a, ch.

7 and 8) and by Romer and Rivera-Batiz (1991). The latter show that in a model similar to that in

section 5.2 where innovation is the engine of growth, integrating two identical economies into one

single market unambiguously increases the growth rate, since it increases the returns to innovation.

This happens for the same reason that an increase in L increases the growth rate in case (iii) of

section 6. If integration involves only trade, however, with no free flow of ideas, the authors show

that it does not affect growth. But if innovation uses intermediate goods, then trade would increase

the rate of growth because love of variety for inputs makes innovation less costly. This is

analogous to a fall in ξ in the model of section 6. Grossman and Helpman also derive more general

results along similar lines for the case in which the two economies are not identical.

VII.2 Financial Intermediation and Growth

A strong consensus among economists is that countries with healthier financial systems

generally grow faster. Yet the model developed in section 6 has identical representative agents and
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must therefore lack individual uncertainty. This makes it impossible for financial intermediation to

play any role in the growth process. Some recent papers nevertheless do analyse this phenomenon

through growth models in which capital accumulation is the sole engine of growth. In terms of our

growth model of section 6, all these models have the result that a more developed financial sector

increases the value of the parameter A in (43). This is like output augmenting technical change,

which leads to a higher growth rate as in cases (i) and (ii).

The financial system is given two main roles in these models. First, it encourages agents to

invest a higher proportion of their wealth in more productive but riskier assets, as it reduces the

need to keep wealth in liquid assets. This has been formalized recently by Bencivenga and Smith

(1992), who allow agents to invest their wealth in two types of project: one with a high return and

low liquidity; and another with a low return and high liquidity. In addition, agents face the

possibility that in future they may need wealth in liquid form to meet an emergency. The authors

show that, compared to a situation in which agents must finance their own projects, a better

financial system allows more resources to be devoted to the high return investment, since it can

meet the liquidity needs of agents without forcing them to invest in the low return projects.16

The other main role of financial intermediation is to allow agents with funds they do not need

immediately to lend to other agents who have more pressing needs. It is crucial in modelling this

role that there be lumpiness in project size and/or constraints on the maximum project size that an

entrepreneur can manage. For otherwise investors could just invest all their own wealth without

any need for borrowing and lending. Financial intermediation of this type introduces problems of

asymmetric information, so that agents who borrow may not behave in a socially optimal way. For

instance, as analysed by Aghion and Bolton (1991), agents who borrow will not devote as much

effort to increasing the probability of success of the project. This makes wealth distribution matter

for financial intermediation and growth. Note that this also has implications for the pattern of

                                                
16Another model along these lines is presented in Saint-Paul (1992). Also, Greenwood and Jovanovic (1990) develop
a model in which the financial system increases the average productivity of investment and the growth rate, while
growth reinforces the development of the financial system.
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income inequality as the economy develops: the distribution of wealth at time t is a function of the

distribution at time t-1. The authors discuss possible limits to this distribution.17

VII.3 Demographics, Education and Growth

The Uzawa–Lucas model of growth was reviewed in section 3, and is similar to case (iii) of

section 6. It involves human capital being effectively transferred from generation to generation.

Individuals spend the early part of their life acquiring skill, a process that is easier for individuals

with well educated parents.18 These models include a dynastic intertemporal utility function with

discounting at the same rate over the lifetime of each (apparently single) parent as over that of each

descendant.

Becker, Murphy and Tamura (1990) and Ehrlich and Lui (1992) extend these growth models to

study the intergenerational process of growth in more detail. In Becker et. al., parents are altruistic

and care about both the number of children they have and their education. Ehrlich and Lui assume

that parents have children in order to receive care in their old age; the amount of care they get

depends positively on the number of children and their education. In both these models better

educated parents find it easier to educate their children. This leads them to opt for more education

and fewer children. Therefore, as the economy grows and the average education increases, parents

devote more time to education and less to bringing up many children. In turn, this reinforces the

growth process. An interesting result derived by Ehrlich and Lui is that as the probability of

children reaching maturity increases, parents invest more in education and so growth increases. On

the other hand, when the probability of mature agents reaching old age increases, the effect on

growth is ambiguous. In terms of our model in section 6, this work shows how the discount rate

and hence the incentives to invest time in education depend on more fundamental demographic

parameters.

                                                
17Banerjee and Newman (1991) consider a related model. See Pagano (1992) and Stiglitz (1992) for more extensive
analyses of the relationship between finance and growth.
18A similar but richer model appears in Stokey (1991), with the difference that a higher “social” level of human
capital makes it easier for individuals to build their own human capital.
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VII.4 Fiscal Policy and Growth

The effect of exogenous fiscal policy on the actual growth rate of an economy depends on how

revenues are raised and on how the government spends those revenues. When the engine of

growth is capital accumulation, and provided that the substitution effect dominates the income

effect, income taxes that include taxation of interest income decrease incentives to accumulate

capital, since owners can only obtain a fraction of the benefits — see Jones and Manuelli (1990)

and Rebelo (1991). Such income taxes therefore have effects identical to those of lowering A in

cases (i) and (ii) of the growth model of section 6. This differs drastically taxes on consumption

expenditures and on investment in physical capital, which have no effect on the growth rate in the

case where the engine of growth is human capital accumulation, as in case (iii) of section 6. For

again the effect of a proportional tax on consumption and physical investment is identical to a

decrease in A, which in case (iii) of section 6 has no effect on the growth rate.

On the other hand, as Barro (1990) argues, government expenditures in services that enhance

productivity in the private sector will increase the growth rate. However, if revenues are used to

finance government services that have no effect on productivity, or if they are wasted by

bureaucrats, then growth of consumption will decrease. Of course, if the government services are

desired by consumers, the implications for welfare remain ambiguous.

VII.5 Social Norms, Politics and Income Inequality

Many other organizations and institutions besides the market can affect growth. Perhaps most

research has been devoted to understanding the effect of governments, whose powers may be used

for income redistribution and abused by rent-seekers. In contrast to the previous subsection, the

models we review here endogenize government policy decisions such as those affecting taxation.

Murphy, Shleifer and Vishny (1991) consider how the most talented people in society choose

between becoming entrepeneurs, or rent-seekers whose activities reduce growth. It is shown that

in making this choice, the most talented individuals in society will consider the size of the market in

both activities, the size of the firm they can manage, and the type of contracts that can be enforced.
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In general, the smaller the market for goods (say, because of poor infrastructure), or the smaller

the size of the firm that can be effectively managed (say, because the capital market is

underdeveloped), or the less that entrepreneurs can appropriate from the surplus they generate

(say, because of unclear property rights and/or lack of patent protection), the more likely are the

most talented individuals to become rent-seekers who lower the growth rate.

The government may also be used as an agency for income redistribution. Alesina and Rodrik

(1991) and Persson and Tabellini (1991) both consider democracies in which fiscal policy that

affects growth is decided by voting. The growth engine of Alesina and Rodrik’s model is similar to

Barro’s (1990). In Persson and Tabellini’s paper, however, growth is driven by the accumulation

of knowledge in an economy where individuals have different abilities. Also, their fiscal policy

involves only income redistribution. Both papers reproduce the traditional result that, when the

distribution of income is skewed to the right, implying that the median of the distribution is smaller

than the average, then there is more taxation or more income redistribution. The new feature is that

this leads to a lower growth rate rather than just to a lower level of aggregate income.

Perotti (1992) explores a more complex link between income distribution and growth. Growth

results from accumulating human capital, but in his model some individuals cannot afford the fixed

cost of acquiring education. Nor are loans available to finance investment in education. When the

economy is poor, fiscal policy that makes the distribution of income more unequal may increase

growth, as a bigger proportion of the population can then afford education. However, when the

economy is rich, increasing growth requires making the distribution of income more equal, since

this decreases the proportion of the population who cannot afford education.

In all the models reviewed so far, growth arises because agents desire to increase future

consumption either for themselves or for their descendants. However, in reality people care about

things other than market goods, like being able to marry well. Usually such goods cannot be

bought in the market, but are acquired “through status.” Cole, Mailath and Postlewaite (1991)

develop an interesting model in which people may save in part to acquire the status that will lead

themselves or their children to enjoy more valuable non-market goods. The authors show that if
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social norms base status on wealth, growth is higher than if social norms make status independent

of wealth. Of course, an alternative model based on Veblen’s notion of conspicuous consumption

is likely to have lower growth.

VIII. Conclusion

To evaluate the importance of the new endogenous growth theory, we must first recognize that

there is long-run growth in the real world. For instance, according to Maddison (1982) the average

growth rate of income per capita in the United States between 1890 and 1970 was 2.3 percent per

year. Solow (1957) showed how only an eighth of this growth (up to the time when he wrote)

could be explained by increases in the capital–labor ratio due to capital accumulation; the rest was

the famous Solow residual.19 Following Solow, this residual can be explained as the result of

continual technology shocks, each of which increases the level of steady state income per capita.

The observed growth rate is then be no more than the result of continous adjustment of the system

to these exogenous shocks. It seems much more fruitful, however, to explain how these

technological shocks arise: this is what endogenous growth theory has attempted to do. In a sense,

the word “endogenous” is even redundant: for if growth is not endogenous, then really there is no

growth theory, but only a sophisticated accounting system. Note that some earlier growth theories,

such as Arrow’s learning by doing model or Shell’s (1967, 1974) model of publicly financed

technological growth, are endogenous in this sense.20

This paper has concentrated on the theory of growth, to the virtual exclusion of its empirical

side. So it would be rash to “summarize” what the new growth theory teaches us about real

economies. However, there is one theoretical point general enough to deserve emphasis. This is

that a common feature of many growth models is their reliance on positive externalities in one form

or another. This is important, because it implies that growth rates will in general be lower than

optimal and that there is a role for good government to play in encouraging appropriate growth. It

                                                
19 This estimate has since come under repeated critical scrutiny. Some of the most recent re-estimates are presented
and discussed in Boskin and Lau (1992).
20 For another early model of endogenous technical progress, see Conlisk (1969).
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also marks a clear, if minor, departure from the heavy use macroeconomists have been making of

optimal growth models.

A final remark is in order. There is an important sense in which almost none of these recent

results are really new: it was already well known that trade, finance, fiscal policy, income

inequality and social norms could affect macroeconomic performance. Before the appearance of

endogenous growth models, however, these variables would generally have only level effects,

which would show up in growth rates only during the adjustment phase. Of course, as Atkinson

(1969) and others pointed out, this adjustment phase could easily last for rather a long time, even

several generations. Nevertheless, the main contribution of the new literature is that it explains how

these same variables can also affect the long-run rate of growth. Although modest in fundamentally

new insights, this is still an important contribution. For instance, since we are unable to measure

welfare effects with sufficient precision, it is probably better to limit taxes to those that depart from

the always unattainable first best further in their short run than in their long run effects. In

particular, we should try to avoid destroying the incentives for agents to promote long-run growth.

Furthermore, we should be emphasizing the long-run growth benefits of supply side policies such

as freer international trade and market integration, while readily conceding the possible short-run

damage to those who work in or own parts of uncompetitive industries, and the general desirability

of arranging some short run compensation for those who do suffer short-run damage.
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