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Intertemporal Utility

Consider a household which at time s is planning
its intertemporal consumption stream cTs := (cs , cs+1, . . . , cT )
over periods t in the set {s, s + 1, . . . ,T}.

Its intertemporal utility function RT−s+1 3 cTs 7→ UT
s (cTs ) ∈ R

is assumed to take the additively separable form

UT
s (cTs ) :=

∑T

t=s
ut(ct)

where the one period felicity functions c 7→ ut(c)
are differentiably increasing and strictly concave (DISC)
— i.e., u′t(c) > 0, and u′′t (c) < 0 for all t and all c > 0.

As before, the household faces:

1. fixed initial wealth ws ;

2. a terminal wealth constraint wT+1 ≥ 0.
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Risky Wealth Accumulation

Also as before, we assume
a wealth accumulation equation wt+1 = r̃t(wt − ct),
where r̃t is the household’s gross rate of return
on its wealth in period t.

It is assumed that:

1. the return r̃t in each period t is a random variable
with positive values;

2. the return distributions for different times t
are stochastically independent;

3. starting with predetermined wealth ws at time s,
the household seeks to maximize
the expectation Es [UT

s (cTs )] of its intertemporal utility.
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Two Period Case

We work backwards from the last period, when s = T .

In this last period the household will obviously choose cT = wT ,
yielding a maximized utility equal to VT (wT ) = uT (wT ).

Next, consider the penultimate period, when s = T − 1.
The consumer will want to choose cT−1 in order to maximize

uT−1(cT−1)︸ ︷︷ ︸
period T−1

+ ET−1VT (wT )︸ ︷︷ ︸
result of an optimal policy in period T

subject to the wealth constraint

wT = r̃T−1︸︷︷︸
random gross return

(wT−1 − cT−1)︸ ︷︷ ︸
saving
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First-Order Condition

Substituting both the function VT (wT ) = uT (wT )
and the wealth constraint into the objective reduces the problem to

max
cT−1

{uT−1(cT−1) + ET−1 [uT (r̃T−1(wT−1 − cT−1)) ] }

subject to 0 ≤ cT−1 ≤ wT−1 and c̃T := r̃T−1(wT−1 − cT−1).

Assume we can differentiate under the integral sign,
and that there is an interior solution with 0 < cT−1 < wT−1.

Then the first-order condition (FOC) is

0 = u′T−1(cT−1) + ET−1[(−r̃T−1)u′T (r̃T−1(wT−1 − cT−1))]
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The Stochastic Euler Equation

Rearranging the first-order condition while recognizing
that c̃T := r̃T−1(wT−1 − cT−1), one obtains

u′T−1(cT−1) = ET−1[r̃T−1u′T (r̃T−1(wT−1 − cT−1))]

Dividing by u′T−1(cT−1) gives the stochastic Euler equation

1 = ET−1

[
r̃T−1

u′T (c̃T )

u′T−1(cT−1)

]
= ET−1

[
r̃T−1MRST

T−1(cT−1; c̃T )
]

involving the marginal rate of substitution function

MRST
T−1(cT−1; c̃T ) :=

u′T (c̃T )

u′T−1(cT−1)
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The CES Case

For the marginal utility function c 7→ u′(c),
its elasticity of substitution is defined
for all c > 0 by η(c) := d ln u′(c)/d ln c .

Then η(c) is both the degree of relative risk aversion,
and the degree of relative fluctuation aversion.

A constant elasticity of substitution (or CES) utility function
satisfies d ln u′(c)/d ln c = −ε < 0 for all c > 0.

The marginal rate of substitution
satisfies u′(c)/u′(c̄) = (c/c̄)−ε for all c , c̄ > 0.
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Normalized Utility

Normalize by putting u′(1) = 1, implying that u′(c) ≡ c−ε.

Then integrating gives

u(c; ε) = u(1) +
∫ c
1 x−εdx

=

u(1) +
c1−ε − 1

1− ε
if ε 6= 1

u(1) + ln c if ε = 1

Introduce the final normalization

u(1) =


1

1− ε
if ε 6= 1

0 if ε = 1

The utility function is reduced to

u(c ; ε) =


c1−ε − 1

1− ε
if ε 6= 1

ln c if ε = 1
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The Stochastic Euler Equation in the CES Case

Consider the CES case when u′t(c) ≡ δtc−ε,
where each δt is the discount factor for period t.

Definition
The one-period discount factor in period t
is defined as βt := δt+1/δt .

Then the stochastic Euler equation takes the form

1 = ET−1

[
r̃T−1βT−1

(
c̃T

cT−1

)−ε]

Because cT−1 is being chosen at time T − 1, this implies that

(cT−1)−ε = ET−1
[
r̃T−1βT−1(c̃T )−ε

]
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The Two Period Problem in the CES Case
In the two-period case, we know that

c̃T = w̃T = r̃T−1(wT−1 − cT−1)

in the last period, so the Euler equation becomes

(cT−1)−ε = ET−1
[
r̃T−1βT−1(c̃T )−ε

]
= βT−1(wT−1 − cT−1)−εET−1

[
(r̃T−1)1−ε

]
Take the (−1/ε) th power of each side and define

ρT−1 :=
(
βT−1ET−1

[
(r̃T−1)1−ε

])−1/ε
to reduce the Euler equation to cT−1 = ρT−1(wT−1 − cT−1)
whose solution is evidently cT−1 = γT−1wT−1 where

γT−1 := ρT−1/(1 + ρT−1) and 1− γT−1 = 1/(1 + ρT−1)

are respectively the optimal consumption and savings ratios.
It follows that ρT−1 = γT−1/(1− γT−1)
is the consumption/savings ratio.
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Optimal Discounted Expected Utility

The optimal policy in periods T and T − 1
is ct = γtwt where γT = 1 and γT−1 has just been defined.

In this CES case, the discounted utility of consumption in period T
is VT (wT ) := δTu(wT ; ε).

The discounted expected utility at time T − 1
of consumption in periods T and T − 1 together is

VT−1(wT−1) = δT−1u(γT−1wT−1; ε) + δTET−1[u(w̃T ; ε)]

where w̃T = r̃T−1(1− γT−1)wT−1.
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Discounted Expected Utility in the Logarithmic Case

In the logarithmic case when ε = 1, one has

VT−1(wT−1) = δT−1 ln(γT−1wT−1)

+ δTET−1[ln (r̃T−1(1− γT−1)wT−1)]

It follows that

VT−1(wT−1) = αT−1 + (δT−1 + δT )u(wT−1; ε)

where

αT−1 := δT−1 ln γT−1 + δT {ln(1− γT−1) + ET−1[ln r̃T−1]}
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Discounted Expected Utility in the CES Case

In the CES case when ε 6= 1, one has

(1− ε)VT−1(wT−1) = δT−1(γT−1wT−1)1−ε

+ δT [(1− γT−1)wT−1]1−ε ET−1[(r̃T−1)1−ε]

so VT−1(wT−1) = vT−1u(wT−1; ε) where

vT−1 := δT−1(γT−1)1−ε + δT (1− γT−1)1−ε ET−1[(r̃T−1)1−ε]

In both cases,
one can write VT−1(wT−1) = αT−1 + vT−1u(wT−1; ε)
for a suitable additive constant αT−1 (which is 0 in the CES case)
and a suitable multiplicative constant vT−1.
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The Time Line

In each period t, suppose:

I the consumer starts with known wealth wt ;

I then the consumer chooses consumption ct ,
along with savings or residual wealth wt − ct ;

I there is a cumulative distribution function Ft(r) on R
that determines the gross return r̃t
as a positive-valued random variable.

After these three steps have been completed,
the problem starts again in period t + 1,
with the consumer’s wealth known to be wt+1 = r̃t(wt − ct).
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Expected Conditionally Expected Utility

Starting at any t, suppose the consumer’s choices,
together with the random returns, jointly determine a cdf FT

t

over the space of intertemporal consumption streams cTt .

The associated expected utility is Et

[
UT
t (cTt )

]
,

using the shorthand Et to denote integration w.r.t. the cdf FT
t .

Then, given that the consumer has chosen ct at time t,
let Et+1[·|ct ] denote the conditional expected utility.

This is found by integrating
w.r.t. the conditional cdf FT

t+1(cTt+1|ct).

The law of iterated expectations allows us to write
the unconditional expectation Et

[
UT
t (cTt )

]
as the expectation Et [Et+1[UT

t (cTt )|ct ]]
of the conditional expectation.
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The Expectation of Additively Separable Utility

Our hypothesis is that the intertemporal
von Neumann–Morgenstern utility function
takes the additively separable form

UT
t (cTt ) =

∑T

τ=t
uτ (cτ )

The conditional expectation given ct must then be

Et+1[UT
t (cTt )|ct ] = ut(ct) + Et+1

[∑T

τ=t+1
uτ (cτ )|ct

]
whose expectation is

Et

[∑T

τ=t
uτ (cτ )

]
= ut(ct) + Et

[
Et+1

[∑T

τ=t+1
uτ (cτ )

]
|ct
]
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The Continuation Value

Let Vt+1(wt+1) be the state valuation function
expressing the maximum of the continuation value

Et+1

[
UT
t+1(cTt+1)

]
= Et+1

[∑T

τ=t+1
uτ (cτ )

]
as a function of the wealth level or state wt+1 = r̃t(wt − ct).

Assume this maximum value is achieved
by following an optimal policy from period t + 1 on.

Then total expected utility at time t will then reduce to

Et

[
UT
t (cTt )

]
= ut(ct) + Et

[
Et+1

[∑T

τ=t+1
uτ (cτ )|ct

]]
= ut(ct) + Et [Vt+1(w̃t+1)]

= ut(ct) + Et [Vt+1(r̃t(wt − ct))]
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The Principle of Optimality

Maximizing Es

[
UT
s (cTs )

]
w.r.t. cs , taking as fixed

the optimal consumption plans ct(wt) at times t = s + 1, . . . ,T ,
therefore requires choosing cs to maximize

us(cs) + Es [Vs+1(r̃s(ws − cs))]

Let c∗s (ws) denote a solution to this maximization problem.

Then the value of an optimal plan (c∗t (wt))Tt=s

that starts with wealth ws at time s is

Vs(ws) := us(c∗s (ws)) + Es [Vs+1(r̃s(ws − c∗s (ws)))]

Together, these two properties can be expressed as

Vs(ws) =
c∗s (ws) = arg

}
max

0≤cs≤ws

{us(cs) + Es [Vs+1(r̃s(ws − cs))]}

which can be described as the the principle of optimality.
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An Induction Hypothesis

Consider once again the case when ut(c) ≡ δtu(c ; ε)
for the CES (or logarithmic) utility function
that satisfies u′(c ; ε) ≡ c−ε and, specifically

u(c ; ε) =

{
c1−ε/(1− ε) if ε 6= 1;

ln c if ε = 1.

Inspired by the solution we have already found
for the final period T and penultimate period T − 1,
we adopt the induction hypothesis that there are
constants αt , γt , vt (t = T ,T − 1, . . . , s + 1, s) for which

c∗t (wt) = γtwt and Vt(wt) = αt + vtu(wt ; ε)

In particular, the consumption ratio γt and savings ratio 1− γt
are both independent of the wealth level wt .
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Applying Backward Induction

Under the induction hypotheses that

c∗t (wt) = γtwt and Vt(wt) = αt + vtu(wt ; ε)

the maximand

us(cs) + Es [Vs+1(r̃s(ws − cs))]

takes the form

δsu(cs ; ε) + Es [αs+1 + vs+1u(r̃s(ws − cs); ε)]

The first-order condition for this to be maximized w.r.t. cs is

0 = δsu′(cs ; ε)− vs+1Es [r̃su′(r̃s(ws − cs); ε)]

or, equivalently, that

δs(cs)−ε = vs+1Es [r̃s(r̃s(ws − cs))−ε)] = vs+1(ws − cs)−εEs [(r̃s)1−ε]
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Solving the Logarithmic Case

When ε = 1 and so u(c ; ε) = ln c ,
the first-order condition reduces to δs(cs)−1 = vs+1(ws − cs)−1.

Its solution is indeed cs = γsws where δs(γs)−1 = vs+1(1− γs)−1,
implying that γs = δs/(δs + vs+1).

The state valuation function then becomes

Vs(ws) = δsu(γsws ; ε) + αs+1 + vs+1Es [u(r̃s(1− γs)ws ; ε)]

= δs ln(γsws) + αs+1 + vs+1Es [ln(r̃s(1− γs)ws)]

= δs ln(γsws) + αs+1 + vs+1{ln(1− γs)ws + ln Rs}

where we define the geometric mean certainty equivalent return Rs

so that ln Rs := Es [ln(r̃s)].
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The State Valuation Function

The formula

Vs(ws) = δs ln(γsws) + αs+1 + vs+1{ln(1− γs)ws + ln Rs}

reduces to the desired form Vs(ws) = αs + vs ln ws

provided we take vs := δs + vs+1, which implies that γs = δs/vs ,
and also

αs := δs ln γs + αs+1 + vs+1 {ln(1− γs) + ln Rs}
= δs ln(δs/vs) + αs+1 + vs+1{ln(vs+1/vs) + ln Rs}
= δs ln δs + αs+1 − vs ln vs + vs+1{ln vs+1 + ln Rs}

This confirms the induction hypothesis for the logarithmic case.

The relevant constants vs are found by summing backwards,
starting with vT = δT , implying that vs =

∑T
τ=s δs .
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The Stationary Logarithmic Case

In the stationary logarithmic case:

I the felicity function in each period t is βt ln ct ,
so the one period discount factor is the constant β;

I the certainty equivalent return Rt is also a constant R.

Then vs =
∑T

τ=s δs =
∑T

τ=s β
τ = (βs − βT+1)/(1− β),

implying that γs = βs/vs = βs(1− β)/(βs − βT+1).

It follows that

cs = γsws =
(1− β)ws

1− βT−s+1
=

(1− β)ws

1− βH+1

when there are H := T − s periods left before the horizon T .

As H →∞, this solution converges to cs = (1− β)ws ,
so the savings ratio equals the constant discount factor β.

Remarkably, this is also independent on the gross return to saving.
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First-Order Condition in the CES Case
Recall that the first-order condition in the CES Case is

δs(cs)−ε = vs+1(ws − cs)−εEs [(r̃s)1−ε] = vs+1(ws − cs)−εR1−ε
s

where we have defined the certainty equivalent return Rs

as the solution to R1−ε
s := Es [(r̃s)1−ε].

The first-order condition indeed implies that c∗s (ws) = γsws ,
where δs(γs)−ε = vs+1(1− γs)−εR1−ε

s .

This implies that

γs
1− γs

=
(
vs+1R1−ε

s /δs
)−1/ε

or

γs =

(
vs+1R1−ε

s /δs
)−1/ε

1 +
(
vs+1R1−ε

s /δs
)−1/ε =

(
vs+1R1−ε

s

)−1/ε
(δs)−1/ε +

(
vs+1R1−ε

s

)−1/ε
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Completing the Solution in the CES Case

Under the induction hypothesis that Vs+1(w) = vs+1w1−ε/(1− ε),
one also has

(1− ε)Vs(ws) = δs(γsws)1−ε + vs+1Es [(r̃s(1− γs)ws)1−ε]

This reduces to the desired form (1− ε)Vs(ws) = vs(ws)1−ε, where

vs := δs(γs)1−ε + vs+1Es [(r̃s)1−ε](1− γs)1−ε

=
δs(vs+1R1−ε

s )1−1/ε + vs+1R1−ε
s (δs)1−1/ε

[(δs)−1/ε +
(
vs+1R1−ε

s

)−1/ε
]1−ε

= δsvs+1R1−ε
s

(vs+1R1−ε
s )−1/ε + (δs)−1/ε

[(δs)−1/ε +
(
vs+1R1−ε

s

)−1/ε
]1−ε

= δsvs+1R1−ε
s [(δs)−1/ε +

(
vs+1R1−ε

s

)−1/ε
]ε

This confirms the induction hypothesis for the CES case.

Again, the relevant constants are found by working backwards.
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Histories and Strategies

For each time t = s, s + 1, . . . ,T
between the start s and the horizon T ,
let ht denote a known history (wτ , cτ , r̃τ )tτ=s

of the triples (wτ , cτ , r̃τ )
at successive times τ = s, s + 1, . . . , t up to time t.

A general policy the consumer can choose
involves a measurable function ht 7→ ψt(ht)
mapping each known history up to time t,
which determines the consumer’s information set,
into a consumption level at that time.

The collection of successive functions ψT
s = 〈ψt〉Tt=s

is what a game theorist would call the consumer’s strategy
in the extensive form game “against nature”.
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Markov Strategies

We found an optimal solution
for the two-period problem when t = T − 1.

It took the form of a Markov strategy ψt(ht) := c∗t (wt),
which depends only on wt as the particular state variable.

The following analysis will demonstrate in particular
that at each time t = s, s + 1, . . . ,T ,
under the induction hypothesis that the consumer will follow
a Markov strategy in periods τ = t + 1, t + 2, . . . ,T ,
there exists a Markov strategy that is optimal in period t.

It will follow by backward induction
that there exists an optimal strategy ht 7→ ψt(ht)
for every period t = s, s + 1, . . . ,T
that takes the Markov form ht 7→ wt 7→ c∗t (wt).

This treats history as irrelevant, except insofar as it determines
current wealth wt at the time when ct has to be chosen.
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A Stochastic Difference Equation

Accordingly, suppose that the consumer pursues
a Markov strategy taking the form wt 7→ c∗t (wt).

Then the Markov state variable wt will evolve over time according
to the stochastic difference equation

wt+1 = φt(wt , r̃t) := r̃t(wt − c∗t (wt)).

Starting at any time t, conditional on initial wealth wt ,
this equation will have a random solution w̃T

t+1 = (w̃τ )Tτ=t+1

described by a unique joint conditional cdf FT
t+1(wT

t+1|wt)
on RT−s .

Combined with the Markov strategy wt 7→ c∗t (wt),
this generates a random consumption stream c̃Tt+1 = (c̃τ )Tτ=t+1

described by a unique joint conditional cdf GT
t+1(cTt+1|wt) on RT−s .
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General Finite Horizon Problem

Consider the objective of choosing ys in order to maximize

Es

[∑T−1

t=s
us(xs , ys) + φT (xT )

]
subject to the law of motion xt+1 = ξt(xt , yt , εt),
where the random shocks εt
at different times t = s, s + 1, s + 2, . . . ,T − 1
are conditionally independent given xt , yt .

Here xT 7→ φT (xT ) is the terminal state valuation function.

The stochastic law of motion can also be expressed
through successive conditional probabilities Pt+1(xt+1|xt , yt).

The choices of yt at successive times determine
a controlled Markov process governing the stochastic transition
from each state xt to its immediate successor xt+1.
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Backward Recurrence Relation
The optimal solution can be derived
by solving the backward recurrence relation

Vs(xs) =
y∗s (xs) = arg

}
max

ys∈Fs(xs)
{us(xs , ys) + Es [Vs+1(xs+1)|xs , ys ]}

where

1. xs denotes the “inherited state” at time s;

2. Vs(xs) is the current value in state xs
of the state value function X 3 x 7→ Vs(x) ∈ R;

3. X 3 x 7→→Fs(x) ⊂ Y is the feasible set correspondence;

4. (x , y) 7→ us(x , y) denotes the immediate return function
in period s;

5. X 3 x 7→ y∗s (x) ∈ Fs(xs) is the optimal “strategy”
or policy function;

6. The relevant terminal condition is that VT (xT )
is given by the exogenously specified function φT (xT ).
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An Infinite Horizon Savings Problem

Game theorists speak of the “one-shot” deviation principle.

This states that if any deviation
from a particular policy or strategy improves a player’s payoff,
then there exists a one-shot deviation that improves the payoff.

We consider the infinite horizon extension
of the consumption/investment problem already considered.

This takes the form of choosing a consumption policy ct(wt)
in order to maximize the discounted sum of total utility, given by∑∞

t=s
βt−su(ct)

subject to the accumulation equation wt+1 = r̃t(wt − ct)
where the initial wealth ws is treated as given.
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Some Assumptions

The parameter β ∈ (0, 1) is the constant discount factor.

Note that utility function R 3 c 7→ u(c) is independent of t;
its first two derivatives are assumed to satisfy
the inequalities u′(c) > 0 and u′′(c) < 0 for all c ∈ R+.

The investment returns r̃t in successive periods
are assumed to be i.i.d. random variables.

It is assumed that wt in each period t is known at time t,
but not before.
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Terminal Constraint

There has to be an additional constraint
that imposes a lower bound on wealth at some time t.

Otherwise there would be no optimal policy
— the consumer can always gain by increasing debt
(negative wealth), no matter how large existing debt may be.

In the finite horizon,
there was a constraint wT ≥ 0 on terminal wealth.

But here T is effectively infinite.

One might try an alternative like

lim inf
t→∞

βtwt ≥ 0

But this places no limit on wealth at any finite time.

We use the alternative constraint requiring that wt ≥ 0 for all time.
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The Stationary Problem

Our modified problem can be written
in the following form that is independent of s:

max
c0,c1,...,ct ,...

∑∞

t=0
βtu(ct)

subject to the constraints ct ≤ wt and wt+1 = r̃t(wt − ct)
for all t = 0, 1, 2, . . ., with w0 = w , where w is given.

Because the starting time s is irrelevant,
this is a stationary problem.

Define the state valuation function w 7→ V (w)
as the maximum value of the objective,
as a function of initial wealth w .
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Bellman’s Equation

For the finite horizon problem, the principle of optimality was

Vs(ws) =
c∗s (ws) = arg

}
max

0≤cs≤ws

{us(cs) + Es [Vs+1(r̃s(ws − cs))]}

For the stationary infinite horizon problem, however,
the time starting time s is irrelevant.

So the principle of optimality can be expressed as

V (w) =
c∗(w) = arg

}
max

0≤c≤w
{u(c) + βE[V (r̃(w − c))]}

The state valuation function w 7→ V (w) appears
on both left and right hand sides of this equation.

Solving it therefore involves finding a fixed point, or function,
in an appropriate function space.
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Isoelastic Case

We consider yet again the isoelastic case
with a CES (or logarithmic) utility function
that satisfies u′(c ; ε) ≡ c−ε and, specifically

u(c ; ε) =

{
c1−ε/(1− ε) if ε 6= 1;

ln c if ε = 1.

Recall the corresponding finite horizon case,
where we found that the solution to the corresponding equations

Vs(ws) =
c∗s (ws) = arg

}
max

0≤cs≤ws

{us(cs) + βEs [Vs+1(r̃s(ws − cs))]}

takes the form Vs(w) = αs + vsu(w ; ε)
for suitable real constants αs and vs > 0, where αs = 0 if ε 6= 1.
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First-Order Condition

Accordingly, we look for a solution to the stationary problem

V (w) =
c∗(w) = arg

}
max

0≤c≤w
{u(c ; ε) + βE[V (r̃(w − c))]}

taking the isoelastic form V (w) = α + vu(w ; ε)
for suitable real constants α and v > 0, where α = 0 if ε 6= 1.

The first-order condition for solving
this concave maximization problem is

c−ε = βE[r̃(r̃(w − c))−ε] = ζε(w − c)−ε

where ζε := βR1−ε with R as the certainty equivalent return
defined by R1−ε := E[r̃1−ε].

Hence c = γw where γ−ε = ζε(1− γ)−ε,
implying that γ = 1/(1 + ζ).
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Solution in the Logarithmic Case

When ε = 1 and so u(c ; ε) = ln c , one has

V (w) = u(γw ; ε) + β{α + vE[u(r̃(1− γ)w ; ε)]}
= ln(γw) + β{α + vE[ln(r̃(1− γ)w)]}
= ln γ + (1 + βv) ln w + β {α + v ln(1− γ) + E[ln r̃ ]}

This is consistent with V (w) = α + v ln w in case:

1. v = 1 + βv , implying that v = (1− β)−1;

2. and also α = ln γ + β {α + v ln(1− γ) + E[ln r̃ ]},
which implies that

α = (1− β)−1
[
ln γ + β

{
(1− β)−1 ln(1− γ) + E[ln r̃ ]

}]
This confirms the solution for the logarithmic case.
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Solution in the CES Case
When ε 6= 1 and so u(c ; ε) = c1−ε/(1− ε), the equation

V (w) = u(γw ; ε) + βvE[u(r̃(1− γ)w ; ε)]

implies that

(1− ε)V (w) = (γw)1−ε + βvE[(r̃(1− γ)w)1−ε] = vw1−ε

where v = γ1−ε + βv(1− γ)1−εR1−ε and so

v =
γ1−ε

1− β(1− γ)1−εR1−ε =
γ1−ε

1− (1− γ)1−εζε

But optimality requires γ = 1/(1 + ζ), implying finally that

v =
(1 + ζ)ε−1

1− ζ(1 + ζ)ε−1
=

1

(1 + ζ)1−ε − ζ

This confirms the solution for the CES case.
University of Warwick, EC9A0 Maths for Economists 43 of 63



Lecture Outline

Optimal Saving

The Two Period Problem

The T Period Problem

A General Problem

Infinite Time Horizon

Main Theorem

Policy Improvement

University of Warwick, EC9A0 Maths for Economists 44 of 63



Bounded Returns

Suppose that the stochastic transition from each state x
to the immediately succeeding state x̃
is specified by a conditional probability measure B 7→ P(x̃ ∈ B|x , u)
on a σ-algebra of the state space.

Consider the stationary problem of choosing a policy x 7→ u∗(x)
in order to maximize the infinite discounted sum of utility

E
∑∞

t=1
βt−1f (xt , ut)

where 0 < β < 1.

The return function (x , u) 7→ f (x , u) ∈ R is uniformly bounded
provided there exist a uniform lower bound M∗
and a uniform upper bound M∗ such that

M∗ ≤ f (x , u) ≤ M∗ for all (x , u)
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Existence and Uniqueness

Theorem
Consider the Bellman equation system

V (x) =
u∗(x) ∈ arg

}
max

u∈F (x)
{f (x , u) + βE [V (x̃)|x , u]}

Under the assumption of uniformly bounded returns:

1. there is a unique state valuation function x 7→ V (x)
that satisfies this equation system;

2. any associated policy solution x 7→ u∗(x)
determines an optimal policy that is stationary
— i.e., independent of time.
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The Function Space

The boundedness assumption M∗ ≤ f (x , u) ≤ M∗ for all (x , u)
ensures that, because 0 < β < 1 and so

∑∞
t=1 β

t−1 = 1
1−β ,

the infinite discounted sum of utility

W := E
∑∞

t=1
βt−1f (xt , ut)

satisfies (1− β) W ∈ [M∗,M
∗].

This makes it natural to consider the linear space V
of all bounded functions X 3 x 7→ V (x) ∈ R
equipped with its sup norm defined by ‖V ‖ := supx∈X |V (x)|.

We will pay special attention to the subset

VM := {V ∈ V | ∀x ∈ X : (1− β)V (x) ∈ [M∗,M
∗]}

of state valuation functions with values V (x)
lying within the range of the possible values of W .
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Two Mappings

Given any measurable policy function X 3 x 7→ u(x) denoted by u,
define the mapping T u : VM → V by

[T uV ](x) := f (x , u(x)) + βE [V (x̃)|x , u(x)]

When the state is x , this gives the value [T uV ](x)
of choosing the policy u(x) for one period,
and then experiencing a future discounted return V (x̃)
after reaching each possible subsequent state x̃ ∈ X .

Define also the mapping T ∗ : VM → V by

[T ∗V ](x) := max
u∈F (x)

{f (x , u) + βE [V (x̃)|x , u]}

These definitions allow the Bellman equation system
to be rewritten as

V (x) = [T ∗V ](x)
u∗(x) ∈ arg maxu∈F (x)[T

uV ](x)
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Two Mappings of VM into Itself

For all V ∈ VM , policies u, and x ∈ X , we have defined

[T uV ](x) := f (x , u(x)) + βE [V (x̃)|x , u(x)]
and [T ∗V ](x) := maxu∈F (x){f (x , u) + βE [V (x̃)|x , u]}

Because of the boundedness condition M∗ ≤ f (x , u) ≤ M∗,
together with the assumption that V belongs to the domain VM ,
these definitions jointly imply that

(1− β) [T uV ](x) ≥ (1− β) M∗ + βM∗ = M∗
and (1− β) [T uV ](x) ≤ (1− β) M∗ + βM∗ = M∗

Similarly, given any V ∈ VM ,
one has M∗ ≤ (1− β) [T ∗V ](x) ≤ M∗ for all x ∈ X .

Therefore both V 7→ T uV and V 7→ T ∗V map VM into itself.
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A First Contraction Mapping

The definition [T uV ](x) := f (x , u(x)) + β E [V (x̃)|x , u(x)]
implies that for any two functions V1,V2 ∈ VM , one has

[T uV1](x)− [T uV2](x) = β E [V1(x̃)− V2(x̃)|x , u(x)]

The definition of the sup norm therefore implies that

‖T uV1 − T uV2‖ = supx∈X ‖[T uV1](x)− [T uV2](x)‖
= supx∈X ‖β E [V1(x̃)− V2(x̃)|x , u(x)] ‖
≤ β supx∈X E [‖V1(x̃)− V2(x̃)‖|x , u(x)]
≤ β supx̃∈X ‖V1(x̃)− V2(x̃)‖
= β ‖V1 − V2‖

Hence V 7→ T uV is a contraction mapping with factor β < 1
that maps the normed linear space VM into itself.
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Applying the Contraction Mapping Theorem, I

For each fixed policy u, the contraction mapping V 7→ T uV
mapping the space VM into itself has a unique fixed point
in the form of a function V u ∈ VM .

Furthermore, given any initial function V ∈ VM ,
consider the infinite sequence of mappings [T u]kV (k ∈ N)
that result from applying the operator T u iteratively k times.

The contraction mapping property of T u

implies that ‖[T u]kV − V u‖ → 0 as k →∞.
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Characterizing the Fixed Point, I

Starting from V0 = 0 and given any initial state x ∈ X , note that

‖[T u]kV0(x) = [T u]
(
[T u]k−1V0

)
(x)

= f (x , u(x)) + β E
[(

[T u]k−1V0

)
(x̃)|x , u(x)

]
It follows by induction on k that [T u]kV0(x̄) equals
the expected discounted total payoff E

∑k
t=1 β

t−1f (xt , ut)
of starting from x1 = x̄
and then following the policy x 7→ u(x) for k subsequent periods.

Taking the limit as k →∞, it follows that for any state x̄ ∈ X , the
value V u(x̄) of the fixed point in VM
is the expected discounted total payoff

E
∑∞

t=1
βt−1f (xt , ut)

of starting from x1 = x̄
and then following the policy x 7→ u(x) for ever thereafter.
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A Second Contraction Mapping

Recall the definition

[T ∗V ](x) := max
u∈F (x)

{f (x , u) + βE [V (x̃)|x , u]}

Given any state x ∈ X and any two functions V1,V2 ∈ VM ,
define u1, u2 ∈ F (x) so that for k = 1, 2 one has

[T ∗Vk ](x) = f (x , uk) + βE [Vk(x̃)|x , uk ]}

Note that [T ∗V2](x) ≥ f (x , u1) + βE [V2(x̃)|x , u1]} implying that

[T ∗V1](x)− [T ∗V2](x) ≤ βE [V1(x̃)− V2(x̃)|x , u1]}
≤ β‖V1 − V2‖

Similarly, interchanging 1 and 2 in the above argument
gives [T ∗V2](x)− [T ∗V1](x) ≤ β‖V1 − V2‖.
Hence ‖T ∗V1 −T ∗V2‖ ≤ β‖V1 −V2‖, so T ∗ is also a contraction.
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Applying the Contraction Mapping Theorem, II

Similarly the contraction mapping V 7→ T ∗V
has a unique fixed point in the form of a function V ∗ ∈ VM
such that V ∗(x̄) is the maximized expected discounted total payoff
of starting in state x1 = x̄
and following an optimal policy for ever thereafter.

Moreover, V ∗ = T ∗V ∗ = T u∗V .

This implies that V ∗ is also the value
of following the policy x 7→ u∗(x) throughout,
which must therefore be an optimal policy.
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Characterizing the Fixed Point, II

Starting from V0 = 0 and given any initial state x ∈ X , note that

‖[T ∗]kV0(x) = [T ∗]
(
[T ∗]k−1V0

)
(x)

= maxu∈F (x){f (x , u) + β E
[(

[T ∗]k−1V0

)
(x̃)|x , u

]
}

It follows by induction on k that [T ∗]kV0(x̄) equals the maximum
possible expected discounted total payoff E

∑k
t=1 β

t−1f (xt , ut)
of starting from x1 = x̄ and then following the “backward”
sequence of optimal policies (u∗k , u

∗
k−1, u

∗
k−2, . . . , u

∗
2 , u
∗
1),

where for each k the policy x 7→ u∗k(x̄) is optimal
when k periods remain.
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Method of Successive Approximation

The method of successive approximation starts
with an arbitrary function V0 ∈ VM .

For k = 1, 2, . . . ,, it then repeatedly solves
the pair of equations Vk = T ∗Vk−1 = T u∗k Vk−1
to construct sequences of:

1. state valuation functions X 3 x 7→ Vk(x) ∈ R;

2. policies X 3 x 7→ u∗k(x) ∈ F (x) that are optimal
given that one applies
the preceding state valuation function X 3 x̃ 7→ Vk−1(x̃) ∈ R
to each immediately succeeding state x̃ .

Because the operator V 7→ T ∗V on VM is a contraction mapping,
the method produces
a convergent sequence (Vk)∞k=1 of state valuation functions
whose limit satisfies V ∗ = T ∗V ∗ = T u∗V ∗

for a suitable policy X 3 x 7→ u∗(x) ∈ F (x).
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Monotonicity

For all functions V ∈ VM , policies u, and states x ∈ X ,
we have defined

[T uV ](x) := f (x , u(x)) + β E [V (x̃)|x , u(x)]
and [T ∗V ](x) := maxu∈F (x){f (x , u) + β E [V (x̃)|x , u]}

Notation
Given any pair V1,V2 ∈ VM , we write V1 = V2

to indicate that the inequality V1(x) ≥ V2(x) holds for all x ∈ X .

Definition
An operator VM 3 V 7→ TV ∈ VM is monotone just in case
whenever V1,V2 ∈ VM satisfy V1 = V2, one has TV1 = TV2.

Theorem
The following operators on VM are monotone:

1. V 7→ T uV for all policies u;

2. V 7→ T ∗V for the optimal policy.
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Proof that T u is Monotone

Given any state x ∈ X and any two functions V1,V2 ∈ VM ,
the definition of T u implies that

[T uV1](x) := f (x , u(x)) + β E [V1(x̃)|x , u(x)]
and [T uV2](x) := f (x , u(x)) + β E [V2(x̃)|x , u(x)]

Subtracting the second equation from the first implies that

[T uV1](x)− [T uV2](x) = β E [V1(x̃)− V2(x̃)|x , u(x)]

If V1 = V2 and so the inequality V1(x̃) ≥ V2(x̃) holds for all x̃ ∈ X ,
it follows that [T uV1](x) ≥ [T uV2](x).

Since this holds for all x ∈ X ,
we have proved that T uV1 = T uV2.
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Proof that T ∗ is Monotone
Given any state x ∈ X and any two functions V1,V2 ∈ VM ,
define u1, u2 ∈ F (x) so that for k = 1, 2 one has

[T ∗Vk ](x) = maxu∈F (x){f (x , u) + β E [V (x̃)|x , u]}
= f (x , uk) + β E [Vk(x̃)|x , uk ]

It follows that

[T ∗V1](x) ≥ f (x , u2) + β E [V1(x̃)|x , u2]
and [T ∗V2](x) = f (x , u2) + β E [V2(x̃)|x , u2]

Subtracting the second equation from the first inequality gives

[T ∗V1](x)− [T ∗V2](x) ≥ β E [V1(x̃)− V2(x̃)|x , u2]

If V1 = V2 and so the inequality V1(x̃) ≥ V2(x̃) holds for all x̃ ∈ X ,
it follows that [T ∗V1](x) ≥ [T ∗V2](x).

Since this holds for all x ∈ X ,
we have proved that T ∗V1 = T ∗V2.
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Policy Improvement

The method of policy improvement starts
with any fixed policy u0 or X 3 x 7→ u0(x) ∈ Ft(x),
along with the value V u0 of following that policy for ever,
which is the unique fixed point that satisfies V u0 = T u0V u0 .

At each step k = 1, 2, . . ., given the previous policy uk−1
and associated value V uk−1 satisfying V uk−1 = T uk−1V uk−1 :

1. the policy uk is chosen so that T ∗V uk−1 = T uk V uk−1 ;

2. the state valuation function x 7→ Vk(x)
is chosen as the unique fixed point of the operator T uk .

Theorem
The double infinite sequence (uk ,V

uk )k∈N of policies
and their associated state valuation functions satisfies

1. V uk = V uk−1 for all k ∈ N (policy improvement);

2. ‖V uk − V ∗‖ → 0 as k →∞, where V ∗ is the infinite-horizon
optimal state valuation function that satisfies T ∗V ∗ = V ∗.
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Proof of Policy Improvement

By definition of the optimality operator T ∗,
one has T ∗V = T uV for all functions V ∈ VM and all policies u.

So at each step k of the policy improvement routine, one has

T uk V uk−1 = T ∗V uk−1 = T uk−1V uk−1 = V uk−1

In particular, T uk V uk−1 = V uk−1 .

Now, applying successive iterations of the monotonic operator T uk

implies that

V uk−1 5 T uk V uk−1 5 [T uk ]2V uk−1 5 . . .

. . . 5 [T uk ]rV uk−1 5 [T uk ]r+1V uk−1 5 . . .

But the definition of V uk implies that for all V ∈ VM ,
including V = V uk−1 , one has ‖[T uk ]rV − V uk‖ → 0 as r →∞.

Hence V uk = supr [T uk ]rV uk−1 = V uk−1 ,
thus confirming that the policy uk does improve uk−1.
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Proof of Convergence

Recall that at each step k of the policy improvement routine,
one has T uk V uk−1 = T ∗V uk−1 and also T uk V uk = V uk .

Now, for each state x ∈ X , define V̂ (x) := supk V uk (x).

Because V uk = V uk−1 and T uk is monotonic,
one has V uk = T uk V uk = T uk V uk−1 = T ∗V uk−1 .

Next, because T ∗ is monotonic, it follows that

V̂ = sup
k

V uk = sup
k

T ∗V uk−1 = T ∗(sup
k

V uk−1) = T ∗V̂

Similarly, monotonicity of and the definition of T ∗ imply that

V̂ = sup
k

V uk = sup
k

T uk V uk 5 sup
k

T ∗V uk = T ∗(sup
k

V uk ) = T ∗V̂

Hence V̂ = T ∗V̂ = V ∗, because T ∗ has a unique fixed point.

Therefore V ∗ = supk V uk and so, because the sequence V uk (x)
is non-decreasing, one has V uk (x)→ V ∗(x) for each x ∈ X .
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Unbounded Utility

In economics the boundedness condition M∗ ≤ f (x , u) ≤ M∗

is rarely satisfied!

Consider for example the isoelastic utility function

u(c ; ε) =


c1−ε

1− ε
if ε > 0 and ε 6= 1

ln c if ε = 1

This function is obviously:

1. bounded below but unbounded above in case 0 < ε < 1;

2. unbounded both above and below in case ε = 1;

3. bounded above but unbounded below in case ε > 1.

Also commonly used is the negative exponential utility function
defined by u(c) = −e−αc

where α is the constant absolute rate of risk aversion (CARA).

This function is bounded above and also below (provided c ≥ 0).
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