University of Warwick, EC9A0 Maths for Economists
 Lecture Notes 10: Dynamic Programming

Peter J. Hammond

Autumn 2013, revised 2014

Lecture Outline

Optimal Saving

The Two Period Problem The T Period Problem

A General Problem

Infinite Time Horizon

Main Theorem

Policy Improvement

Intertemporal Utility

Consider a household which at time s is planning its intertemporal consumption stream $\mathbf{c}_{s}^{T}:=\left(c_{s}, c_{s+1}, \ldots, c_{T}\right)$ over periods t in the set $\{s, s+1, \ldots, T\}$.

Its intertemporal utility function $\mathbb{R}^{T-s+1} \ni \mathbf{c}_{s}^{T} \mapsto U_{s}^{T}\left(\mathbf{c}_{s}^{T}\right) \in \mathbb{R}$ is assumed to take the additively separable form

$$
U_{s}^{T}\left(\mathbf{c}_{s}^{T}\right):=\sum_{t=s}^{T} u_{t}\left(c_{t}\right)
$$

where the one period felicity functions $c \mapsto u_{t}(c)$ are differentiably increasing and strictly concave (DISC)

- i.e., $u_{t}^{\prime}(c)>0$, and $u_{t}^{\prime \prime}(c)<0$ for all t and all $c>0$.

As before, the household faces:

1. fixed initial wealth w_{s};
2. a terminal wealth constraint $w_{T+1} \geq 0$.

Risky Wealth Accumulation

Also as before, we assume
a wealth accumulation equation $w_{t+1}=\tilde{r}_{t}\left(w_{t}-c_{t}\right)$, where \tilde{r}_{t} is the household's gross rate of return on its wealth in period t.

It is assumed that:

1. the return \tilde{r}_{t} in each period t is a random variable with positive values;
2. the return distributions for different times t are stochastically independent;
3. starting with predetermined wealth w_{s} at time s, the household seeks to maximize the expectation $\mathbb{E}_{s}\left[U_{s}^{T}\left(\mathbf{c}_{s}^{T}\right)\right]$ of its intertemporal utility.

Lecture Outline

Optimal Saving

The Two Period Problem

The T Period Problem

A General Problem

Infinite Time Horizon

Main Theorem

Policy Improvement

Two Period Case

We work backwards from the last period, when $s=T$.
In this last period the household will obviously choose $c_{T}=w_{T}$, yielding a maximized utility equal to $V_{T}\left(w_{T}\right)=u_{T}\left(w_{T}\right)$.

Next, consider the penultimate period, when $s=T-1$. The consumer will want to choose c_{T-1} in order to maximize

$$
\underbrace{u_{T-1}\left(c_{T-1}\right)}_{\text {period } T-1}+\underbrace{\mathbb{E}_{T-1} V_{T}\left(w_{T}\right)}_{\text {result of an optimal policy in period } T}
$$

subject to the wealth constraint

$$
w_{T}=\underbrace{\tilde{r}_{T-1}}_{\text {random gross return }} \underbrace{\left(w_{T-1}-C_{T-1}\right)}_{\text {saving }}
$$

First-Order Condition

Substituting both the function $V_{T}\left(w_{T}\right)=u_{T}\left(w_{T}\right)$
and the wealth constraint into the objective reduces the problem to

$$
\max _{c_{T-1}}\left\{u_{T-1}\left(c_{T-1}\right)+\mathbb{E}_{T-1}\left[u_{T}\left(\tilde{r}_{T-1}\left(w_{T-1}-c_{T-1}\right)\right)\right]\right\}
$$

subject to $0 \leq c_{T-1} \leq w_{T-1}$ and $\tilde{c}_{T}:=\tilde{r}_{T-1}\left(w_{T-1}-c_{T-1}\right)$.
Assume we can differentiate under the integral sign, and that there is an interior solution with $0<c_{T-1}<w_{T-1}$.
Then the first-order condition (FOC) is

$$
0=u_{T-1}^{\prime}\left(c_{T-1}\right)+\mathbb{E}_{T-1}\left[\left(-\tilde{r}_{T-1}\right) u_{T}^{\prime}\left(\tilde{r}_{T-1}\left(w_{T-1}-c_{T-1}\right)\right)\right]
$$

The Stochastic Euler Equation

Rearranging the first-order condition while recognizing that $\tilde{c}_{T}:=\tilde{r}_{T-1}\left(w_{T-1}-c_{T-1}\right)$, one obtains

$$
u_{T-1}^{\prime}\left(c_{T-1}\right)=\mathbb{E}_{T-1}\left[\tilde{r}_{T-1} u_{T}^{\prime}\left(\tilde{r}_{T-1}\left(w_{T-1}-c_{T-1}\right)\right)\right]
$$

Dividing by $u_{T-1}^{\prime}\left(c_{T-1}\right)$ gives the stochastic Euler equation
$1=\mathbb{E}_{T-1}\left[\tilde{r}_{T-1} \frac{u_{T}^{\prime}\left(\tilde{c}_{T}\right)}{u_{T-1}^{\prime}\left(c_{T-1}\right)}\right]=\mathbb{E}_{T-1}\left[\tilde{r}_{T-1} \operatorname{MRS}_{T-1}^{T}\left(c_{T-1} ; \tilde{c}_{T}\right)\right]$
involving the marginal rate of substitution function

$$
\operatorname{MRS}_{T-1}^{T}\left(c_{T-1} ; \tilde{c}_{T}\right):=\frac{u_{T}^{\prime}\left(\tilde{c}_{T}\right)}{u_{T-1}^{\prime}\left(c_{T-1}\right)}
$$

The CES Case

For the marginal utility function $c \mapsto u^{\prime}(c)$, its elasticity of substitution is defined for all $c>0$ by $\eta(c):=d \ln u^{\prime}(c) / d \ln c$.
Then $\eta(c)$ is both the degree of relative risk aversion, and the degree of relative fluctuation aversion.

A constant elasticity of substitution (or CES) utility function satisfies $d \ln u^{\prime}(c) / d \ln c=-\epsilon<0$ for all $c>0$.

The marginal rate of substitution
satisfies $u^{\prime}(c) / u^{\prime}(\bar{c})=(c / \bar{c})^{-\epsilon}$ for all $c, \bar{c}>0$.

Normalized Utility

Normalize by putting $u^{\prime}(1)=1$, implying that $u^{\prime}(c) \equiv c^{-\epsilon}$.
Then integrating gives

$$
\begin{aligned}
u(c ; \epsilon) & =u(1)+\int_{1}^{c} x^{-\epsilon} d x \\
& = \begin{cases}u(1)+\frac{c^{1-\epsilon}-1}{1-\epsilon} & \text { if } \epsilon \neq 1 \\
u(1)+\ln c & \text { if } \epsilon=1\end{cases}
\end{aligned}
$$

Introduce the final normalization

$$
u(1)= \begin{cases}\frac{1}{1-\epsilon} & \text { if } \epsilon \neq 1 \\ 0 & \text { if } \epsilon=1\end{cases}
$$

The utility function is reduced to

$$
u(c ; \epsilon)= \begin{cases}\frac{c^{1-\epsilon}-1}{1-\epsilon} & \text { if } \epsilon \neq 1 \\ \ln c & \text { if } \epsilon=1\end{cases}
$$

The Stochastic Euler Equation in the CES Case

Consider the CES case when $u_{t}^{\prime}(c) \equiv \delta_{t} c^{-\epsilon}$, where each δ_{t} is the discount factor for period t.

Definition

The one-period discount factor in period t is defined as $\beta_{t}:=\delta_{t+1} / \delta_{t}$.
Then the stochastic Euler equation takes the form

$$
1=\mathbb{E}_{T-1}\left[\tilde{r}_{T-1} \beta_{T-1}\left(\frac{\tilde{c}_{T}}{c_{T-1}}\right)^{-\epsilon}\right]
$$

Because c_{T-1} is being chosen at time $T-1$, this implies that

$$
\left(c_{T-1}\right)^{-\epsilon}=\mathbb{E}_{T-1}\left[\tilde{r}_{T-1} \beta_{T-1}\left(\tilde{c}_{T}\right)^{-\epsilon}\right]
$$

The Two Period Problem in the CES Case

In the two-period case, we know that

$$
\tilde{c}_{T}=\tilde{w}_{T}=\tilde{r}_{T-1}\left(w_{T-1}-c_{T-1}\right)
$$

in the last period, so the Euler equation becomes

$$
\begin{aligned}
\left(c_{T-1}\right)^{-\epsilon} & =\mathbb{E}_{T-1}\left[\tilde{r}_{T-1} \beta_{T-1}\left(\tilde{c}_{T}\right)^{-\epsilon}\right] \\
& =\beta_{T-1}\left(w_{T-1}-c_{T-1}\right)^{-\epsilon} \mathbb{E}_{T-1}\left[\left(\tilde{r}_{T-1}\right)^{1-\epsilon}\right]
\end{aligned}
$$

Take the $(-1 / \epsilon)$ th power of each side and define

$$
\rho_{T-1}:=\left(\beta_{T-1} \mathbb{E}_{T-1}\left[\left(\tilde{r}_{T-1}\right)^{1-\epsilon}\right]\right)^{-1 / \epsilon}
$$

to reduce the Euler equation to $c_{T-1}=\rho_{T-1}\left(w_{T-1}-c_{T-1}\right)$ whose solution is evidently $c_{T-1}=\gamma_{T-1} W_{T-1}$ where

$$
\gamma_{T-1}:=\rho_{T-1} /\left(1+\rho_{T-1}\right) \quad \text { and } \quad 1-\gamma_{T-1}=1 /\left(1+\rho_{T-1}\right)
$$

are respectively the optimal consumption and savings ratios.
It follows that $\rho_{T-1}=\gamma_{T-1} /\left(1-\gamma_{T-1}\right)$
is the consumption/savings ratio.

Optimal Discounted Expected Utility

The optimal policy in periods T and $T-1$ is $c_{t}=\gamma_{t} w_{t}$ where $\gamma_{T}=1$ and γ_{T-1} has just been defined.

In this CES case, the discounted utility of consumption in period T is $V_{T}\left(w_{T}\right):=\delta_{T} u\left(w_{T} ; \epsilon\right)$.

The discounted expected utility at time $T-1$ of consumption in periods T and $T-1$ together is

$$
V_{T-1}\left(w_{T-1}\right)=\delta_{T-1} u\left(\gamma_{T-1} w_{T-1} ; \epsilon\right)+\delta_{T} \mathbb{E}_{T-1}\left[u\left(\tilde{w}_{T} ; \epsilon\right)\right]
$$

where $\tilde{w}_{T}=\tilde{r}_{T-1}\left(1-\gamma_{T-1}\right) w_{T-1}$.

Discounted Expected Utility in the Logarithmic Case

In the logarithmic case when $\epsilon=1$, one has

$$
\begin{aligned}
& V_{T-1}\left(w_{T-1}\right)=\delta_{T-1} \ln \left(\gamma_{T-1} w_{T-1}\right) \\
&+\delta_{T} \mathbb{E}_{T-1}\left[\ln \left(\tilde{r}_{T-1}\left(1-\gamma_{T-1}\right) w_{T-1}\right)\right]
\end{aligned}
$$

It follows that

$$
V_{T-1}\left(w_{T-1}\right)=\alpha_{T-1}+\left(\delta_{T-1}+\delta_{T}\right) u\left(w_{T-1} ; \epsilon\right)
$$

where

$$
\alpha_{T-1}:=\delta_{T-1} \ln \gamma_{T-1}+\delta_{T}\left\{\ln \left(1-\gamma_{T-1}\right)+\mathbb{E}_{T-1}\left[\ln \tilde{r}_{T-1}\right]\right\}
$$

Discounted Expected Utility in the CES Case

In the CES case when $\epsilon \neq 1$, one has

$$
\begin{aligned}
(1-\epsilon) V_{T-1}\left(w_{T-1}\right) & =\delta_{T-1}\left(\gamma_{T-1} w_{T-1}\right)^{1-\epsilon} \\
+ & \delta_{T}\left[\left(1-\gamma_{T-1}\right) w_{T-1}\right]^{1-\epsilon} \mathbb{E}_{T-1}\left[\left(\tilde{r}_{T-1}\right)^{1-\epsilon}\right]
\end{aligned}
$$

so $V_{T-1}\left(w_{T-1}\right)=v_{T-1} u\left(w_{T-1} ; \epsilon\right)$ where

$$
v_{T-1}:=\delta_{T-1}\left(\gamma_{T-1}\right)^{1-\epsilon}+\delta_{T}\left(1-\gamma_{T-1}\right)^{1-\epsilon} \mathbb{E}_{T-1}\left[\left(\tilde{r}_{T-1}\right)^{1-\epsilon}\right]
$$

In both cases, one can write $V_{T-1}\left(w_{T-1}\right)=\alpha_{T-1}+v_{T-1} u\left(w_{T-1} ; \epsilon\right)$ for a suitable additive constant α_{T-1} (which is 0 in the CES case) and a suitable multiplicative constant v_{T-1}.

Lecture Outline

Optimal SavingThe Two Period ProblemThe T Period ProblemA General ProblemInfinite Time HorizonMain Theorem
Policy Improvement

The Time Line

In each period t, suppose:

- the consumer starts with known wealth w_{t};
- then the consumer chooses consumption c_{t}, along with savings or residual wealth $w_{t}-c_{t}$;
- there is a cumulative distribution function $F_{t}(r)$ on \mathbb{R} that determines the gross return \tilde{r}_{t} as a positive-valued random variable.

After these three steps have been completed, the problem starts again in period $t+1$, with the consumer's wealth known to be $w_{t+1}=\tilde{r}_{t}\left(w_{t}-c_{t}\right)$.

Expected Conditionally Expected Utility

Starting at any t, suppose the consumer's choices, together with the random returns, jointly determine a $\operatorname{cdf} F_{t}^{T}$ over the space of intertemporal consumption streams \mathbf{c}_{t}^{T}.
The associated expected utility is $\mathbb{E}_{t}\left[U_{t}^{T}\left(\mathbf{c}_{t}^{T}\right)\right]$, using the shorthand \mathbb{E}_{t} to denote integration w.r.t. the cdf $F_{t}{ }^{T}$.
Then, given that the consumer has chosen c_{t} at time t, let $\mathbb{E}_{t+1}\left[\cdot \mid c_{t}\right]$ denote the conditional expected utility.

This is found by integrating w.r.t. the conditional $\operatorname{cdf} F_{t+1}^{T}\left(\mathbf{c}_{t+1}^{T} \mid c_{t}\right)$.

The law of iterated expectations allows us to write the unconditional expectation $\mathbb{E}_{t}\left[U_{t}^{T}\left(\mathbf{c}_{t}^{T}\right)\right]$ as the expectation $\mathbb{E}_{t}\left[\mathbb{E}_{t+1}\left[U_{t}^{T}\left(\mathbf{c}_{t}^{T}\right) \mid c_{t}\right]\right]$ of the conditional expectation.

The Expectation of Additively Separable Utility

Our hypothesis is that the intertemporal von Neumann-Morgenstern utility function takes the additively separable form

$$
U_{t}^{T}\left(\mathbf{c}_{t}^{T}\right)=\sum_{\tau=t}^{T} u_{\tau}\left(c_{\tau}\right)
$$

The conditional expectation given c_{t} must then be

$$
\mathbb{E}_{t+1}\left[U_{t}^{T}\left(\mathbf{c}_{t}^{T}\right) \mid c_{t}\right]=u_{t}\left(c_{t}\right)+\mathbb{E}_{t+1}\left[\sum_{\tau=t+1}^{T} u_{\tau}\left(c_{\tau}\right) \mid c_{t}\right]
$$

whose expectation is

$$
\mathbb{E}_{t}\left[\sum_{\tau=t}^{T} u_{\tau}\left(c_{\tau}\right)\right]=u_{t}\left(c_{t}\right)+\mathbb{E}_{t}\left[\mathbb{E}_{t+1}\left[\sum_{\tau=t+1}^{T} u_{\tau}\left(c_{\tau}\right)\right] \mid c_{t}\right]
$$

The Continuation Value

Let $V_{t+1}\left(w_{t+1}\right)$ be the state valuation function expressing the maximum of the continuation value

$$
\mathbb{E}_{t+1}\left[U_{t+1}^{T}\left(\mathbf{c}_{t+1}^{T}\right)\right]=\mathbb{E}_{t+1}\left[\sum_{\tau=t+1}^{T} u_{\tau}\left(c_{\tau}\right)\right]
$$

as a function of the wealth level or state $w_{t+1}=\tilde{r}_{t}\left(w_{t}-c_{t}\right)$.
Assume this maximum value is achieved by following an optimal policy from period $t+1$ on.

Then total expected utility at time t will then reduce to

$$
\begin{aligned}
\mathbb{E}_{t}\left[U_{t}^{T}\left(\mathbf{c}_{t}^{T}\right)\right] & =u_{t}\left(c_{t}\right)+\mathbb{E}_{t}\left[\mathbb{E}_{t+1}\left[\sum_{\tau=t+1}^{T} u_{\tau}\left(c_{\tau}\right) \mid c_{t}\right]\right] \\
& =u_{t}\left(c_{t}\right)+\mathbb{E}_{t}\left[V_{t+1}\left(\tilde{w}_{t+1}\right)\right] \\
& =u_{t}\left(c_{t}\right)+\mathbb{E}_{t}\left[V_{t+1}\left(\tilde{r}_{t}\left(w_{t}-c_{t}\right)\right)\right]
\end{aligned}
$$

The Principle of Optimality

Maximizing $\mathbb{E}_{s}\left[U_{s}^{T}\left(\mathbf{c}_{s}^{T}\right)\right]$ w.r.t. c_{s}, taking as fixed the optimal consumption plans $c_{t}\left(w_{t}\right)$ at times $t=s+1, \ldots, T$, therefore requires choosing c_{s} to maximize

$$
u_{s}\left(c_{s}\right)+\mathbb{E}_{s}\left[V_{s+1}\left(\tilde{r}_{s}\left(w_{s}-c_{s}\right)\right)\right]
$$

Let $c_{s}^{*}\left(w_{s}\right)$ denote a solution to this maximization problem.
Then the value of an optimal plan $\left(c_{t}^{*}\left(w_{t}\right)\right)_{t=s}^{T}$ that starts with wealth w_{s} at time s is

$$
V_{s}\left(w_{s}\right):=u_{s}\left(c_{s}^{*}\left(w_{s}\right)\right)+\mathbb{E}_{s}\left[V_{s+1}\left(\tilde{r}_{s}\left(w_{s}-c_{s}^{*}\left(w_{s}\right)\right)\right)\right]
$$

Together, these two properties can be expressed as

$$
\left.\begin{array}{l}
V_{s}\left(w_{s}\right)= \\
c_{s}^{*}\left(w_{s}\right)=\arg
\end{array}\right\} \max _{0 \leq c_{s} \leq w_{s}}\left\{u_{s}\left(c_{s}\right)+\mathbb{E}_{s}\left[V_{s+1}\left(\tilde{r}_{s}\left(w_{s}-c_{s}\right)\right)\right]\right\}
$$

which can be described as the the principle of optimality.

An Induction Hypothesis

Consider once again the case when $u_{t}(c) \equiv \delta_{t} u(c ; \epsilon)$ for the CES (or logarithmic) utility function that satisfies $u^{\prime}(c ; \epsilon) \equiv c^{-\epsilon}$ and, specifically

$$
u(c ; \epsilon)= \begin{cases}c^{1-\epsilon} /(1-\epsilon) & \text { if } \epsilon \neq 1 ; \\ \ln c & \text { if } \epsilon=1\end{cases}
$$

Inspired by the solution we have already found for the final period T and penultimate period $T-1$, we adopt the induction hypothesis that there are constants $\alpha_{t}, \gamma_{t}, v_{t}(t=T, T-1, \ldots, s+1, s)$ for which

$$
c_{t}^{*}\left(w_{t}\right)=\gamma_{t} w_{t} \quad \text { and } \quad V_{t}\left(w_{t}\right)=\alpha_{t}+v_{t} u\left(w_{t} ; \epsilon\right)
$$

In particular, the consumption ratio γ_{t} and savings ratio $1-\gamma_{t}$ are both independent of the wealth level w_{t}.

Applying Backward Induction

Under the induction hypotheses that

$$
c_{t}^{*}\left(w_{t}\right)=\gamma_{t} w_{t} \quad \text { and } \quad V_{t}\left(w_{t}\right)=\alpha_{t}+v_{t} u\left(w_{t} ; \epsilon\right)
$$

the maximand

$$
u_{s}\left(c_{s}\right)+\mathbb{E}_{s}\left[V_{s+1}\left(\tilde{r}_{s}\left(w_{s}-c_{s}\right)\right)\right]
$$

takes the form

$$
\delta_{s} u\left(c_{s} ; \epsilon\right)+\mathbb{E}_{s}\left[\alpha_{s+1}+v_{s+1} u\left(\tilde{r}_{s}\left(w_{s}-c_{s}\right) ; \epsilon\right)\right]
$$

The first-order condition for this to be maximized w.r.t. c_{s} is

$$
0=\delta_{s} u^{\prime}\left(c_{s} ; \epsilon\right)-v_{s+1} \mathbb{E}_{s}\left[\tilde{r}_{s} u^{\prime}\left(\tilde{r}_{s}\left(w_{s}-c_{s}\right) ; \epsilon\right)\right]
$$

or, equivalently, that $\left.\delta_{s}\left(c_{s}\right)^{-\epsilon}=v_{s+1} \mathbb{E}_{s}\left[\tilde{r}_{s}\left(\tilde{r}_{s}\left(w_{s}-c_{s}\right)\right)^{-\epsilon}\right)\right]=v_{s+1}\left(w_{s}-c_{s}\right)^{-\epsilon} \mathbb{E}_{s}\left[\left(\tilde{r}_{s}\right)^{1-\epsilon}\right]$

Solving the Logarithmic Case

When $\epsilon=1$ and so $u(c ; \epsilon)=\ln c$, the first-order condition reduces to $\delta_{s}\left(c_{s}\right)^{-1}=v_{s+1}\left(w_{s}-c_{s}\right)^{-1}$. Its solution is indeed $c_{s}=\gamma_{s} w_{s}$ where $\delta_{s}\left(\gamma_{s}\right)^{-1}=v_{s+1}\left(1-\gamma_{s}\right)^{-1}$, implying that $\gamma_{s}=\delta_{s} /\left(\delta_{s}+v_{s+1}\right)$.
The state valuation function then becomes

$$
\begin{aligned}
V_{s}\left(w_{s}\right) & =\delta_{s} u\left(\gamma_{s} w_{s} ; \epsilon\right)+\alpha_{s+1}+v_{s+1} \mathbb{E}_{s}\left[u\left(\tilde{r}_{s}\left(1-\gamma_{s}\right) w_{s} ; \epsilon\right)\right] \\
& =\delta_{s} \ln \left(\gamma_{s} w_{s}\right)+\alpha_{s+1}+v_{s+1} \mathbb{E}_{s}\left[\ln \left(\tilde{r}_{s}\left(1-\gamma_{s}\right) w_{s}\right)\right] \\
& =\delta_{s} \ln \left(\gamma_{s} w_{s}\right)+\alpha_{s+1}+v_{s+1}\left\{\ln \left(1-\gamma_{s}\right) w_{s}+\ln R_{s}\right\}
\end{aligned}
$$

where we define the geometric mean certainty equivalent return R_{s} so that $\ln R_{s}:=\mathbb{E}_{s}\left[\ln \left(\tilde{r}_{s}\right)\right]$.

The State Valuation Function

The formula

$$
V_{s}\left(w_{s}\right)=\delta_{s} \ln \left(\gamma_{s} w_{s}\right)+\alpha_{s+1}+v_{s+1}\left\{\ln \left(1-\gamma_{s}\right) w_{s}+\ln R_{s}\right\}
$$

reduces to the desired form $V_{s}\left(w_{s}\right)=\alpha_{s}+v_{s} \ln w_{s}$ provided we take $v_{s}:=\delta_{s}+v_{s+1}$, which implies that $\gamma_{s}=\delta_{s} / v_{s}$, and also

$$
\begin{aligned}
\alpha_{s} & :=\delta_{s} \ln \gamma_{s}+\alpha_{s+1}+v_{s+1}\left\{\ln \left(1-\gamma_{s}\right)+\ln R_{s}\right\} \\
& =\delta_{s} \ln \left(\delta_{s} / v_{s}\right)+\alpha_{s+1}+v_{s+1}\left\{\ln \left(v_{s+1} / v_{s}\right)+\ln R_{s}\right\} \\
& =\delta_{s} \ln \delta_{s}+\alpha_{s+1}-v_{s} \ln v_{s}+v_{s+1}\left\{\ln v_{s+1}+\ln R_{s}\right\}
\end{aligned}
$$

This confirms the induction hypothesis for the logarithmic case.
The relevant constants v_{s} are found by summing backwards, starting with $v_{T}=\delta_{T}$, implying that $v_{s}=\sum_{\tau=s}^{T} \delta_{s}$.

The Stationary Logarithmic Case

In the stationary logarithmic case:

- the felicity function in each period t is $\beta^{t} \ln c_{t}$, so the one period discount factor is the constant β;
- the certainty equivalent return R_{t} is also a constant R.

Then $v_{s}=\sum_{\tau=s}^{T} \delta_{s}=\sum_{\tau=s}^{T} \beta^{\tau}=\left(\beta^{s}-\beta^{T+1}\right) /(1-\beta)$, implying that $\gamma_{s}=\beta^{s} / v_{s}=\beta^{s}(1-\beta) /\left(\beta^{s}-\beta^{T+1}\right)$.

It follows that

$$
c_{s}=\gamma_{s} w_{s}=\frac{(1-\beta) w_{s}}{1-\beta^{T-s+1}}=\frac{(1-\beta) w_{s}}{1-\beta^{H+1}}
$$

when there are $H:=T-s$ periods left before the horizon T.
As $H \rightarrow \infty$, this solution converges to $c_{s}=(1-\beta) w_{s}$, so the savings ratio equals the constant discount factor β.
Remarkably, this is also independent on the gross return to saving.

First-Order Condition in the CES Case

Recall that the first-order condition in the CES Case is

$$
\delta_{s}\left(c_{s}\right)^{-\epsilon}=v_{s+1}\left(w_{s}-c_{s}\right)^{-\epsilon} \mathbb{E}_{s}\left[\left(\tilde{r}_{s}\right)^{1-\epsilon}\right]=v_{s+1}\left(w_{s}-c_{s}\right)^{-\epsilon} R_{s}^{1-\epsilon}
$$

where we have defined the certainty equivalent return R_{s} as the solution to $R_{s}^{1-\epsilon}:=\mathbb{E}_{s}\left[\left(\tilde{r}_{s}\right)^{1-\epsilon}\right]$.
The first-order condition indeed implies that $c_{s}^{*}\left(w_{s}\right)=\gamma_{s} w_{s}$, where $\delta_{s}\left(\gamma_{s}\right)^{-\epsilon}=v_{s+1}\left(1-\gamma_{s}\right)^{-\epsilon} R_{s}^{1-\epsilon}$.
This implies that

$$
\frac{\gamma_{s}}{1-\gamma_{s}}=\left(v_{s+1} R_{s}^{1-\epsilon} / \delta_{s}\right)^{-1 / \epsilon}
$$

or

$$
\gamma_{s}=\frac{\left(v_{s+1} R_{s}^{1-\epsilon} / \delta_{s}\right)^{-1 / \epsilon}}{1+\left(v_{s+1} R_{s}^{1-\epsilon} / \delta_{s}\right)^{-1 / \epsilon}}=\frac{\left(v_{s+1} R_{s}^{1-\epsilon}\right)^{-1 / \epsilon}}{\left(\delta_{s}\right)^{-1 / \epsilon}+\left(v_{s+1} R_{s}^{1-\epsilon}\right)^{-1 / \epsilon}}
$$

Completing the Solution in the CES Case

Under the induction hypothesis that $V_{s+1}(w)=v_{s+1} w^{1-\epsilon} /(1-\epsilon)$, one also has

$$
(1-\epsilon) V_{s}\left(w_{s}\right)=\delta_{s}\left(\gamma_{s} w_{s}\right)^{1-\epsilon}+v_{s+1} \mathbb{E}_{s}\left[\left(\tilde{r}_{s}\left(1-\gamma_{s}\right) w_{s}\right)^{1-\epsilon}\right]
$$

This reduces to the desired form $(1-\epsilon) V_{s}\left(w_{s}\right)=v_{s}\left(w_{s}\right)^{1-\epsilon}$, where

$$
\begin{aligned}
v_{s} & :=\delta_{s}\left(\gamma_{s}\right)^{1-\epsilon}+v_{s+1} \mathbb{E}_{s}\left[\left(\tilde{r}_{s}\right)^{1-\epsilon}\right]\left(1-\gamma_{s}\right)^{1-\epsilon} \\
& =\frac{\delta_{s}\left(v_{s+1} R_{s}^{1-\epsilon}\right)^{1-1 / \epsilon}+v_{s+1} R_{s}^{1-\epsilon}\left(\delta_{s}\right)^{1-1 / \epsilon}}{\left[\left(\delta_{s}\right)^{-1 / \epsilon}+\left(v_{s+1} R_{s}^{1-\epsilon}\right)^{-1 / \epsilon}\right]^{1-\epsilon}} \\
& =\delta_{s} v_{s+1} R_{s}^{1-\epsilon} \frac{\left(v_{s+1} R_{s}^{1-\epsilon}\right)^{-1 / \epsilon}+\left(\delta_{s}\right)^{-1 / \epsilon}}{\left[\left(\delta_{s}\right)^{-1 / \epsilon}+\left(v_{s+1} R_{s}^{1-\epsilon}\right)^{-1 / \epsilon}\right]^{1-\epsilon}} \\
& =\delta_{s} v_{s+1} R_{s}^{1-\epsilon}\left[\left(\delta_{s}\right)^{-1 / \epsilon}+\left(v_{s+1} R_{s}^{1-\epsilon}\right)^{-1 / \epsilon}\right]^{\epsilon}
\end{aligned}
$$

This confirms the induction hypothesis for the CES case.
Again, the relevant constants are found by working backwards.

Histories and Strategies

For each time $t=s, s+1, \ldots, T$
between the start s and the horizon T, let h^{t} denote a known history $\left(w_{\tau}, c_{\tau}, \tilde{r}_{\tau}\right)_{\tau=s}^{t}$ of the triples $\left(w_{\tau}, c_{\tau}, \tilde{r}_{\tau}\right)$ at successive times $\tau=s, s+1, \ldots, t$ up to time t.

A general policy the consumer can choose involves a measurable function $h^{t} \mapsto \psi_{t}\left(h^{t}\right)$ mapping each known history up to time t, which determines the consumer's information set, into a consumption level at that time.
The collection of successive functions $\psi_{s}^{T}=\left\langle\psi_{t}\right\rangle_{t=s}^{T}$ is what a game theorist would call the consumer's strategy in the extensive form game "against nature".

Markov Strategies

We found an optimal solution for the two-period problem when $t=T-1$.
It took the form of a Markov strategy $\psi_{t}\left(h^{t}\right):=c_{t}^{*}\left(w_{t}\right)$, which depends only on w_{t} as the particular state variable.

The following analysis will demonstrate in particular that at each time $t=s, s+1, \ldots, T$, under the induction hypothesis that the consumer will follow a Markov strategy in periods $\tau=t+1, t+2, \ldots, T$, there exists a Markov strategy that is optimal in period t.

It will follow by backward induction that there exists an optimal strategy $h^{t} \mapsto \psi_{t}\left(h^{t}\right)$ for every period $t=s, s+1, \ldots, T$ that takes the Markov form $h^{t} \mapsto w_{t} \mapsto c_{t}^{*}\left(w_{t}\right)$.

This treats history as irrelevant, except insofar as it determines current wealth w_{t} at the time when c_{t} has to be chosen.

A Stochastic Difference Equation

Accordingly, suppose that the consumer pursues a Markov strategy taking the form $w_{t} \mapsto c_{t}^{*}\left(w_{t}\right)$.

Then the Markov state variable w_{t} will evolve over time according to the stochastic difference equation

$$
w_{t+1}=\phi_{t}\left(w_{t}, \tilde{r}_{t}\right):=\tilde{r}_{t}\left(w_{t}-c_{t}^{*}\left(w_{t}\right)\right)
$$

Starting at any time t, conditional on initial wealth w_{t}, this equation will have a random solution $\tilde{\mathbf{w}}_{t+1}^{T}=\left(\tilde{w}_{\tau}\right)_{\tau=t+1}^{T}$ described by a unique joint conditional $\operatorname{cdf} F_{t+1}^{T}\left(\mathbf{w}_{t+1}^{T} \mid w_{t}\right)$ on \mathbb{R}^{T-s}.

Combined with the Markov strategy $w_{t} \mapsto c_{t}^{*}\left(w_{t}\right)$, this generates a random consumption stream $\tilde{\mathbf{c}}_{t+1}^{T}=\left(\tilde{c}_{\tau}\right)_{\tau=t+1}^{T}$ described by a unique joint conditional cdf $G_{t+1}^{T}\left(\mathbf{c}_{t+1}^{T} \mid w_{t}\right)$ on \mathbb{R}^{T-s}.

General Finite Horizon Problem

Consider the objective of choosing y_{s} in order to maximize

$$
\mathbb{E}_{s}\left[\sum_{t=s}^{T-1} u_{s}\left(x_{s}, y_{s}\right)+\phi_{T}\left(x_{T}\right)\right]
$$

subject to the law of motion $x_{t+1}=\xi_{t}\left(x_{t}, y_{t}, \epsilon_{t}\right)$, where the random shocks ϵ_{t} at different times $t=s, s+1, s+2, \ldots, T-1$ are conditionally independent given x_{t}, y_{t}. Here $x_{T} \mapsto \phi_{T}\left(x_{T}\right)$ is the terminal state valuation function.

The stochastic law of motion can also be expressed through successive conditional probabilities $\mathbb{P}_{t+1}\left(x_{t+1} \mid x_{t}, y_{t}\right)$.
The choices of y_{t} at successive times determine a controlled Markov process governing the stochastic transition from each state x_{t} to its immediate successor x_{t+1}.

Backward Recurrence Relation

The optimal solution can be derived by solving the backward recurrence relation

$$
\left.\begin{array}{l}
V_{s}\left(x_{s}\right)= \\
y_{s}^{*}\left(x_{s}\right)=\arg
\end{array}\right\} \max _{y_{s} \in F_{s}\left(x_{s}\right)}\left\{u_{s}\left(x_{s}, y_{s}\right)+\mathbb{E}_{s}\left[V_{s+1}\left(x_{s+1}\right) \mid x_{s}, y_{s}\right]\right\}
$$

where

1. x_{s} denotes the "inherited state" at time s;
2. $V_{s}\left(x_{s}\right)$ is the current value in state x_{s} of the state value function $X \ni x \mapsto V_{s}(x) \in \mathbb{R}$;
3. $X \ni x \mapsto F_{s}(x) \subset Y$ is the feasible set correspondence;
4. $(x, y) \mapsto u_{s}(x, y)$ denotes the immediate return function in period s;
5. $X \ni x \mapsto y_{s}^{*}(x) \in F_{s}\left(x_{s}\right)$ is the optimal "strategy" or policy function;
6. The relevant terminal condition is that $V_{T}\left(x_{T}\right)$ is given by the exogenously specified function $\phi_{T}\left(x_{T}\right)$.

Lecture Outline

Optimal Saving
The Two Period Problem
\square
The T Period Problem
A General Problem
Infinite Time Horizon
Main Theorem
Policy Improvement

An Infinite Horizon Savings Problem

Game theorists speak of the "one-shot" deviation principle.
This states that if any deviation
from a particular policy or strategy improves a player's payoff, then there exists a one-shot deviation that improves the payoff.

We consider the infinite horizon extension of the consumption/investment problem already considered. This takes the form of choosing a consumption policy $c_{t}\left(w_{t}\right)$ in order to maximize the discounted sum of total utility, given by

$$
\sum_{t=s}^{\infty} \beta^{t-s} u\left(c_{t}\right)
$$

subject to the accumulation equation $w_{t+1}=\tilde{r}_{t}\left(w_{t}-c_{t}\right)$ where the initial wealth w_{s} is treated as given.

Some Assumptions

The parameter $\beta \in(0,1)$ is the constant discount factor. Note that utility function $\mathbb{R} \ni c \mapsto u(c)$ is independent of t; its first two derivatives are assumed to satisfy the inequalities $u^{\prime}(c)>0$ and $u^{\prime \prime}(c)<0$ for all $c \in \mathbb{R}_{+}$.
The investment returns \tilde{r}_{t} in successive periods are assumed to be i.i.d. random variables. It is assumed that w_{t} in each period t is known at time t, but not before.

Terminal Constraint

There has to be an additional constraint that imposes a lower bound on wealth at some time t.

Otherwise there would be no optimal policy

- the consumer can always gain by increasing debt (negative wealth), no matter how large existing debt may be.

In the finite horizon, there was a constraint $w_{T} \geq 0$ on terminal wealth.
But here T is effectively infinite.
One might try an alternative like

$$
\liminf _{t \rightarrow \infty} \beta^{t} w_{t} \geq 0
$$

But this places no limit on wealth at any finite time.
We use the alternative constraint requiring that $w_{t} \geq 0$ for all time.

The Stationary Problem

Our modified problem can be written in the following form that is independent of s :

$$
\max _{c_{0}, c_{1}, \ldots, c_{t}, \ldots} \sum_{t=0}^{\infty} \beta^{t} u\left(c_{t}\right)
$$

subject to the constraints $c_{t} \leq w_{t}$ and $w_{t+1}=\tilde{r}_{t}\left(w_{t}-c_{t}\right)$ for all $t=0,1,2, \ldots$, with $w_{0}=w$, where w is given.
Because the starting time s is irrelevant, this is a stationary problem.

Define the state valuation function $w \mapsto V(w)$ as the maximum value of the objective, as a function of initial wealth w.

Bellman's Equation

For the finite horizon problem, the principle of optimality was

For the stationary infinite horizon problem, however, the time starting time s is irrelevant.

So the principle of optimality can be expressed as

$$
\left.\begin{array}{rl}
V(w) & = \\
c^{*}(w) & =\arg
\end{array}\right\} \max _{0 \leq c \leq w}\{u(c)+\beta \mathbb{E}[V(\tilde{r}(w-c))]\}
$$

The state valuation function $w \mapsto V(w)$ appears on both left and right hand sides of this equation.
Solving it therefore involves finding a fixed point, or function, in an appropriate function space.

Isoelastic Case

We consider yet again the isoelastic case with a CES (or logarithmic) utility function that satisfies $u^{\prime}(c ; \epsilon) \equiv c^{-\epsilon}$ and, specifically

$$
u(c ; \epsilon)= \begin{cases}c^{1-\epsilon} /(1-\epsilon) & \text { if } \epsilon \neq 1 \\ \ln c & \text { if } \epsilon=1\end{cases}
$$

Recall the corresponding finite horizon case, where we found that the solution to the corresponding equations

$$
\left.\begin{array}{l}
V_{s}\left(w_{s}\right)= \\
c_{s}^{*}\left(w_{s}\right)=\arg
\end{array}\right\} \max _{0 \leq c_{s} \leq w_{s}}\left\{u_{s}\left(c_{s}\right)+\beta \mathbb{E}_{s}\left[V_{s+1}\left(\tilde{r}_{s}\left(w_{s}-c_{s}\right)\right)\right]\right\}
$$

takes the form $V_{s}(w)=\alpha_{s}+v_{s} u(w ; \epsilon)$ for suitable real constants α_{s} and $v_{s}>0$, where $\alpha_{s}=0$ if $\epsilon \neq 1$.

First-Order Condition

Accordingly, we look for a solution to the stationary problem

$$
\left.\begin{array}{rl}
V(w) & = \\
c^{*}(w) & =\arg
\end{array}\right\} \max _{0 \leq c \leq w}\{u(c ; \epsilon)+\beta \mathbb{E}[V(\tilde{r}(w-c))]\}
$$

taking the isoelastic form $V(w)=\alpha+v u(w ; \epsilon)$
for suitable real constants α and $v>0$, where $\alpha=0$ if $\epsilon \neq 1$.
The first-order condition for solving this concave maximization problem is

$$
c^{-\epsilon}=\beta \mathbb{E}\left[\tilde{r}(\tilde{r}(w-c))^{-\epsilon}\right]=\zeta^{\epsilon}(w-c)^{-\epsilon}
$$

where $\zeta^{\epsilon}:=\beta R^{1-\epsilon}$ with R as the certainty equivalent return defined by $R^{1-\epsilon}:=\mathbb{E}\left[\tilde{r}^{1-\epsilon}\right]$.
Hence $c=\gamma w$ where $\gamma^{-\epsilon}=\zeta^{\epsilon}(1-\gamma)^{-\epsilon}$, implying that $\gamma=1 /(1+\zeta)$.

Solution in the Logarithmic Case

When $\epsilon=1$ and so $u(c ; \epsilon)=\ln c$, one has

$$
\begin{aligned}
V(w) & =u(\gamma w ; \epsilon)+\beta\{\alpha+v \mathbb{E}[u(\tilde{r}(1-\gamma) w ; \epsilon)]\} \\
& =\ln (\gamma w)+\beta\{\alpha+v \mathbb{E}[\ln (\tilde{r}(1-\gamma) w)]\} \\
& =\ln \gamma+(1+\beta v) \ln w+\beta\{\alpha+v \ln (1-\gamma)+\mathbb{E}[\ln \tilde{r}]\}
\end{aligned}
$$

This is consistent with $V(w)=\alpha+v \ln w$ in case:

1. $v=1+\beta v$, implying that $v=(1-\beta)^{-1}$;
2. and also $\alpha=\ln \gamma+\beta\{\alpha+v \ln (1-\gamma)+\mathbb{E}[\ln \tilde{r}]\}$, which implies that

$$
\alpha=(1-\beta)^{-1}\left[\ln \gamma+\beta\left\{(1-\beta)^{-1} \ln (1-\gamma)+\mathbb{E}[\ln \tilde{r}]\right\}\right]
$$

This confirms the solution for the logarithmic case.

Solution in the CES Case

When $\epsilon \neq 1$ and so $u(c ; \epsilon)=c^{1-\epsilon} /(1-\epsilon)$, the equation

$$
V(w)=u(\gamma w ; \epsilon)+\beta v \mathbb{E}[u(\tilde{r}(1-\gamma) w ; \epsilon)]
$$

implies that

$$
(1-\epsilon) V(w)=(\gamma w)^{1-\epsilon}+\beta v \mathbb{E}\left[(\tilde{r}(1-\gamma) w)^{1-\epsilon}\right]=v w^{1-\epsilon}
$$

where $v=\gamma^{1-\epsilon}+\beta v(1-\gamma)^{1-\epsilon} R^{1-\epsilon}$ and so

$$
v=\frac{\gamma^{1-\epsilon}}{1-\beta(1-\gamma)^{1-\epsilon} R^{1-\epsilon}}=\frac{\gamma^{1-\epsilon}}{1-(1-\gamma)^{1-\epsilon} \zeta^{\epsilon}}
$$

But optimality requires $\gamma=1 /(1+\zeta)$, implying finally that

$$
v=\frac{(1+\zeta)^{\epsilon-1}}{1-\zeta(1+\zeta)^{\epsilon-1}}=\frac{1}{(1+\zeta)^{1-\epsilon}-\zeta}
$$

This confirms the solution for the CES case.

Lecture Outline

Optimal Saving
The Two Period ProblemThe T Period ProblemA General ProblemInfinite Time Horizon

Main Theorem

Bounded Returns

Suppose that the stochastic transition from each state x to the immediately succeeding state \tilde{x}
is specified by a conditional probability measure $B \mapsto \mathbb{P}(\tilde{x} \in B \mid x, u)$ on a σ-algebra of the state space.

Consider the stationary problem of choosing a policy $x \mapsto u^{*}(x)$ in order to maximize the infinite discounted sum of utility

$$
\mathbb{E} \sum_{t=1}^{\infty} \beta^{t-1} f\left(x_{t}, u_{t}\right)
$$

where $0<\beta<1$.
The return function $(x, u) \mapsto f(x, u) \in \mathbb{R}$ is uniformly bounded provided there exist a uniform lower bound M_{*} and a uniform upper bound M^{*} such that

$$
M_{*} \leq f(x, u) \leq M^{*} \quad \text { for all }(x, u)
$$

Existence and Uniqueness

Theorem
Consider the Bellman equation system

$$
\left.\begin{array}{rl}
V(x) & = \\
u^{*}(x) & \in \arg
\end{array}\right\} \max _{u \in F(x)}\{f(x, u)+\beta \mathbb{E}[V(\tilde{x}) \mid x, u]\}
$$

Under the assumption of uniformly bounded returns:

1. there is a unique state valuation function $x \mapsto V(x)$ that satisfies this equation system;
2. any associated policy solution $x \mapsto u^{*}(x)$ determines an optimal policy that is stationary

- i.e., independent of time.

The Function Space

The boundedness assumption $M_{*} \leq f(x, u) \leq M^{*}$ for all (x, u) ensures that, because $0<\beta<1$ and so $\sum_{t=1}^{\infty} \beta^{t-1}=\frac{1}{1-\beta}$, the infinite discounted sum of utility

$$
W:=\mathbb{E} \sum_{t=1}^{\infty} \beta^{t-1} f\left(x_{t}, u_{t}\right)
$$

satisfies $(1-\beta) W \in\left[M_{*}, M^{*}\right]$.
This makes it natural to consider the linear space \mathcal{V} of all bounded functions $X \ni x \mapsto V(x) \in \mathbb{R}$ equipped with its sup norm defined by $\|V\|:=\sup _{x \in X}|V(x)|$.

We will pay special attention to the subset

$$
\mathcal{V}_{M}:=\left\{V \in \mathcal{V} \mid \forall x \in X:(1-\beta) V(x) \in\left[M_{*}, M^{*}\right]\right\}
$$

of state valuation functions with values $V(x)$ lying within the range of the possible values of W.

Two Mappings

Given any measurable policy function $X \ni x \mapsto u(x)$ denoted by \mathbf{u}, define the mapping $T^{\mathrm{u}}: \mathcal{V}_{M} \rightarrow \mathcal{V}$ by

$$
\left[T^{\mathbf{u}} V\right](x):=f(x, u(x))+\beta \mathbb{E}[V(\tilde{x}) \mid x, u(x)]
$$

When the state is x, this gives the value $\left[T^{u} V\right](x)$ of choosing the policy $u(x)$ for one period, and then experiencing a future discounted return $V(\tilde{x})$ after reaching each possible subsequent state $\tilde{x} \in X$.
Define also the mapping $T^{*}: \mathcal{V}_{M} \rightarrow \mathcal{V}$ by

$$
\left[T^{*} V\right](x):=\max _{u \in F(x)}\{f(x, u)+\beta \mathbb{E}[V(\tilde{x}) \mid x, u]\}
$$

These definitions allow the Bellman equation system to be rewritten as

$$
\begin{aligned}
V(x) & =\left[T^{*} V\right](x) \\
u^{*}(x) & \in \arg \max _{u \in F(x)}\left[T^{u} V\right](x)
\end{aligned}
$$

Two Mappings of \mathcal{V}_{M} into Itself

For all $V \in \mathcal{V}_{M}$, policies \mathbf{u}, and $x \in X$, we have defined

$$
\text { and } \begin{aligned}
& {\left[T^{\mathrm{u}} V\right](x):=f(x, u(x))+\beta \mathbb{E}[V(\tilde{x}) \mid x, u(x)]} \\
& {\left[T^{*} V\right](x)}
\end{aligned}:=\max _{u \in F(x)}\{f(x, u)+\beta \mathbb{E}[V(\tilde{x}) \mid x, u]\}
$$

Because of the boundedness condition $M_{*} \leq f(x, u) \leq M^{*}$, together with the assumption that V belongs to the domain \mathcal{V}_{M}, these definitions jointly imply that

$$
\begin{aligned}
(1-\beta)\left[T^{\mathrm{u}} V\right](x) & \geq(1-\beta) M_{*}+\beta M_{*}
\end{aligned}=M_{*} .
$$

Similarly, given any $V \in \mathcal{V}_{M}$, one has $M_{*} \leq(1-\beta)\left[T^{*} V\right](x) \leq M^{*}$ for all $x \in X$.

Therefore both $V \mapsto T^{u} V$ and $V \mapsto T^{*} V$ map \mathcal{V}_{M} into itself.

A First Contraction Mapping

The definition $\left[T^{\mathbf{u}} V\right](x):=f(x, u(x))+\beta \mathbb{E}[V(\tilde{x}) \mid x, u(x)]$ implies that for any two functions $V_{1}, V_{2} \in \mathcal{V}_{M}$, one has

$$
\left[T^{\mathbf{u}} V_{1}\right](x)-\left[T^{\mathbf{u}} V_{2}\right](x)=\beta \mathbb{E}\left[V_{1}(\tilde{x})-V_{2}(\tilde{x}) \mid x, u(x)\right]
$$

The definition of the sup norm therefore implies that

$$
\begin{aligned}
\left\|T^{\mathbf{u}} V_{1}-T^{\mathbf{u}} V_{2}\right\| & =\sup _{x \in X}\left\|\left[T^{\mathbf{u}} V_{1}\right](x)-\left[T^{\mathbf{u}} V_{2}\right](x)\right\| \\
& =\sup _{x \in X}\left\|\beta \mathbb{E}\left[V_{1}(\tilde{x})-V_{2}(\tilde{x}) \mid x, u(x)\right]\right\| \\
& \leq \beta \sup _{x \in X} \mathbb{E}\left[\left\|V_{1}(\tilde{x})-V_{2}(\tilde{x})\right\| \mid x, u(x)\right] \\
& \leq \beta \sup _{\tilde{x} \in X}\left\|V_{1}(\tilde{x})-V_{2}(\tilde{x})\right\| \\
& =\beta\left\|V_{1}-V_{2}\right\|
\end{aligned}
$$

Hence $V \mapsto T^{\mathbf{u}} V$ is a contraction mapping with factor $\beta<1$ that maps the normed linear space \mathcal{V}_{M} into itself.

Applying the Contraction Mapping Theorem, I

For each fixed policy \mathbf{u}, the contraction mapping $V \mapsto T^{\mathbf{u}} V$ mapping the space \mathcal{V}_{M} into itself has a unique fixed point in the form of a function $V^{\mathbf{u}} \in \mathcal{V}_{M}$.

Furthermore, given any initial function $V \in \mathcal{V}_{M}$, consider the infinite sequence of mappings $\left[T^{u}\right]^{k} V(k \in \mathbb{N})$ that result from applying the operator $T^{\mathbf{u}}$ iteratively k times.

The contraction mapping property of $T^{\mathbf{u}}$ implies that $\left\|\left[T^{\mathbf{u}}\right]^{k} V-V^{\mathbf{u}}\right\| \rightarrow 0$ as $k \rightarrow \infty$.

Characterizing the Fixed Point, I

Starting from $V_{0}=0$ and given any initial state $x \in X$, note that

$$
\begin{aligned}
\|\left[T^{\mathbf{u}}\right]^{k} V_{0}(x) & =\left[T^{\mathbf{u}}\right]\left(\left[T^{\mathbf{u}}\right]^{k-1} V_{0}\right)(x) \\
& =f(x, u(x))+\beta \mathbb{E}\left[\left(\left[T^{\mathbf{u}}\right]^{k-1} V_{0}\right)(\tilde{x}) \mid x, u(x)\right]
\end{aligned}
$$

It follows by induction on k that $\left[T^{u}\right]^{k} V_{0}(\bar{x})$ equals the expected discounted total payoff $\mathbb{E} \sum_{t=1}^{k} \beta^{t-1} f\left(x_{t}, u_{t}\right)$ of starting from $x_{1}=\bar{x}$
and then following the policy $x \mapsto u(x)$ for k subsequent periods.
Taking the limit as $k \rightarrow \infty$, it follows that for any state $\bar{x} \in X$, the value $V^{\mathbf{u}}(\bar{x})$ of the fixed point in \mathcal{V}_{M}
is the expected discounted total payoff

$$
\mathbb{E} \sum_{t=1}^{\infty} \beta^{t-1} f\left(x_{t}, u_{t}\right)
$$

of starting from $x_{1}=\bar{x}$ and then following the policy $x \mapsto u(x)$ for ever thereafter.

A Second Contraction Mapping

Recall the definition

$$
\left[T^{*} V\right](x):=\max _{u \in F(x)}\{f(x, u)+\beta \mathbb{E}[V(\tilde{x}) \mid x, u]\}
$$

Given any state $x \in X$ and any two functions $V_{1}, V_{2} \in \mathcal{V}_{M}$, define $u_{1}, u_{2} \in F(x)$ so that for $k=1,2$ one has

$$
\left.\left[T^{*} V_{k}\right](x)=f\left(x, u_{k}\right)+\beta \mathbb{E}\left[V_{k}(\tilde{x}) \mid x, u_{k}\right]\right\}
$$

Note that $\left.\left[T^{*} V_{2}\right](x) \geq f\left(x, u_{1}\right)+\beta \mathbb{E}\left[V_{2}(\tilde{x}) \mid x, u_{1}\right]\right\}$ implying that

$$
\begin{aligned}
{\left[T^{*} V_{1}\right](x)-\left[T^{*} V_{2}\right](x) } & \left.\leq \beta \mathbb{E}\left[V_{1}(\tilde{x})-V_{2}(\tilde{x}) \mid x, u_{1}\right]\right\} \\
& \leq \beta\left\|V_{1}-V_{2}\right\|
\end{aligned}
$$

Similarly, interchanging 1 and 2 in the above argument gives $\left[T^{*} V_{2}\right](x)-\left[T^{*} V_{1}\right](x) \leq \beta\left\|V_{1}-V_{2}\right\|$. Hence $\left\|T^{*} V_{1}-T^{*} V_{2}\right\| \leq \beta\left\|V_{1}-V_{2}\right\|$, so T^{*} is also a contraction.

Applying the Contraction Mapping Theorem, II

Similarly the contraction mapping $V \mapsto T^{*} V$
has a unique fixed point in the form of a function $V^{*} \in \mathcal{V}_{M}$ such that $V^{*}(\bar{x})$ is the maximized expected discounted total payoff of starting in state $x_{1}=\bar{x}$ and following an optimal policy for ever thereafter.
Moreover, $V^{*}=T^{*} V^{*}=T^{u^{*}} V$.
This implies that V^{*} is also the value of following the policy $x \mapsto u^{*}(x)$ throughout, which must therefore be an optimal policy.

Characterizing the Fixed Point, II

Starting from $V_{0}=0$ and given any initial state $x \in X$, note that

$$
\begin{aligned}
\|\left[T^{*}\right]^{k} V_{0}(x) & =\left[T^{*}\right]\left(\left[T^{*}\right]^{k-1} V_{0}\right)(x) \\
& =\max _{u \in F(x)}\left\{f(x, u)+\beta \mathbb{E}\left[\left(\left[T^{*}\right]^{k-1} V_{0}\right)(\tilde{x}) \mid x, u\right]\right\}
\end{aligned}
$$

It follows by induction on k that $\left[T^{*}\right]^{k} V_{0}(\bar{x})$ equals the maximum possible expected discounted total payoff $\mathbb{E} \sum_{t=1}^{k} \beta^{t-1} f\left(x_{t}, u_{t}\right)$ of starting from $x_{1}=\bar{x}$ and then following the "backward" sequence of optimal policies $\left(u_{k}^{*}, u_{k-1}^{*}, u_{k-2}^{*}, \ldots, u_{2}^{*}, u_{1}^{*}\right)$, where for each k the policy $x \mapsto u_{k}^{*}(\bar{x})$ is optimal when k periods remain.

Method of Successive Approximation

The method of successive approximation starts with an arbitrary function $V_{0} \in \mathcal{V}_{M}$.

For $k=1,2, \ldots$, , it then repeatedly solves the pair of equations $V_{k}=T^{*} V_{k-1}=T^{u_{k}^{*}} V_{k-1}$ to construct sequences of:

1. state valuation functions $X \ni x \mapsto V_{k}(x) \in \mathbb{R}$;
2. policies $X \ni x \mapsto u_{k}^{*}(x) \in F(x)$ that are optimal given that one applies the preceding state valuation function $X \ni \tilde{x} \mapsto V_{k-1}(\tilde{x}) \in \mathbb{R}$ to each immediately succeeding state \tilde{x}.
Because the operator $V \mapsto T^{*} V$ on \mathcal{V}_{M} is a contraction mapping, the method produces
a convergent sequence $\left(V_{k}\right)_{k=1}^{\infty}$ of state valuation functions whose limit satisfies $V^{*}=T^{*} V^{*}=T^{u^{*}} V^{*}$ for a suitable policy $X \ni x \mapsto u^{*}(x) \in F(x)$.

Lecture Outline

Optimal Saving
The Two Period Problem
\squareA General Problem
\squareMain Theorem
Policy Improvement

Monotonicity

For all functions $V \in \mathcal{V}_{M}$, policies \mathbf{u}, and states $x \in X$, we have defined

$$
\begin{aligned}
& \quad\left[T^{\mathbf{u}} V\right](x) \\
& \text { and } \quad:=f(x, u(x))+\beta \mathbb{E}[V(\tilde{x}) \mid x, u(x)] \\
& {\left[T^{*} V\right](x)}
\end{aligned}:=\max _{u \in F(x)}\{f(x, u)+\beta \mathbb{E}[V(\tilde{x}) \mid x, u]\}
$$

Notation

Given any pair $V_{1}, V_{2} \in \mathcal{V}_{M}$, we write $V_{1} \geqq V_{2}$ to indicate that the inequality $V_{1}(x) \geq V_{2}(x)$ holds for all $x \in X$.

Definition
An operator $\mathcal{V}_{M} \ni V \mapsto T V \in \mathcal{V}_{M}$ is monotone just in case whenever $V_{1}, V_{2} \in \mathcal{V}_{M}$ satisfy $V_{1} \geqq V_{2}$, one has $T V_{1} \geqq T V_{2}$.

Theorem
The following operators on \mathcal{V}_{M} are monotone:

1. $V \mapsto T^{\mathbf{u}} V$ for all policies \mathbf{u};
2. $V \mapsto T^{*} V$ for the optimal policy.

Proof that T^{u} is Monotone

Given any state $x \in X$ and any two functions $V_{1}, V_{2} \in \mathcal{V}_{M}$, the definition of $T^{\mathbf{u}}$ implies that

$$
\text { and } \begin{aligned}
{\left[T^{\mathrm{u}} V_{1}\right](x) } & :=f(x, u(x))+\beta \mathbb{E}\left[V_{1}(\tilde{x}) \mid x, u(x)\right] \\
{\left[T^{\mathrm{u}} V_{2}\right](x) } & :=f(x, u(x))+\beta \mathbb{E}\left[V_{2}(\tilde{x}) \mid x, u(x)\right]
\end{aligned}
$$

Subtracting the second equation from the first implies that

$$
\left[T^{\mathbf{u}} V_{1}\right](x)-\left[T^{\mathbf{u}} V_{2}\right](x)=\beta \mathbb{E}\left[V_{1}(\tilde{x})-V_{2}(\tilde{x}) \mid x, u(x)\right]
$$

If $V_{1} \geqq V_{2}$ and so the inequality $V_{1}(\tilde{x}) \geq V_{2}(\tilde{x})$ holds for all $\tilde{x} \in X$, it follows that $\left[T^{\mathrm{u}} V_{1}\right](x) \geq\left[T^{\mathrm{u}} V_{2}\right](x)$.
Since this holds for all $x \in X$, we have proved that $T^{\mathrm{u}} V_{1} \geqq T^{\mathrm{u}} V_{2}$.

Proof that T^{*} is Monotone

Given any state $x \in X$ and any two functions $V_{1}, V_{2} \in \mathcal{V}_{M}$, define $u_{1}, u_{2} \in F(x)$ so that for $k=1,2$ one has

$$
\begin{aligned}
{\left[T^{*} V_{k}\right](x) } & =\max _{u \in F(x)}\{f(x, u)+\beta \mathbb{E}[V(\tilde{x}) \mid x, u]\} \\
& =f\left(x, u_{k}\right)+\beta \mathbb{E}\left[V_{k}(\tilde{x}) \mid x, u_{k}\right]
\end{aligned}
$$

It follows that

$$
\text { and } \begin{aligned}
{\left[T^{*} V_{1}\right](x) } & \geq f\left(x, u_{2}\right)+\beta \mathbb{E}\left[V_{1}(\tilde{x}) \mid x, u_{2}\right] \\
{\left[T^{*} V_{2}\right](x) } & =f\left(x, u_{2}\right)+\beta \mathbb{E}\left[V_{2}(\tilde{x}) \mid x, u_{2}\right]
\end{aligned}
$$

Subtracting the second equation from the first inequality gives

$$
\left[T^{*} V_{1}\right](x)-\left[T^{*} V_{2}\right](x) \geq \beta \mathbb{E}\left[V_{1}(\tilde{x})-V_{2}(\tilde{x}) \mid x, u_{2}\right]
$$

If $V_{1} \geqq V_{2}$ and so the inequality $V_{1}(\tilde{x}) \geq V_{2}(\tilde{x})$ holds for all $\tilde{x} \in X$, it follows that $\left[T^{*} V_{1}\right](x) \geq\left[T^{*} V_{2}\right](x)$.
Since this holds for all $x \in X$, we have proved that $T^{*} V_{1} \geqq T^{*} V_{2}$.

Policy Improvement

The method of policy improvement starts with any fixed policy \mathbf{u}_{0} or $X \ni x \mapsto u_{0}(x) \in F_{t}(x)$, along with the value $V^{\mathbf{u}_{0}}$ of following that policy for ever, which is the unique fixed point that satisfies $V^{\mathbf{u}_{0}}=T^{\mathbf{u}_{0}} V^{\mathbf{u}_{0}}$.
At each step $k=1,2, \ldots$, given the previous policy \mathbf{u}_{k-1} and associated value $V^{\mathbf{u}_{k-1}}$ satisfying $V^{\mathbf{u}_{k-1}}=T^{\mathbf{u}_{k-1}} V^{\mathbf{u}_{k-1}}$:

1. the policy \mathbf{u}_{k} is chosen so that $T^{*} V^{\mathbf{u}_{k-1}}=T^{\mathbf{u}_{k}} V^{\mathbf{u}_{k-1}}$;
2. the state valuation function $x \mapsto V_{k}(x)$ is chosen as the unique fixed point of the operator $T^{\mathbf{u}_{k}}$.

Theorem

The double infinite sequence $\left(\mathbf{u}_{k}, V^{\mathbf{u}_{k}}\right)_{k \in \mathbb{N}}$ of policies and their associated state valuation functions satisfies

1. $V^{\mathbf{u}_{k}} \geqq V^{\mathbf{u}_{k-1}}$ for all $k \in \mathbb{N}$ (policy improvement);
2. $\left\|V^{\mathbf{u}_{k}}-V^{*}\right\| \rightarrow 0$ as $k \rightarrow \infty$, where V^{*} is the infinite-horizon optimal state valuation function that satisfies $T^{*} V^{*}=V^{*}$.

Proof of Policy Improvement

By definition of the optimality operator T^{*}, one has $T^{*} V \geqq T^{\mathbf{u}} V$ for all functions $V \in \mathcal{V}_{M}$ and all policies \mathbf{u}.
So at each step k of the policy improvement routine, one has

$$
T^{\mathbf{u}_{k}} V^{\mathbf{u}_{k-1}}=T^{*} V^{\mathbf{u}_{k-1}} \geqq T^{\mathbf{u}_{k-1}} V^{\mathbf{u}_{k-1}}=V^{\mathbf{u}_{k-1}}
$$

In particular, $T^{\mathbf{u}_{k}} V^{\mathbf{u}_{k-1}} \geqq V^{\mathbf{u}_{k-1}}$.
Now, applying successive iterations of the monotonic operator $T^{\mathbf{u}_{k}}$ implies that

$$
\begin{aligned}
V^{\mathbf{u}_{k-1}} \leqq T^{\mathbf{u}_{k}} V^{\mathbf{u}_{k-1}} \leqq & {\left[T^{\mathbf{u}_{k}}\right]^{2} V^{\mathbf{u}_{k-1}} \leqq \ldots } \\
& \ldots \leqq\left[T^{\mathbf{u}_{k}}\right]^{r} V^{\mathbf{u}_{k-1}} \leqq\left[T^{\mathbf{u}_{k}}\right]^{r+1} V^{\mathbf{u}_{k-1}} \leqq \ldots
\end{aligned}
$$

But the definition of $V^{\mathbf{u}_{k}}$ implies that for all $V \in \mathcal{V}_{M}$, including $V=V^{\mathbf{u}_{k-1}}$, one has $\left\|\left[T^{\mathbf{u}_{k}}\right]^{r} V-V^{\mathbf{u}_{k}}\right\| \rightarrow 0$ as $r \rightarrow \infty$.
Hence $V^{\mathbf{u}_{k}}=\sup _{r}\left[T^{\mathbf{u}_{k}}\right]^{r} V^{\mathbf{u}_{k-1}} \geqq V^{\mathbf{u}_{k-1}}$,
thus confirming that the policy \mathbf{u}_{k} does improve \mathbf{u}_{k-1}.

Proof of Convergence

Recall that at each step k of the policy improvement routine, one has $T^{\mathbf{u}_{k}} V^{\mathbf{u}_{k-1}}=T^{*} V^{\mathbf{u}_{k-1}}$ and also $T^{\mathbf{u}_{k}} V^{\mathbf{u}_{k}}=V^{\mathbf{u}_{k}}$.
Now, for each state $x \in X$, define $\hat{V}(x):=\sup _{k} V^{\mathbf{u}_{k}}(x)$.
Because $V^{\mathbf{u}_{k}} \geqq V^{\mathbf{u}_{k-1}}$ and $T^{\mathbf{u}_{k}}$ is monotonic, one has $V^{\mathbf{u}_{k}}=T^{\mathbf{u}_{k}} V^{\mathbf{u}_{k}} \geqq T^{\mathbf{u}_{k}} V^{\mathbf{u}_{k-1}}=T^{*} V^{\mathbf{u}_{k-1}}$.
Next, because T^{*} is monotonic, it follows that

$$
\hat{V}=\sup _{k} V^{\mathbf{u}_{k}} \geqq \sup _{k} T^{*} V^{\mathbf{u}_{k-1}}=T^{*}\left(\sup _{k} V^{\mathbf{u}_{k-1}}\right)=T^{*} \hat{V}
$$

Similarly, monotonicity of and the definition of T^{*} imply that

$$
\hat{V}=\sup _{k} V^{\mathbf{u}_{k}}=\sup _{k} T^{\mathbf{u}_{k}} V^{\mathbf{u}_{k}} \leqq \sup _{k} T^{*} V^{\mathbf{u}_{k}}=T^{*}\left(\sup _{k} V^{\mathbf{u}_{k}}\right)=T^{*} \hat{V}
$$

Hence $\hat{V}=T^{*} \hat{V}=V^{*}$, because T^{*} has a unique fixed point.
Therefore $V^{*}=\sup _{k} V^{\mathbf{u}_{k}}$ and so, because the sequence $V^{\mathbf{u}_{k}}(x)$ is non-decreasing, one has $V^{\mathbf{u}_{k}}(x) \rightarrow V^{*}(x)$ for each $x \in X$.

Lecture Outline

Optimal Saving
The Two Period ProblemThe T Period ProblemA General ProblemInfinite Time HorizonMain Theorem
Policy Improvement

Unbounded Utility

In economics the boundedness condition $M_{*} \leq f(x, u) \leq M^{*}$ is rarely satisfied!

Consider for example the isoelastic utility function

$$
u(c ; \epsilon)= \begin{cases}\frac{c^{1-\epsilon}}{1-\epsilon} & \text { if } \epsilon>0 \text { and } \epsilon \neq 1 \\ \ln c & \text { if } \epsilon=1\end{cases}
$$

This function is obviously:

1. bounded below but unbounded above in case $0<\epsilon<1$;
2. unbounded both above and below in case $\epsilon=1$;
3. bounded above but unbounded below in case $\epsilon>1$.

Also commonly used is the negative exponential utility function defined by $u(c)=-e^{-\alpha c}$
where α is the constant absolute rate of risk aversion (CARA).
This function is bounded above and also below (provided $c \geq 0$).

