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Walking as a Simple Difference Equation

What is the difference
between difference and differential equations?

Walking on two feet is a discrete time process,
with time domain T = {0, 1, 2, . . .} = Z+ = {0} ∪ N.

After m steps, the respective positions `, r ∈ R2

of the left and right feet on the ground
can be described by the two functions T 3 m 7→ (`m, rm).

It is impossible for a step to be longer than one’s stride length.

So the walking process that starts with the left foot
might be described by the two coupled equations

`m =

{
λ(rm−1) if m is odd

`m−1 if m is even
and rm =

{
ρ(`m−1) if m is even

rm−1 if m is odd

for m = 0, 1, 2, . . . .
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Walking as a More Complicated Difference Equation

Or, if the direction of each pace
is affected by the direction of its predecessor, by

`m =

{
λ(rm−1, `m−1) if m is odd

`m−1 if m is even

and rm =

{
ρ(`m−1, rm−1) if m is even

rm−1 if m is odd

for m = 0, 1, 2, . . . .
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Walking as a Differential Equation

By constrast, a walker’s centre of mass
must be a continuous function of time,
described by a mapping R+ 3 t 7→ (x(t), y(t), z(t)) ∈ R3.

The time domain is therefore T := R+.

The same will be true for the position of, for instance,
the walker’s left big toenail.

Actually, the motion could be lethal
unless the function R+ 3 t 7→ (x(t), y(t), z(t)) ∈ R3

has a continuous third derivative
d3

dt3
(x(t), y(t), z(t)).

It is relatively common to indicate by:

a subscript a discrete time function like m 7→ xm;

parentheses a continuous time function like t 7→ x(t).
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First-Order Difference Equations
Let T 3 t 7→ xt ∈ X describe a discrete time process,
with X = R (or X = Rm) as the state space.

Its difference at time t is defined as

∆xt := xt+1 − xt

A standard first-order difference equation takes the form

xt+1 − xt = ∆xt = dt(xt)

where each dt : X → X , or equivalently,

T × X 3 (t, x) 7→ dt(x)

Obviously, it is equivalent to the recurrence relation

T × X 3 (t, x) 7→ rt(x)

where rt(x) = x + dt(x), or equivalently, dt(x) = rt(x)− x .
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Equivalent Recurrence Relations

Thus difference equations and recurrence relations
are entirely equivalent.

We follow standard mathematical practice
in using the notation for recurrence relations,
even when discussing difference equations.
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Linear Equations

A simple linear equation for a finite time horizon T takes the form

xt+1 − xt = dt (t = 0, 1, . . . ,T − 1)

where the differences are constants dt ∈ R, independent of x .

Provided that T ≥ 6, the matrix form of this equation is



−1 1 0 . . . 0 0 0
0 −1 1 . . . 0 0 0
0 0 −1 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . −1 1 0
0 0 0 . . . 0 −1 1





x0
x1
x2
...

xT−2
xT−1
xT


=



d0
d1
d2
...

dT−2
dT−1


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Matrix Form

The matrix form of the difference equation is Dx = d, where:

1. D is the T × (T + 1) difference matrix whose coefficients are

dst =


−1 if t = s

1 if t = s + 1

0 otherwise

for s = 0, 1, 2, . . . ,T and t = 1, 2, . . . ,T ;

2. x is the T + 1-dimensional column vector (xt)
T
t=0

of endogenous unknowns, to be determined;

3. d is the T -dimensional column vector (dt)
T−1
t=0

of exogenous shocks.
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Partitioned Matrix Form

The matrix equation Dx = d can be written in partitioned form as

(
U eT

)(xT−1

xT

)
= d

where:

1. U is an upper triangular T × T matrix;

2. eT = (0, 0, 0, . . . , 0, 1) is the T th unit vector of the space RT ;

3. xT−1 denotes the column vector whose transpose (xT−1)>

equals the row T -vector (x0, x1, x2, . . . , xT−2, xT−1).

In fact the matrix −U is even upper unitriangular.

Hence there are T independent equations in T + 1 unknowns,
leaving one degree of freedom in the solution.
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An Initial Condition

Consider the difference equation xt+1 − xt = dt ,
or Dx = d in matrix form.

An initial condition specifies an exogenous value x̄0
for the value x0 at time 0.

This removes the only degree of freedom
in the system of T equations in T + 1 unknowns.

The obvious unique solution is then that each xt is the forward sum

xt = x̄0 +
∑t−1

s=0
ds

of the initial state x̄0, and of the t exogenously specified
succeeding differences ds (s = 0, 1, . . . , t − 1).
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Terminal Condition

Alternatively, a terminal condition
for the difference equation xt+1 − xt = dt
specifies an exogenous value x̄T for the value xT at time T.

It leads to a unique solution as a backward sum

xt = x̄T −
∑T−t−1

s=0
dT−s

of the initial state x̄T , and of the T − t exogenously specified
preceding backward differences −dT−s (s = 0, 1, . . . ,T − t − 1).
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Particular and General Solutions

We are interested in solving the system Dx = d
of T equations in T + 1 unknowns,
where D is a T × (T + 1) matrix.

When the rank of D is T , there is one degree of freedom.

The homogeneous equation Dx = 0
will have a one-dimensional space of solutions xHt = ξx̄Ht (ξ ∈ R).

Given any particular solution xPt satisfying DxP = d
for the particular time series d of forcing terms,
the general solution xGt must also satisfy DxG = d.

Simple subtraction leads to D(xG − xP) = 0, so xG − xP = xH

for some solution xH of the homogeneous equation Dx = 0.

So x solves the equation Dx = d
iff there exists a scalar ξ ∈ R such that x = xP + ξ xH ,
which leads to the formula xG = xP + ξ xH for the general solution.
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Application: Wealth Accumulation in Discrete Time

Consider a consumer who, in discrete time t = 0, 1, 2, . . . :

I starts each period t
with an amount wt of accumulated wealth;

I receives income yt ;

I spends an amount et ;

I earns interest on the residual wealth wt + yt − et at the rate rt .

The process of wealth accumulation is then described
by any of the equivalent equations

wt+1 = (1 + rt)(wt + yt − et) = ρt(wt − xt) = ρt(wt + st)

where, at each time t,

I ρt := 1 + rt is the interest factor;

I xt = et − yt denotes net expenditure;

I st = yt − et = −xt denotes net saving.
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Compound Interest

Define the compound interest factor

Rt :=
∏t−1

k=0
(1 + rk) =

∏t−1

k=0
ρk

with the convention that the product of zero terms equals 1.

It is the unique solution
to the recurrence relation Rt+1 = (1 + rt)Rt

that satisfies the initial condition R0 = 1.

In the special case when rt = r (all t),
it reduces to Rt = (1 + r)t = ρt .
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Present Discounted Value (PDV)

We transform the difference equation wt+1 = ρt(wt − xt)
by using the compound interest factor Rt =

∏t−1
k=0 ρk

in order to discount both future wealth and expenditure.

To do so, define new variables ωt , ξt
for the present discounted values (PDVs) of, respectively:

1. wealth wt at time t as ωt := (1/Rt)wt ;

2. net expenditure xt at time t as ξt := (1/Rt)xt .

With these new variables, the wealth equation wt+1 = ρt(wt − xt)
becomes

Rt+1ωt+1 = ρtRt(ωt − ξt)

But Rt+1 = ρtRt , so eliminating this common factor
reduces the equation to ωt+1 = ωt − ξt ,
with the evident solution ωt = ω0 −

∑t−1
k=0 ξk for k = 1, 2, . . ..
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Systems of Linear Difference Equations
Most economic models, especially econometric models,
involve simultaneous time series for several different variables.

Consider a first-order linear difference equation

xt+1 = Atxt + dt

for an n-dimensional process T 3 t 7→ xt ∈ Rn,
where each matrix At is n × n.

We will prove by induction on t that for t = 0, 1, 2, . . .
there exist suitable matrices Pt,k (k = 0, 1, 2, . . . , t) such that,
given any possible value of the initial state vector x0
and of the forcing terms dt (t = 0, 1, 2, . . .),
the unique solution can be expressed as

xt = Pt,0x0 +
∑t

k=1
Pt,kdk−1

The proof, of course,
will also involve deriving a recurrence relation for these matrices.
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Early Terms of the Matrix Solution
Because x0 = P0,0x0 = x0,
the first term is obviously P0, 0 = I when t = 0.

Next x1 = A0x0 + d0 when t = 1
implies that P1, 0 = A0, P1, 1 = I.

Next, the solution for t = 2 is

x2 = A1x1 + d1 = A1A0x0 + A1d0 + d1

This formula matches the formula

xt = Pt,0x0 +
∑t

k=1
Pt,kdk−1

when t = 2 provided that:

I P2, 0 = A1A0;

I P2, 1 = A1;

I P2, 2 = I.
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Matrix Solution
Now, substituting the two expansions

xt = Pt,0x0 +
∑t

k=1 Pt,kdk−1
and xt+1 = Pt+1,0x0 +

∑t+1
k=1 Pt+1,kdk−1

into both sides of the original equation xt+1 = Atxt + dt gives

Pt+1,0x0+
∑t+1

k=1
Pt+1,kdk−1 = At

(
Pt,0x0 +

∑t

k=1
Pt,kdk−1

)
+dt

Equating the matrix coefficients of x0 and of each dk−1 implies
that for general t one has Pt+1,k = AtPt,k for k = 0, 1, . . . , t + 1.

This equation implies that

Pt, 0 = At−1 · At−2 · · ·A0

Pt, k = At−1 · At−2 · · ·Ak

Pt, t = I

or, after defining the product of the empty set of matrices as I,

Pt, k =
∏t−k

s=1
At−s
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Constant Coefficients

In the case of constant coefficients,
the products reduce to powers.

Specifically, Pt, k = At−k , where A0 = I.

The solution to xt+1 = Axt + dt is therefore

xt = Atx0 +
∑t

k=1
At−kdk

University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 21 of 38



The Autonomous Case

The general first-order equation in Rn

can be written as xt+1 = Ft(xt)
where T × Rn 3 (t, x) 7→ Ft(x) ∈ Rn.

In the autonomous case, the function (t, x) 7→ Ft(x)
reduces to x 7→ F(x), independent of t.

In the linear case with constant coefficients,
the function x 7→ F(x) takes the affine form F(x) = Ax + d.

That is, xt+1 = Axt + d.
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Linear Case with Constant Coefficients

Given the equation xt+1 = Axt + d,
the earlier formula for the solution leads to

xt = Atx0 +
∑t

k=1
At−kd = Atx0 + Std

where the matrix

St := I + A + A2 + · · ·+ At−1 =
∑t

k=1
At−k

is the matrix analogue of the geometric series

st := 1 + a + a2 + · · ·+ at−1

=
∑t

k=1 a
t−k =


1− at

1− a
if a 6= 1

t if a = 1
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Summing the Geometric Series

Recall the trick for finding st := 1 + a + a2 + · · ·+ at−1

is to multiply each side by 1− a.

Because all terms except the first and last cancel,
this shows that (1− a)st = 1− at

and so st = (1− a)−1(1− at) provided that a 6= 1.

Applying the same trick to St := I + A + A2 + · · ·+ At−1

yields (I− A)St = I− At .

Provided that (I− A)−1 exists,
we can pre-multiply each side by this inverse
to get St = (I− A)−1(I− At).

This leads to the solution

xt = Atx0 + Std = Atx0 + (I− A)−1(I− At)d
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Stationary States

Given an autonomous equation xt+1 = F(xt),
a stationary state is a fixed point x∗ ∈ Rn of the mapping F.

It earns its name because if xs = x∗ for any finite s,
then xt = x∗ for all t = s, s + 1, . . . .

Wherever it exists, the solution of the autonomous equation
can be written as a function xt = Φt−s(xs) (t = s, s + 1, . . .)
of the state xs at time s,
as well as of the number of periods t − s that the function F
must be iterated in order to determine the state xt at time t.

Indeed, the sequence of functions Φk : Rn → Rn (k ∈ N)
is defined iteratively by Φk(x) = F(Φk−1(x)) for all x.

Note that any stationary state x∗ is a fixed point
of each mapping Φk in the sequence, as well as Φ1 ≡ F.
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Local and Global Stability

The stationary state x∗ is:

I globally stable if Φk(x0)→ x∗ as k →∞,
regardless of the initial state x0;

I locally stable if there is
an (open) neighbourhood N ⊂ Rn of x∗

such that whenever x0 ∈ N
one has Φk(x0)→ x∗ as k →∞.

We begin by studying linear systems,
for which local stability is equivalent to global stability.

Later, we will consider the local stability of non-linear systems.
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Stability in the Linear Case

Recall that the autonomous linear equation
takes the form xt+1 = Axt + d.

The vector x∗ ∈ Rn is a stationary state
if and only if xt = x∗ =⇒ xt+1 = x∗,
which is true if and only if x∗ = Ax∗ + d,
or iff x∗ solves the linear equation (I− A)x = d.

Of course, if the matrix I− A is singular,
then there could either be no stationary state,
or a continuum of stationary states.

For simplicity, we assume that I− A has an inverse.

Then there is a unique stationary state x∗ = (I− A)−1d.
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Homogenizing the Linear Equation

Given the equation xt+1 = Axt + d
and the stationary state x∗ = (I− A)−1d,
define the new state as the deviation y := x− x∗

of the state x from the stationary state x.

This transforms the original equation xt+1 = Axt + d to

yt+1 + x∗ = A(yt + x∗) + d = Ayt + Ax∗ + d

Because the stationary state satisfies x∗ = Ax∗ + d,
this reduces the original equation xt+1 = Axt + d
to the homogeneous equation yt+1 = Ayt ,
whose obvious solution is yt = Aty0.
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Stability in the Diagonal Case
Suppose that A is the diagonal matrix Λ = diag(λ1, λ2, . . . , λn).

Then the powers are easy:

At = Λt = diag(λt1, λ
t
2, . . . , λ

t
n)

The “homogenized” vector equation yt = Ayt−1
can be expressed component by component as the set

yi ,t = λiyi ,t−1 (i = 1, 2, . . . , n)

of n uncoupled difference equations in one variable.

The solution of yt = Ayt−1 with y0 = z = (z1, z2, . . . , zn)
is then yt = (λt1z1, λ

t
2z2, . . . , λ

t
nzn).

Hence yt → 0 holds for all y0
if and only if |λi | < 1 for i = 1, 2, . . . , n.

Recall that when λ = α± iβ, one has |λ| =
√
α2 + β2.
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Warning Example

Consider the 2× 2 matrix A =

(
1
2 0
0 2

)
.

The solution of the difference equation yt = Ayt−1
with y0 = z = (z1, z2, . . . , zn) is then

yt =

(
1
2 0
0 2

)t (
z1
z2

)
=

(
2−t 0

0 2t

)(
z1
z2

)
=

(
2−tz1
2tz2

)
Then yt → 0 as t →∞ provided that z2 = 0.

But the norm ‖yt‖ → +∞ whenever z2 6= 0.

In this case one says that A exhibits saddle point stability
because starting with z2 = 0 allows convergence,
but starting with z2 6= 0 ensures divergence.

This explains why one says that the n × n matrix A is stable
just in case Aty→ 0 for all y ∈ Rn.
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Characteristic Roots and Eigenvalues

Recall the characteristic equation |A− λI| = 0.

It is a polynomial equation of degree n in the unknown scalar λ.

By the fundamental theorem of algebra,
it has a set {λ1, λ2, . . . , λn} of n characteristic roots,
some of which may be repeated.

These roots may be real,
or appear in conjugate pairs λ = α± iβ ∈ R where α, β ∈ R.

Because they are roots, one can factor |A− λI| as

|A− λI| = (−1)n
∏n

i=1
(λ− λi )

When λ solves |A− λI| = 0, there is a non-trivial eigenspace
of eigenvectors x 6= 0 that solve the equation Ax = λx.

Then λ is an eigenvalue.
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Linearly Independent Eigenvectors

Theorem
Let A be an n × n matrix,
with a collection λ1, λ2, . . . , λm of m ≤ n distinct eigenvalues.

Suppose the non-zero vectors u1,u2, . . . ,um in Rn

are eigenvalues satisfying Auk = λkuk for k = 1, 2, . . . ,m.

Then the set {u1,u2, . . . ,um} must be linearly independent.

We prove the result by induction on m.

Note that when m = 1, because of the requirement that u1 6= 0,
the set {u1} with just one eigenvector is linearly independent.

As the induction hypothesis,
suppose that {u1,u2, . . . ,um−1} is linearly independent.
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Proof by Induction: Initial Argument

Suppose that the linear combination x =
∑m−1

k=1 αkuk

of the linearly independent subset {u1,u2, . . . ,um−1}
of m − 1 vectors satisfies Ax = λmx.

Note that Ax =
∑m−1

k=1 αkAuk =
∑m−1

k=1 λkαkuk ,
whereas λmx =

∑m−1
k=1 λmαkuk .

Because Ax = λmx, subtracting the second equation from the first
gives

0 =
∑m−1

k=1
(λk − λm)αkuk

Then the induction hypothesis of linear independence
implies that for k = 1, . . . ,m − 1 one has (λk − λm)αk = 0.

For k = 1, . . . ,m − 1, because λk 6= λm, one αk = 0.

So for any x ∈ Rn, we have proved that x =
∑m−1

k=1 αkuk

and Ax = λmx jointly imply that x = 0.
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Proof by Induction: The Contrapositive

To repeat, for any x ∈ Rn, we have proved that x =
∑m−1

k=1 αkuk

and Ax = λmx jointly imply that x = 0.

The contrapositive is that Ax = λmx and x 6= 0
jointly imply that x 6=

∑m−1
k=1 αkuk for any list of scalars (αk)m−1k=1 .

Hence Ax = λmx and x 6= 0 jointly imply
that x must be linearly independent of {u1,u2, . . . ,um−1}.

Because Aum = λmum and um 6= 0,
it follows that um is linearly independent of {u1,u2, . . . ,um−1}.

This completes the proof by induction on m.
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An Eigenvector Matrix

Suppose the equation |A− λI| = 0 has n distinct roots.

We remark that this holds for the generic n × n matrix A.

In this case there are n distinct eigenvalues λ1, λ2, . . . , λn.

Define the n × n eigenvector matrix V = (uj)
n
j=1

whose columns are the matching set of non-zero eigenvectors.

By definition of eigenvalue and eigenvector,
for j = 1, 2, . . . , n one has Auj = λjuj .

The j column of the n × n matrix AV is Auj , which equals λjuj .

But with Λ := diag(λ1, λ2, . . . , λn), the elements of VΛ satisfy

(VΛ)ij =
∑n

k=1
(V)ikδkjλj = (V)ijλj = λj(uj)i

It follows that AV = VΛ because the elements are all equal.
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Diagonalization

Recall the hypothesis that the n × n matrix A
has a full set of n distinct eigenvalues.

We have just proved this hypothesis implies that the list (uj)
n
j=1

of n associated eigenvectors must form a linearly independent set.

Hence the eigenvector matrix V is invertible.

We proved on the last slide that AV = VΛ.

Pre-multiplying this equation by V−1 yields V−1AV = Λ.

This expression is called a diagonalization of A.

Furthermore, post-multiplying AV = VΛ by the inverse matrix V−1

yields A = VΛV−1.

This is a decomposition of A into the product of:

1. the eigenvector matrix V;

2. the diagonal eigenvalue matrix Λ;

3. the inverse eigenvector matrix V−1.
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Uncoupling via Diagonalization

Consider the matrix difference equation xt = Axt−1
for t = 1, 2, . . ., with x0 given.

Consider the case when the n×n matrix A has distinct eigenvalues.

We use the invertibility of the eigenvector matrix
to define a new vector yt = V−1xt for each t.

This new vector satisfies the transformed matrix difference equation

yt = V−1xt = V−1AVyt−1

The diagonalization V−1AV = Λ reduces this equation
to the uncoupled matrix difference equation yt = Λyt−1
with initial condition y0 = V−1x0.

Its solution is obviously yt = ΛtV−1x0
and so xt = Vyt = VΛtV−1x0.

Note that Λt = [diag(λ1, . . . , λn)]t = diag(λt1, . . . , λ
t
n).
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