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Power Sets

Fix an abstract set S 6= ∅.
In case it is finite, its cardinality, denoted by #S ,
is the number of distinct elements of S .

The power set of S is the family P(S) := {T | T ⊆ S}
of all subsets of S .

Sometimes the power set is denoted by 2S ,
perhaps for two reasons.

1. One can define the bijection

P(S) 3 T 7→ f (T ) ∈ {0, 1}S := {(xs)s∈S | ∀s ∈ S : xs ∈ {0, 1}}

by f (T )s = 1T (s) =

{
1 if s ∈ T

0 if s 6∈ T
.

2. So #P(S) = 2#S .
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Boolean Algebras, Sigma-Algebras, and Measurable Spaces

The family A ⊆ P(S) is a Boolean algebra on S just in case

1. ∅ ∈ Σ;

2. A ∈ Σ implies S \ A ∈ Σ;

3. if A,B lie in A, then A ∪ B ∈ A.

The family Σ ⊆ P(S) is a σ-algebra just in case
it is a Boolean algebra with the stronger property:

if (An)∞n=1 is a countably infinite family of sets in Σ,
then ∪∞n=1An ∈ Σ.

The pair (S ,Σ) is a measurable space just in case Σ is a σ-algebra.
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Exercise on Boolean Algebras and Sigma-Algebras

Exercise

1. Let A be a Boolean algebra on S.

Prove that if A,B ∈ A, then A ∩ B ∈ A.

2. Let Σ be a Boolean algebra on S.

Prove that if (An)∞n=1 is a countably infinite family of sets in
Σ,
then ∩∞n=1An ∈ Σ.

Hint

1. For part 1, use de Morgan’s law

S \ (A ∩ B) = (S \ A) ∪ (S \ B)

2. For part 2, use the infinite extension of de Morgan’s law.
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Generating a Sigma-Algebra

Theorem
Let {Σi | i ∈ I} be any indexed family of σ-algebras.

Then the intersection Σ∩ := ∩i∈IΣi is also a σ-algebra.

Proof left as an exercise.

Let X be a space, and F ⊂ 2X any family of subsets.

Since 2X is obviously a σ-algebra,
there exists a non-empty set S(F) of σ-algebras that include F .

Let σ(F) denote the intersection ∩{Σ | Σ ∈ S(F)};
it is the smallest σ-algebra that includes F .

Exercise
Let X be any uncountably infinite set, and let F := {{x} | x ∈ X}
denote the family of all singleton subsets of X .

Show that σ(F) consists of all subsets of X
that are either countable, or co-countable
(i.e., have a countable complement).
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Topological Spaces

Given a set X , a topology T on X
is a family of open subsets U ⊆ X satisfying:

1. ∅ ∈ T and X ∈ T ;

2. if U,V ∈ T , then U ∩ V ∈ T ;

3. if {Uα | α ∈ A} is any family of open sets in T ,
then the union ∪α∈AUα ∈ T .

Thus, finite intersections and arbitrary unions of open sets
are open.

A topological space (X , T ) is any set X together with a topology T
that consists of all the open subsets of X .
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The Metric Topology

Let (X , d) be any metric space.

The open ball of radius r centred at x is the set

Br (x) := {y ∈ X | d(x , y) < r}

The metric topology Td of (X , d) is the smallest topology
that includes the entire family {Br (x) | x ∈ X & r > 0}
of all open balls in X .
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Borel Sigma-Algebra

Let (X , T ) be any topological space.

Its Borel σ-algebra is defined as σ(T )
— i.e., the smallest σ-algebra containing every open set of X .

Suppose the topological space is a metric space (X , d)
with its metric topology Td .

Then the Borel σ-algebra is generated
by all the open balls Br (x) := {x ′ ∈ X | d(x , x ′) < r} in X .

For the case of the real line when X = R,
its Borel σ-algebra is generated by all the open intervals of R.
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Finitely Additive Set Functions

Let R̄ := R ∪ {−∞+∞} = [−∞,+∞]
denote the extended real line which, at each end,
has an endpoint added at infinity.

Let R̄+ := R+ ∪ {+∞} = [0,+∞] be the non-negative part of R̄.

Any family F of subsets A ⊆ X is said to be pairwise disjoint
just in case A ∩ B = ∅ whenever A,B ∈ F with A 6= B.

A mapping µ : Σ→ R̄+ is said to be additive or finitely additive
just in case, for any pair {A,B} of disjoint sets in Σ,
one has µ(A ∪ B) = µ(A) + µ(B);

For any finite collection {An}kn=1 of pairwise disjoint sets in Σ,
note how finite additivity implies that

µ
(
∪kn=1An

)
=
∑k

n=1
µ(An)
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Measure as a Countably Additive Set Functions

Let (X ,Σ) be a measurable space.

A set function µ : Σ→ R̄+ is said
to be σ-additive or countably additive just in case,
for any countable collection {An}∞n=1

of pairwise disjoint sets in Σ, one has

µ
(⋃∞

n=1
An

)
=
∑∞

n=1
µ(An)

A measure on a measurable space (X ,Σ)
is a countably additive set function µ : Σ→ R̄+

satisfying the requirement that µ(∅) = 0.
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Measure Space

A measure space is a triple (X ,Σ, µ) where

1. Σ is a σ-algebra on X ;

2. µ is a measure on (X ,Σ).

Example

A prominent example of a measure space is (R,B, `) where:

1. B is the Borel σ-algebra
induced by the open sets of the real line R;

2. the measure `(J) of any interval J ⊂ R is its length,
defined by `([a, b]) = `([a, b)) = `((a, b]) = `((a, b)) = b − a;

3. ` is extended to all of B to satisfy countable additivity
(it can be shown that this extension is unique).
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Lebesgue Measurable Subsets of the Real Line

A set N ⊂ R is null just in case
there exists a Borel subset B ∈ B with `(B) = 0
such that N ⊂ B.

This is possible for some non-Borel subsets of R.

Let N denote the family of null subsets of R.

These null sets can be used to generate the Lebesgue σ-algebra
of Lebesgue measurable sets, which is σ(B ∪N ).

The symmetric difference of any two sets S and B is defined
as the set

S4B := (S \ B) ∪ (B \ S) = (S ∪ B) \ (S ∩ B)

of elements s that belong to one of the two sets, but not to both.

One can show that S ∈ σ(B ∪N ) if and only if
there exists a Borel set B ∈ B such that S4B ∈ N
— i.e., S differs from a Borel set only by a null set.
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The Lebesgue Real Line

There is a well-defined function λ : σ(B ∪N )→ R̄+

that satisfies λ(S) := `(B) whenever S4B ∈ N .

Moreover, one can prove
that the function S 7→ λ(S) is countably additive.

This makes λ a measure, called the Lebesgue measure.

The associated measure space (R, σ(B ∪N ), λ)
is called the Lebesgue real line.
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Simple Functions
Let (X ,Σ, µ) be a measure space.

Given any set E ∈ Σ, the indicator function of E is defined by

X 3 x 7→ 1E (x) :=

{
1 if x ∈ E

0 if x 6∈ E

The finite or countably infinite collection {Ek |k ∈ K}
of pairwise disjoint sets Ek ∈ Σ
is a partition of X just in case ∪k∈KEk = X .

The function f : X 7→ R is simple just in case
there exist a partition {Ek |k ∈ K} of X
together with a corresponding collection (ak)k∈K
of real constants such that f (x) =

∑
k∈K ak1Ek

(x).

Note that the range {y ∈ R | ∃x : y = f (x) of this step function
is the precisely the set {ak |k ∈ K} of real constants.

Let F(X ,Σ) denote the set of all simple functions
on the measurable space (X ,Σ); in fact it is a real vector space.
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Integrating Simple Functions

Given a function f : X 7→ R, whenever possible
we want to define the integral

∫
X f (x) dµ =

∫
X f (x)µ(dx).

The simple function f (x) =
∑

k∈K ak 1Ek
(x) is µ-integrable

just in case one has
∑

k∈K |ak |µ(Ek) < +∞.

In particular, when K is infinite, this requires
the infinite series

∑
k∈K ak µ(Ek) to be absolutely convergent.

Then we can define the integral
∫
X f (x)µ(dx)

of the µ-integrable simple function f (x) =
∑

k∈K ak 1Ek
(x)

as the real number
∑

k∈K ak µ(Ek).
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Upper and Lower Bounds

Given the measure space (X ,Σ, µ),
the function f : X → R is measurable just in case,
for every Borel set B ⊂ R, its inverse image satisfies

f −1(B) := {x ∈ X | f (x) ∈ B} ∈ Σ

Note that we have defined a simple function to be measurable.

Given any function f : X → R, define the two sets

F∗(f ; X ,Σ) := {f ∗ ∈ F(f ; X ,Σ) | ∀x ∈ X : f ∗(x) ≥ f (x)}
F∗(f ; X ,Σ) := {f∗ ∈ F(f ; X ,Σ) | ∀x ∈ X : f∗(x) ≤ f (x)}

of simple functions that are respectively upper or lower bounds
for the function f .
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Upper and Lower Integrals

The integral
∫
X f ∗(x)µ(dx)

of each simple function f ∗ ∈ F∗(f ; X ,Σ),
is an over-estimate of the true integral of f .

But the integral
∫
X f∗(x)µ(dx)

of each simple function f∗ ∈ F∗(f ; X ,Σ),
is an under-estimate of the true integral of f .

Define the upper integral and lower integral of f as, respectively

I ∗(f ) := inff ∗∈F∗(f ;X ,Σ)

∫
X f ∗(x)µ(dx)

and I∗(f ) := supf∗∈F∗(f ;X ,Σ)

∫
X f∗(x)µ(dx)

Of course, in case f is itself a simple function,
one has I ∗(f ) = I∗(f ) =

∫
X f (x)µ(dx).
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Integration

Definition
The function f : X → R is integrable just in case it is measurable
and also the upper integral I ∗(|f |)
of the function x 7→ |f (x)| is defined
(because |f | is bounded above by an integrable simple function).

Theorem
If the function f : X → R is integrable,
then its upper and lower integrals I ∗(f ) and I∗(f ) are equal.

So if f : X → R is integrable,
then we can define its integral

∫
X f (x)µ(dx)

as the common value of I ∗(f ) and I∗(f ).
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Probability Measure and Probability Space

Fix a measurable space (S ,Σ),
where S is a set of unknown states of the world.

Then Σ is a σ-algebra of unknown events.

A probability measure on (S ,Σ) is a measure P : Σ→ R̄+

satisfying the requirement that P(S) = 1.

Countable additivity implies that P(E ) + P(E c) = 1
for every event E ∈ Σ, where E c := S \ E .

It follows that P(E ) ∈ [0, 1] for every E ∈ Σ.
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Properties of Probability

Theorem
Let (S ,Σ,P) be a probability space.

Then the following hold for all Σ-measurable sets E ,E ′ etc.

1. P(E ) ≤ 1 and P(E c) = 1− P(E );

2. P(E ′ ∩ E c) = P(E ′)− P(E ′ ∩ E ) and
P(E ∪ E ′) = P(E ) + P(E ′)− P(E ∩ E ′);

3. for every partition {En}Nn=1 of S into pairwise disjoint sets,

one has P(E ) =
∑N

n=1 P(E ∩ En);

4. P(E ∩ E ′) ≥ P(E ) + P(E ′)− 1.

5. P(∪∞n=1En) ≤
∑∞

n=1 P(En).
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Two Limiting Properties

Theorem
Let (S ,Σ,P) be a probability space,
and (En)Nn=1 an infinite sequence of Σ-measurable sets.

1. If En ⊆ En+1 for all n ∈ N,
then P(∪∞n=1En) = limn→∞ P(En).

2. If En ⊇ En+1 for all n ∈ N,
then P(∩∞n=1En) = limn→∞ P(En).
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Proving the Limiting Properties

Proof.

1. Because En ⊆ En+1 for all n ∈ N, one has

En = E1 ∪ [
⋃n

k=2(Ek \ Ek−1)]
and ∪∞n=1 En = E1 ∪ [

⋃∞
k=2(Ek \ Ek−1)]

where the sets E1 and {Ek \ Ek−1 | k = 2, 3, . . .}
are all pairwise disjoint. Hence

P(En) = P(E1) +
∑n

k=2 P(Ek \ Ek−1)
P(∪∞n=1En) = P(E1) +

∑∞
k=2 P(Ek \ Ek−1)

= limn→∞ [P(E1) +
∑n

k=2 P(Ek \ Ek−1)]
= limn→∞ P(En)

2. Apply part 1 to the complements of the sets En.
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Conditional Probability: First Definition

Let E ∗ ∈ Σ be such that P(E ∗) > 0.

The conditional probability measure on E ∗ is the mapping

Σ 3 E 7→ P(E |E ∗) :=
P(E ∩ E ∗)

P(E ∗)
∈ [0, 1]

The triple (E ∗,Σ(E ∗),P(·|E ∗)) with

Σ(E ∗) := {E ∩ E ∗ | E ∈ Σ} = {E ∈ Σ | E ⊂ E ∗}

is then a conditional probability space given the event E ∗.
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Conditional Probability: Two Key Properties

Theorem
Provided that P(E ) ∈ (0, 1), one has

P(E ′) = P(E )P(E ′|E ) + (1− P(E ))P(E ′|E c)

Theorem
Let (Ek)nk=1 be any finite list of sets in Σ.
Provided that P(∩n−1

k=1Ek) > 0, one has

P(∩nk=1Ek) = P(E1)P(E2|E1)P(E3|E1 ∩ E2) . . . P(En| ∩n−1
k=1 Ek)
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Independence
The finite or countably infinite family {Ek}k∈K of events in Σ is:

I pairwise independent
if P(E ∩ E ′) = P(E )P(E ′) whenever E 6= E ′;

I independent if for any finite subfamily {Ek}nk=1,
one has P(∩nk=1Ek) =

∏n
k=1 P(Ek).

Exercise
Let S be the set {1, 2, 3, 4, 5, 6, 7, 8, 9},
and P the probability measure on 2S

satisfying P({s}) = 1/9 for all s ∈ S.

Consider the three events

E1 = {1, 2, 7}, E2 = {3, 4, 7} and E3 = {5, 6, 7}

Are these event pairwise independent? Are they independent?

Exercise
Prove that if {E ,E ′} is independent, then so is {E c ,E ′}.
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Random Variable

I The function X : S → R is Σ-measurable just in case
for every x ∈ R one has

X−1(−∞, x) := {s ∈ S | X (s) ≤ x} ∈ Σ

I A random variable (with values in R)
is a Σ-measurable function X : S → R.

I The distribution function or cumulative distribution function
(cdf) of X is the mapping FX : R→ [0, 1] defined by

x 7→ FX (x) = P({s ∈ S | X (s) ≤ x})
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Properties of Distribution Functions

Theorem
The CDF of any random variable s 7→ X (s) satisfies:

1. limx→−∞ FX (x) = 0 and limx→+∞ FX (x) = 1.

2. x ≥ x ′ implies FX (x) ≥ FX (x ′).

3. limh↓0 FX (x + h) = FX (x).

4. P({s ∈ S | X (s) > x}) = 1− FX (x).

5. P({s ∈ S : x < X (s) ≤ x ′}) = FX (x ′)− FX (x)
whenever x < x ′,

6. P({s ∈ S : X (s) = x}) = FX (x)− limh↑0 FX (x + h).

Is it always true that limh↑0 FX (x + h) = FX (x)?

CDFs are sometimes said to be càdlàg,
which is a French acronym for continue à droite, limite à gauche
(continuous on the right, limit on the left).
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Continuous Random Variable

I A random variable X is

1. continuous if FX is continuous;
2. absolutely continuous if there exists a density fX : R→ R+

such that FX (x) =
∫ x

−∞ fX (u)du

I The support of X is the closure of the set
on which FX is strictly increasing.

Example

The uniform distribution on a closed interval [a, b] of R
has density function f and distribution function F given by

fX (x) :=
1

b − a
1[a,b](x) and FX (x) :=


0 if x < a
x − a

b − a
if x ∈ [a, b]

1 if x > b
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The Normal or Gaussian Distribution

Example

The standard normal distribution on R
has density function f given by

fX (x) := ke−
1
2 x

2

where k := 1/
√

2π is chosen so that
∫ +∞
−∞ ke−

1
2 x

2

dx = 1.

Its mean and variance are∫ +∞
−∞ kxe−

1
2 x

2

dx = lima→∞
∫ +a
−a kxe−

1
2 x

2

dx

= lima→∞[−
∫ a

0 kxe−
1
2 x

2

dx +
∫ a

0 kxe−
1
2 x

2

dx ]
= 0∫ +∞

−∞ kx2e−
1
2 x

2

dx = 1
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The Gaussian Integral, I
Define I (a) :=

∫ +a
−a e−

1
2 x

2

dx for each a ∈ R. Then

[I (a)]2 =

(∫ +a
−a e−

1
2 x

2

dx

)(∫ +a
−a e−

1
2 y

2

dy

)
=

∫ +a
−a

(∫ +a
−a e−

1
2 y

2

dy

)
e−

1
2 x

2

dx

=
∫ +a
−a
∫ +a
−a e−

1
2 x

2

e−
1
2 y

2

dxdy

Define also

J(b) := 2π
∫ b

0 re−
1
2 r

2

dr = 2π|b0[−e−
1
2 r

2

]

= 2π(1− e−
1
2b

2

)

Let S(a) := [−a, a]2 denote the solid square subset of R2

that is centred at the origin and has sides of length 2a.

Let D(b) := {(x , y) ∈ R2 | x2 + y 2 ≤ b2}
denote the disk of radius b centred at the origin.
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The Gaussian Integral, II

Consider the transformation (r , θ) 7→ (x , y) = (r cos θ, r sin θ)
from polar to Cartesian coordinates.
The Jacobian matrix of this transformation is∣∣∣∣∂x/∂r ∂x/∂θ

∂y/∂r ∂y/∂θ

∣∣∣∣ =

∣∣∣∣cos θ −r sin θ
sin θ r cos θ

∣∣∣∣ = r(cos2 θ + sin2 θ) = r

It follows that changing to polar coordinates

in the double integral
∫
D(b) e−

1
2 (x2+y2)dxdy

transforms it to∫ b

0

∫ 2π

0
re−

1
2 r

2

drdθ = 2π

∫ b

0
re−

1
2 r

2

dr = J(b)
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The Gaussian Integral, III

Note that D(a) ⊂ S(a) ⊂ D(a
√

2) and so

∫
D(a) e−

1
2 (x2+y2)dx dy ≤

∫
S(a) e−

1
2 (x2+y2)dx dy

≤
∫
D(a
√

2) e−
1
2 (x2+y2)dx dy

One can show that

J(a) ≤ [I (a)]2 =

∫
S(a)

e−
1
2 (x2+y2)dxdy ≤ J(a

√
2)

and so 2π(1− e−
1
2a

2

) ≤ [I (a)]2 ≤ 2π(1− e−a
2
).

Taking limits as a→∞ one has 2π(1− e−
1
2a

2

)→ 2π
and also 2π(1− e−a

2
)→ 2π, implying that [I (a)]2 → 2π.

Theorem

The Gaussian integral
∫ +∞
−∞ e−

1
2 x

2

dx equals
√

2π.
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Expectation
Let g : R→ R be any Borel function,
and x 7→ fX (x) the density function of the random variable X .

Whenever the integral
∫∞
−∞ |g(x)|fX (x)dx exists,

the expectation of g ◦ X is defined as

E(g(X )) =

∫ ∞
−∞

g(x)fX (x)dx

Theorem
Let g1, g2 : R→ R and a, b, c ∈ R. Then:

1. E(ag1(X ) + bg2(X ) + c) = aE(g1(X )) + bE(g2(X )) + c.

2. If g1 ≥ 0, then E(g1(X )) ≥ 0.

3. If g1 ≥ g2, then E(g1(X )) ≥ E(g2(X )).

: Fix g : R→ R+ with E(g(X )) ∈ R.

Then P(g(X ) ≥ r) ≤ 1
r E(g(X )).
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Chebychev’s Inequality

Theorem
For any random variable S 3 s 7→ X (s) ∈ Z ,
fix any measurable function g : Z → R+ with E[g(X (s))] < +∞.

Then for all r > 0 one has P(g(X ) ≥ r) ≤ 1

r
E[g(X )].

Proof.
The two indicator functions s 7→ 1g(X )≥r (s) and s 7→ 1g(X )<r (s)
satisfy 1g(X )≥r (s) + 1g(X )<r (s) = 1 for all s ∈ S .

Because g(X (s) ≥ 0 for all s ∈ S , one has

E[g(X )] = E[1g(X )≥r (s) g(X (s))] + E[1g(X )<r (s) g(X (s))]
≥ r E[1g(X )≥r (s)] = r P(g(X ) ≥ r)

Dividing by r implies that
1

r
E[g(X )] ≥ P(g(X ) ≥ r).
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Moments and Central Moments

For a random variable X :

I its kth (noncentral) moment is E(X k);

I its kth central moment is E((X − E(X ))k),
assuming that E(X ) exists in R.

I its variance, V(x), is its second central moment.
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Central Moments of the Gaussian Distribution

Let mn :=
∫ +∞
−∞ kxne−

1
2 x

2

dx denote the nth central moment
of the standard normal distribution.

Because
d

dx
e−

1
2 x

2

= −x e−
1
2 x

2

, integrating by parts gives

mn =
∫ +∞
−∞ kxne−

1
2 x

2

dx

= −
∫ +∞
−∞ kxn−1

(
d
dx e−

1
2 x

2

)
dx

= −|+∞−∞kxn−1e−
1
2 x

2

+
∫ +∞
−∞ kn − 1xn−2e−

1
2 x

2

dx

= (n − 1)mn−2

So m2r−1 = 0 for odd integers, whereas for even integers

m2r = (2r − 1)(2r − 3) · · · 5 · 3 · 1

=
2r(2r − 1)(2r − 2)(2r − 3) · · · 5 · 4 · 3 · 2 · 1

2r(2r − 2)(2r − 4) · · · 6 · 4 · 2
=

(2r)!

2r r !
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Multiple Random Variables

Let S 3 s 7→ X(s) = (Xn(s))Nn=1

be an N-dimensional vector of random variables
defined on the probability space (S ,Σ,P).

I Its joint distribution function is the mapping defined by

RN 3 x 7→ FX(x) := P({s ∈ S | X(s) 5 x})

I The random vector X is absolutely continuous
just in case there exists a density function fX : RN → R+

such that

FX(x) =

∫
u5x

fX(u) du
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Independent Random Variables

Let X be an N-dimensional vector valued random variable.

I If X is absolutely continuous,
the marginal density R 3 x 7→ fXn(x) of its nth component Xn

is defined as the N − 1-dimensional iterated integral

fXn(x) =

∫
· · ·
∫

fX(x1, . . . , xn−1, x , xn+1, . . . , xN)dx1 . . . dxN

I The N components of X are independent just in case
fX =

∏N
n=1 fXn .

I The infinite sequence (Xn)∞n=1 of random variables
is independent just in case
every finite subsequence (Xn)n∈K (K finite) is independent.
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Expectations
Let X be an N-dimensional vector valued random variable,
and g : RN → R a measurable function.

The expectation of g(X) is defined as the N-dimensional integral

E[g(X)] :=

∫
RN

g(u)fX(u) du

Theorem
If the collection (Xn)Nn=1 of random variables is independent, then

E
[∏N

n=1
Xn

]
=
∏N

n=1
E(Xn)

Exercise
Prove that if the pair (X1,X2) of r.v.s is independent,
then its covariance satisfies

Cov(X1,X2) := E[(X1 − E[X1])(X2 − E[X2])] = 0
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Marginal and Conditional Density
Fix the pair (X1,X2) of random variables.

I The marginal density of X1 is

fX1(x1) =

∫ ∞
−∞

f(X1,X2)(x1, x2)dx2.

I At points x1 where fX1(x1) > 0,
the conditional density of X2 given that X1 = x1 is

fX2|X1
(x2|x1) =

f(X1,X2)(x1, x2)

fX1(x1)

Theorem
If the pair (X1,X2) is independent and fX1(x1) > 0, then

fX2|X1
(x2|x1) = fX2(x2)
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Conditional Expectations
Fix the pair (X1,X2) of random variables.

I The conditional expectation of g(X2) given that X1 = x1 is

E[g(X2)|X1 = x1] =

∫ ∞
−∞

g(x2)fX2|X1
(x2|x1)dx2.

I Given any measurable function (x1, x2) 7→ g(x1, x2),
the law of iterated expectations states that

Ef(X1,X2)
[g((X1,X2)(s))] = EfX1

[EfX2|X1
[g((X1,X2)(s))]]

Proof.

Ef(X1,X2)
[g ] =

∫
R2 g(x1, x2) f(X1,X2)(x1, x2) dx1 dx2

=
∫
R
[∫

R g(x1, x2) fX2|X1
(x2|x1) dx2

]
fX1(x1) dx1

= EfX1
[EfX2|X1

g(x1, x2)]]
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Convergence of Random Variables

The sequence (Xn)∞n=1 of random variables:

I converges in probability to X (written as Xn
p→ X )

just in case, for all ε > 0 one has

lim
n→∞

P(|Xn − X | < ε) = 1.

I converges in distribution to X (written as Xn
d→ X )

just in case, for all x at which FX is continuous,

lim
n→∞

FXn(x) = FX (x).
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The Law of Large Numbers

I The sequence (Xn)∞n=1 of random variables is i.i.d.
— i.e., independently and identically distributed
— just in case

1. it is independent, and
2. for every Borel set D ⊆ R, one has P(Xn ∈ D) = P(Xn′ ∈ D).

I The weak law of large numbers:
Let (Xn)∞n=1 be i.i.d. with E(Xn) = µ.
Define the sequence

(X̄n)∞n=1 :=

(
1

n

∑n

k=1
Xk

)∞
n=1

of sample means. Then, X̄n
p→ µ.
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The Meaning of Probability

Prove the following:

Let γ = p(X ∈ Ω) ∈ (0, 1). Consider the following experiment:
“n realizations of X are taken independently.”
Let Gn be the relative frequency with which a realization in Ω
is obtained in the experiment. Then, Gn

p→ γ.
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The Central Limit Theorem

I The central limit theorem:
Let (Xn)∞n=1 be i.i.d. random variables
with E(Xn) = µ and V(Xn) = σ2. Then,

√
n

X̄n − µ
σ

d→ 1√
2π

∫ x

−∞
e−

1
2
u2

du.
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The Fundamental Theorems

Let (Xn)∞n=1 be i.i.d., with E[Xn] = µ and V(Xn) = σ2. Then:

I by the law of large numbers,

X̄n
p→ µ;

so
X̄n

d→ µ;

I but by the central limit theorem,

X̄n − µ
(σ/
√

n)

d→ 1√
2π

∫ x

−∞
e−

1
2
u2

du.
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