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rower S5¢€i1s

Fix an abstract set S # ().

In case it is finite, its cardinality, denoted by #3S,
is the number of distinct elements of S.

The power set of S is the family P(S):={T | T C S}
of all subsets of S.

Sometimes the power set is denoted by 25
perhaps for two reasons.

1. One can define the bijection
P(S)> T £(T) € {0,1}° := {(xs)ses | Vs € S : xs € {0,1}}

1 ifseT

by f(T)s =17(s) = {0 fsd T

2. So #P(S) =27,

University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 3 of 53



DBOoOolI€an AIgeEDras, JSlgma-AIlgeDras, and Ivieasuranie opaces

The family A C P(S) is a Boolean algebra on S just in case

1. 0 ex;

2. Ac X implies S\ A€ L;

3. if A,Bliein A, then AUB € A.
The family ¥ C P(S) is a o-algebra just in case
it is a Boolean algebra with the stronger property:
if (An)S2, is a countably infinite family of sets in X,

then US2 A, € 1.

The pair (S5,X) is a measurable space just in case X is a o-algebra.
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CXErCIs€ on BOOoI€an AIZEDras and JlgMma-AIgEDras

Exercise

1. Let A be a Boolean algebra on S.
Prove that if A,B € A, then AN B € A.
2. Let X be a Boolean algebra on S.

Prove that if (A,)S2, is a countably infinite family of sets in
Z/
then N721 A, € L.

Hint

1. For part 1, use de Morgan's law
S\(ANnB)=(S\AU(S\B)
2. For part 2, use the infinite extension of de Morgan's law.
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Lenerating a sSigma-AIlgebdra

Theorem
Let {¥; | i € I} be any indexed family of c-algebras.
Then the intersection ¥ := N;c;X; is also a o-algebra.

Proof left as an exercise.

Let X be a space, and F C 2X any family of subsets.
Since 2X is obviously a o-algebra,
there exists a non-empty set S(F) of o-algebras that include F.

Let o(F) denote the intersection N{X | £ € S(F)};
it is the smallest o-algebra that includes F.

Exercise

Let X be any uncountably infinite set, and let F := {{x} | x € X}
denote the family of all singleton subsets of X.

Show that o(F) consists of all subsets of X

that are either countable, or co-countable

(i.e., have a countable complement).
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10pPOIogICal Spaces

Given a set X, a topology 7 on X
is a family of open subsets U C X satisfying:

1.0 eT and XET;
2.ifU,VET, then UNV €T;

3. if {Uy | @ € A} is any family of open sets in T,
then the union UycalUy € T

Thus, finite intersections and arbitrary unions of open sets
are open.

A topological space (X, T) is any set X together with a topology T
that consists of all the open subsets of X.
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Ine WIELric 10poIogy

Let (X, d) be any metric space.

The open ball of radius r centred at x is the set
Br(x) :={y € X |d(x,y) <r}
The metric topology T4 of (X, d) is the smallest topology

that includes the entire family {B,(x) | x € X & r > 0}
of all open balls in X.
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DBOrel Sigma-AIgenra

Let (X, T) be any topological space.

Its Borel o-algebra is defined as o(T)

— i.e., the smallest o-algebra containing every open set of X.
Suppose the topological space is a metric space (X, d)

with its metric topology 7q4.

Then the Borel o-algebra is generated

by all the open balls B,(x) := {x" € X | d(x,x") < r} in X.
For the case of the real line when X = R,

its Borel o-algebra is generated by all the open intervals of R.
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Measures and Integrals

Measure Spaces
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rinitely Additive o€t runctions

Let R := RU{—00c + o0} = [~00, +0]

denote the extended real line which, at each end,

has an endpoint added at infinity.

Let Ry := R, U {+oc} = [0, +0c] be the non-negative part of R.
Any family F of subsets A C X is said to be pairwise disjoint
just in case AN B = () whenever A, B € F with A # B.

A mapping 1 : ¥ — R, is said to be additive or finitely additive
just in case, for any pair {A, B} of disjoint sets in ¥,
one has u(AU B) = u(A) + u(B);

For any finite collection {A,}X_; of pairwise disjoint sets in T,
note how finite additivity implies that

p(UhaAn) =300 nlAn)

n=1
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IVieasure as a Lountably Addltive o5€t runctions

Let (X, X) be a measurable space.

A set function p: ¥ — R, is said

to be o-additive or countably additive just in case,
for any countable collection {A,}5°,

of pairwise disjoint sets in X, one has

a (U:Ozl A”) - Z:O:l 1+(An)

A measure on a measurable space (X, X)
is a countably additive set function p: > — R
satisfying the requirement that () = 0.
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vieasure space

A measure space is a triple (X, X, 1) where
1. ¥ is a o-algebra on X;
2. pis a measure on (X, X).

Example
A prominent example of a measure space is (R, BB, ¢) where:

1. B is the Borel o-algebra
induced by the open sets of the real line R;

2. the measure ¢(J) of any interval J C R is its length,

defined by ¢([a, b]) = ¢([a, b)) = ¢((a, b]) = ¢((a, b)) = b — a;
3. £ is extended to all of B to satisfy countable additivity

(it can be shown that this extension is unique).
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Lepesgue Ivicasurable SUDSELS O the RE€al Line

A set N C R is null just in case
there exists a Borel subset B € B with ¢(B) =0
such that N C B.

This is possible for some non-Borel subsets of R.

Let AV denote the family of null subsets of R.

These null sets can be used to generate the Lebesgue o-algebra
of Lebesgue measurable sets, which is o(BUN).

The symmetric difference of any two sets S and B is defined
as the set

SAB:=(S\B)U(B\S)=(SUB)\ (SN B)

of elements s that belong to one of the two sets, but not to both.

One can show that S € o(BUN) if and only if
there exists a Borel set B € B such that SAB € N
— i.e., S differs from a Borel set only by a null set.
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I NeE LEDESgUE REal LINne

There is a well-defined function A : 6o(BUN) — Ry
that satisfies A\(S) := ¢(B) whenever SAB € N.

Moreover, one can prove
that the function S — A(S) is countably additive.

This makes A a measure, called the Lebesgue measure.

The associated measure space (R, (B UN), \)
is called the Lebesgue real line.
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Lebesgue Integration
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Simpie runctions
Let (X, X, 1) be a measure space.
Given any set E € ¥, the indicator function of E is defined by

X3 xm— 1g(x) = {l !fXE E
0 ifx¢gE
The finite or countably infinite collection {Ex|k € K}
of pairwise disjoint sets Ex € *
is a partition of X just in case Uxecx Ex = X.
The function f : X — R is simple just in case
there exist a partition {Ex|k € K} of X
together with a corresponding collection (ax)kex
of real constants such that f(x) = >, x ak1lg (x).

Note that the range {y € R | 3x : y = f(x) of this step function
is the precisely the set {ax|k € K} of real constants.

Let (X, X) denote the set of all simple functions

on the measurable space (X, X); in fact it is a real vector space.
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integrating simpie runctions

Given a function f : X — R, whenever possible

we want to define the integral [, f(x)du = [y f(x) p(dx).
The simple function f(x) = >,k ak 1, (x) is /L—lntegrable
just in case one has >,y |ak| n(Ex) < +o0.

In particular, when K is infinite, this requires

the infinite series ), -, ak j1(Ex) to be absolutely convergent.
Then we can define the integral [, f(x) u(dx)

of the p-integrable simple function f(x) = 3", .k ak 1£,(x)

as the real number -, ax pu( Ex).
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Upper ana Lower bounds

Given the measure space (X, X, u),
the function f : X — R is measurable just in case,
for every Borel set B C R, its inverse image satisfies

f1B)={xecX|f(x)eB}eX

Note that we have defined a simple function to be measurable.

Given any function f : X — R, define the two sets

FH(FX,X) = {ffeF(HX,X)|VxeX:f(x)>f(x)}
F(£;X,2) == {fie F(£; X, )| Vx € X: fi(x) < f(x)}

of simple functions that are respectively upper or lower bounds
for the function f.
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Upper ana Lower integrals

The integral [, f*(x) u(dx)

of each simple function f* € F*(f; X, X),

is an over-estimate of the true integral of f.
But the integral [, fi.(x) pu(dx)

of each simple function f, € F,(f; X, X),

is an under-estimate of the true integral of f.

Define the upper integral and lower integral of f as, respectively

/
and |/

*
~—~
-
N—r

= infrer(rx.z) [x £ (x) p(dx)
= supg e, (rx.x) Jx fe(X) pldx)

*
~
-
N—r

Of course, in case f is itself a simple function,
one has I*(f) = I.(f) = fx f(x) u(dx).
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integration

Definition

The function f : X — R is integrable just in case it is measurable
and also the upper integral /*(|f])

of the function x — |f(x)| is defined

(because |f| is bounded above by an integrable simple function).

Theorem
If the function f : X — R is integrable,
then its upper and lower integrals I*(f) and I.(f) are equal.

So if f: X — R is integrable,
then we can define its integral [, f(

x) p(dx)
as the common value of /[*(f) and /.(f).
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Kolmogorov's Definition of Probability
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FrobapliIty Ivieasure ana rropablity Space

Fix a measurable space (S, ¥),
where S is a set of unknown states of the world.

Then X is a o-algebra of unknown events.

A probability measure on (S,¥) is a measure P: ¥ — R,
satisfying the requirement that P(S) = 1.

Countable additivity implies that P(E) + P(E€) =1

for every event E € ¥, where E€:= S\ E.

It follows that P(E) € [0, 1] for every E € .

University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 23 of 53



rroperties or rrobabliity

Theorem
Let (S,%,P) be a probability space.
Then the following hold for all ¥-measurable sets E, E' etc.
1. P(E) <1and P(E°)=1-TP(E),
2. P(EENE°)=P(E')—P(E'NE) and
P(EUE")=P(E)+P(E')—P(ENE’);
3. for every partition {E,,},,N:1 of S into pairwise disjoint sets,
one has P(E) = YN P(ENE,);
4. P(ENE")>P(E)+P(E") —1.
5. P(U,En) < 550, P(En).
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I WO LIMITINg Froperties

Theorem
Let (S,%,IP) be a probability space,
and (E,)N_, an infinite sequence of ¥-measurable sets.
1. IfE, C Eyyq forallneN,
then P(UX° 1 Ep) = limp_yo0 P(Ep).
2. If E, D Epyq forall n € N,
then P(N0° 4 Ep) = limp_yo0 P(Ep).
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rroving tne Limiting rroperties

Proof.

1. Because E, C E, ;1 for all n € N, one has

En = E1U[Up—p(Ex\ Ek-1)]
and UX, E, = E1U[UZs(Ex\ Ex—1)]

where the sets E; and {Ex \ Ex—1 | k=2,3,...}
are all pairwise disjoint. Hence

P(Ex) = P(E1)+ > p_pP(Ei \ Ek-1)
P(UR En) = P(E) + 2200, P(Ex \ Ex—1)
limp o0 [P(E1) + 3 k—p P(Exc \ Ex—1)]
= limp—so0 P(En)

2. Apply part 1 to the complements of the sets E,,.
L]
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Lonairtional FropabDllity: FIrst verinition

Let E* € ¥ be such that P(E*) > 0.
The conditional probability measure on E* is the mapping

5 E o P(E|EY) = P(&;j*) c[0.1]

The triple (E*, X(E*),P(|E*)) with
Y(E*)={ENE"|EcX}={EcX|ECE"}

is then a conditional probability space given the event E*.
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Lonairtional Frobabhity. WO NEY Froperties

Theorem
Provided that P(E) € (0,1), one has

P(E') = P(E)P(E'|E) + (1 — P(E))P(E'|E®)
Theorem

Let (Ex);_, be any finite list of sets in ¥.
Provided that P(N}_1E) > 0, one has

P(Nf_1Ex) = P(E1) P(E2| Ev) P(E3|Er N By) ... P(E,| NRZT Ex)
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maependence
The finite or countably infinite family {Ex}xex of events in X is:
> pairwise independent
if P(EN E") =P(E)P(E’) whenever E # E,
» independent if for any finite subfamily {Ex}7_;,
one has P(N7_; Ex) = [ 15— P(Ex).
Exercise
Let S be the set {1,2,3,4,5,6,7,8,9},
and P the probability measure on 2°
satisfying P({s}) = 1/9 for all s € S.

Consider the three events
E1 = {1,2,7}, E2 = {3,4, 7} and E3 = {5,6,7}
Are these event pairwise independent? Are they independent?

Exercise
Prove that if {E, E'} is independent, then so is {E€, E'}.
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nRanaom varianic

» The function X : S — R is X-measurable just in case
for every x € R one has

X (—o00,x) : ={s€S|X(s)<x}eX

» A random variable (with values in R)
is a X-measurable function X : S — R.

» The distribution function or cumulative distribution function
(cdf) of X is the mapping Fx : R — [0, 1] defined by

x—= Fx(x)=P{s e S| X(s) <x})
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vutline

Cumulative Distribution and Density Functions
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rroperties or vistripution runctions

Theorem
The CDF of any random variable s — X(s) satisfies:

1.

AN

6.

limy— 0o Fx(x) =0 and limy_ 4o Fx(x) = 1.
x > x' implies Fx(x) > Fx(x').

|imh¢0 Fx(X + h) = Fx(X).

P({s € S| X(s) >x})=1— Fx(x).

P({s€ S:x < X(s) <x'})=Fx(x") = Fx(x)
whenever x < X',

P({s € S : X(s) = x}) = Fx(x) — limpyo Fx(x + h).

Is it always true that limpp Fx(x + h) = Fx(x)?

CDFs are sometimes said to be cadlag,
which is a French acronym for continue a droite, limite a gauche
(continuous on the right, limit on the left).
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Lontinuous rRandom variable

» A random variable X is
1. continuous if Fx is continuous;
2. absolutely continuous if there exists a density fx : R — R
such that Fx(x) = [~__ fx(u)du
» The support of X is the closure of the set
on which Fx is strictly increasing.

Example

The uniform distribution on a closed interval [a, b] of R
has density function f and distribution function F given by

0 if x<a
1 X—a .
fx(x) = El[a,b](x) and Fx(x) := P if x € [a, b]
1 if x> b
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I Ne Normal or baussian vistripution

Example

The standard normal distribution on R
has density function f given by

1.0
fx(x) := ke™ 2%

1
where k := 1/+/27 is chosen so that [©2° ke 2% dx = 1.

Its mean and variance are

12 1,
+o0 —5X : +a —5X
JT Tl kxeT 2 dx = limaee [0 kxe” 27 dx

1 1
= limasoo|— J3 kxe™ 2% dx + I kxe 2% dx]
=0

1
T ke 2¥dx = 1
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I N€ Gaussian Integral
Define /(a f+a e 2X dx for each a € R. Then

i@ = (17 e‘idex) (14 a)
= 7 <f“ ~37 dy> e 2% dy

Jr2 e e dudy

Define also
1 1

J(b) = 27rf0bre_2r2dr = 27|b[—e"2"]
1
= 2r(1-e2%)

Let S(a) := [—a, a]® denote the solid square subset of R?
that is centred at the origin and has sides of length 2a.
Let D(b) := {(x,y) € R? | x2 + y2 < b?}

denote the disk of radius b centred at the origin.
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I nNe baussian Integrai, Il

Consider the transformation (r,0) +— (x,y) = (rcos®, rsin§)
from polar to Cartesian coordinates.
The Jacobian matrix of this transformation is

Ox/0r 0x/00
dy/or 0y/00

= r(cos® 0 +sin?0) = r

sinf rcosf

cosf —rsin 0‘

It follows that changing to polar coordinates

. ) _l(X2+ 2)
in the double integral fD(b) e 2V ) dxdy
transforms it to

b r2mw 1, b 1,
/ / re” 2" drdf = 277/ re" 2" dr = J(b)
o Jo 0
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I nNe baussian Integral, 1l
Note that D(a) C S(a) C D(av/2) and so

1
Js e 2 Ddxdy

1
Josy e 2% axay
1
fD(aﬁ) o= 3034r?) gy dy

IN

IN

One can show that

) < [P = /5@ e 2 ) ddy < J(av/2)

2

and so 27(1 —e -3 ) < [I(a)]? <2n(1 — e ™).

Taking limits as a — oo one has 27(1 — e_§a2) — 27

and also 27(1 — e*a2) — 27, implying that [/(a)]? — 2.

[y

Theorem )
The Gaussian integral fj;o e 2% dx equals /2.
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Expected Values
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cXpectation

Let g : R — R be any Borel function,
and x — fx(x) the density function of the random variable X.

Whenever the integral [~ |g(x)|fx(x)dx exists,
the expectation of go X is deflned as

Blg(x)) = | " g () (x)dx

— 00

Theorem
Let g1,80 : R — R and a, b,c € R. Then:

1. E(ag1(X) + bg2(X) + ¢) = aE(g1(X)) + bE(g2(X)) + c.
2. If g >0, then E(gi(X)) > 0.
3. If g1 > g2, then E(g1(X)) = E(g2(X)).

. Fix g : R — R4 with E(g(X)) € R.
Then P(g(X) > r) < 1E(g(X)).
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LneEpycneyv s Inequality

Theorem
For any random variable S 5 s — X(s) € Z,
fix any measurable function g : Z — R with E[g(X(s))] < +o0.

1
Then for all r > 0 one has P(g(X) > r) < ;E[g(X)]

Proof.

The two indicator functions s+ 1,(x)>,(s) and s+ 1z(x)<,(s)
satisfy 15(x)>r(S) + lgx)<r(s) = Lforall s € S.

Because g(X(s) > 0 for all s € S, one has

Elg(X)] = Ellgx)=r(s) 8(X(s)] + Ellg(x)<r(s) 8(X(s))]
> rE[lg(X)zr(s)] = r]P)(g(X) > r)
Dividing by r implies that %E[g(X)] > P(g(X) >r). O

University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 40 of 53



vioments ana central ivioments

For a random variable X:
> its k™ (noncentral) moment is E(X¥);

> its k" central moment is E((X — E(X))¥),
assuming that E(X) exists in R.

» its variance, V(x), is its second central moment.
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Lentral ivioments Oor tne baussian vistripution

1o
Let m, := fj;o kx"e”2* dx denote the nth central moment
of the standard normal distribution.

d _1l. _Llo . .
Because e 2¥ = —x e 2, integrating by parts gives
X
+o00 n 71)(2
m, = [ kx"e 2% dx

1.0
_ [T n—1|( d ,—5x
= — [T kx (dxe 2 )dx
+00 -1 ,—3x2 +00 -2 - 532
—|[TXkx"teT 2 4 [T kn — 1x""2e 2% dx

= (n—1)mp_3

So my,_1 = 0 for odd integers, whereas for even integers

(2r—1)(2r—3)---5-3-1
2r(2r —1)(2r —2)(2r —3)---5-4-3-2-1 _ (2r)!
2r(2r —2)(2r —4)---6-4-2 —2rr!

myy
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IVIUItIple Random variables

Let S 2 s+ X(s) = (Xa(s))N

n=1
be an N-dimensional vector of random variables

defined on the probability space (S, %, P).
> Its joint distribution function is the mapping defined by

RN 5 x = Fx(x) :=P({s € S| X(s) < x})

» The random vector X is absolutely continuous
just in case there exists a density function fx : RN — R
such that

Fx(x) = /< f (1) du
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mnaependent Ranaom variables

Let X be an N-dimensional vector valued random variable.

» If X is absolutely continuous,

the marginal density R 5 x — fx,(x) of its nth component X,
is defined as the N — 1-dimensional iterated integral

an(X):/---/fx(Xl,...7Xn,1,X,X,,+17...,XN)dX1...dXN

» The N components of X are independent just in case
N
fX = Hn:l fxn'
» The infinite sequence (X,)%; of random variables
is independent just in case
every finite subsequence (X,)nek (K finite) is independent.
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cXpectations

Let X be an N-dimensional vector valued random variable,
and g : RN — R a measurable function.

The expectation of g(X) is defined as the N-dimensional integral

Blg(X)] = [ e(u)i(w)du
RN

Theorem

If the collection (X,)N_, of random variables is independent, then

E [HL xn} - 11" Ex)

Exercise

Prove that if the pair (X1, X2) of r.v.s is independent,
then its covariance satisfies

COV()(l7 X2) = E[(Xl — ]E[X]_])(X2 — E[X2])] =0
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iarginal ana onaitional vensity
Fix the pair (X1, X2) of random variables.

» The marginal density of Xj is

fx, (x1) :/ fix1,%) (X1, x2)dxa.

» At points x; where fx, (x1) > 0,
the conditional density of X5 given that X; = x is

fixi ) (X1, x2)

fXZ‘Xl(X2|X1) = fX (Xl)
1

Theorem
If the pair (X1, X2) is independent and fx,(x1) > 0, then

Fxo) 3, (2|x1) = fx, (x2)

University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 46 of 53



Lonaitional EXpectations
Fix the pair (X1, X2) of random variables.
» The conditional expectation of g(X3) given that X; = x; is

[e.e]

Elg(X2)| X1 = x] = / £ (x2) o, (2l ).

—00
» Given any measurable function (x1,x2) — g(x1, x2),
the law of iterated expectations states that

Ery,, [8((X0, X2)(5))] = Eg, [Er, . [8((X0, X2)(5))]]
Proof.

Ef(xl,x2) [g] = f]R2 g Xla X2) f(Xl Xg)(Xlu X2) Xm dX2
IR [IR X17X2 fX2|X1(X2’X1)dX2] le(Xl)dxl
= Ep [Efy, x, 80x1, x2)]]

O
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vutline

Limit Theorems
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Lonvergence o Random VvVariables

The sequence (X,)72; of random variables:

» converges in probability to X (written as X, LN X)
just in case, for all € > 0 one has

lim P(|X, — X| <€) = 1.
n—oo

e . d
» converges in distribution to X (written as X, — X)
just in case, for all x at which Fx is continuous,

nIl_)mOO Fx,(x) = Fx(x).
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Ine Law OT Large Numpers

» The sequence (X,)%°, of random variables is i.i.d.

— i.e., independently and identically distributed
— just in case

1. it is independent, and
2. for every Borel set D C R, one has P(X, € D) = P(X, € D).

» The weak law of large numbers:
Let (X,)0, be i.i.d. with E(X,) = pu.
Define the sequence

(Xn)nzy = <n Z:Zl Xk>

of sample means. Then, X, 5 Lb

o0

[y
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Ine wvieaning or rrobadility

Prove the following:

Let v = p(X € Q) € (0,1). Consider the following experiment:
“n realizations of X are taken independently.”
Let G, be the relative frequency with which a realization in Q
is obtained in the experiment. Then, G, LN .

University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 51 of 53



ne Lentral Limit I neorem

» The central limit theorem:
Let (X,)5 be i.i.d. random variables
with E(X,) = p and V(X,) = 02. Then,
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I nN€ rundamental I neorems

Let (X,)22, be i.i.d., with E[X,] = 1 and V(X,) = 0. Then:

> by the law of large numbers,
Xo B i
o) B
Xn i M
» but by the central limit theorem,
X, — — I d 1 X Lp
(J/\/>) V21 J o
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