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Lecture 9: Probability Theory

1 Measure Theory

Suppose that we have fixed a universe S. Denote by P(S) the set of all subsets of S (that
is, E ∈ P(S) iff E ⊆ S. Obviously, ∅ ∈ P(S) and S ∈ P(S). One can also say that
{∅, S} ⊆ P(S) and ∅ ⊆ P(S), but it would be a mistake to say that S ⊆ P(S).

1.1 Algebras and σ-algebras:

Our problem now is to define, in a consistent manner, the size of (some of) the subsets of S.
The consistency of our definition will require some “structure” on the family of subsets whose
size we define: (i) we should be able to tell the size of the set with no elements in it; (ii) if we
are able to measure a set, we should also be able to measure the rest of the universe; and (iii)
if we are able to measure a series of sets, then we should also be able to measure their union.

Definition 1. A family of subsets of S, Σ ⊆ P(S), is an algebra if:

1. it contains the empty set: ∅ ∈ Σ;

2. it is closed under complement: if A ∈ Σ, then S \ A ∈ Σ; and

3. it is closed under finite union: if {An}Nn=1 ⊆ Σ is a finite set, then ∪Nn=1An ∈ Σ.

The following theorem is almost immediate from the definition.

Theorem 1. If Σ is an algebra, then: (1) it contains S: S ∈ Σ; and (2) it is closed under
finite intersection: if {An}Nn=1 ⊆ Σ is a finite set, then ∩Nn=1An ∈ Σ.

Notice that the conditions of the definition of algebra have the intuition we wanted. For
some purposes, however, we need to strengthen the third property:

Definition 2. A family of subsets of S, Σ ⊆ P(S), is a σ-algebra if:

1. it contains the empty set: ∅ ∈ Σ;

2. it is closed under complement: if A ∈ Σ, then S \ A ∈ Σ; and

3. it is closed under countable union: if {An}∞n=1 ⊆ Σ, then ∪Nn=1An ∈ Σ.

The following theorems are left as exercises.

Theorem 2. P(S) is a σ-algebra.

Theorem 3. If Σ is a σ-algebra, then it is an algebra. When S is finite, if Σ is an algebra,
then it is a σ-algebra.

Theorem 4. If Σ is a σ-algebra, then: (1) it contains S: S ∈ Σ; and (2) it is closed under
countable intersection: if {An}∞n=1 ⊆ Σ, then ∩Nn=1An ∈ Σ.
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If Σ is a σ-algebra for S, then (S,Σ) is said to be a measurable space. The idea here is that
Σ is the collection of subsets of S that we can “measure.” Now, what do we understand by
“measuring”? Intuitively, what we want to do is to associate each set to a number. Of course,
this assignment cannot be arbitrary: (i) sizes cannot be negative, and we must consider the
possibility of finding an “infinitely large” set; (ii) a set that contains nothing must have zero
measure; and (iii) if we take a collection of mutually separated sets and we measure them,
and we then measure their union, the sum of the first measures must equal the last measure.

Formally, denote R∗ = R∪{−∞,∞}, which is usually called the extended real line, and let
us take its positive orthant: R∗+ = R+ ∪ {∞}. Let Σ be an algebra for S and let µ : Σ→ R∗.
Function µ is said to be finitely additive if for any finite collection of mutually disjoint sets
in Σ, {An}Nn=1, one has that µ(∪Nn=1An) =

∑N
n=1 µ(An). It is said to be σ-additive if for any

sequence {An}∞n=1 of mutually disjoint sets in Σ, similarly, µ(∪∞n=1An) =
∑∞

n=1 µ(An).
Obviously, if µ is σ-additive, then it is also finitely additive. It is also immediate that if S

is finite, Σ is an algebra for S and µ : Σ→ R∗is finitely additive, then (S,Σ) is a measurable
space and µ is σ-additive.

It is obvious that the structure imposed when we consider arbitrary sequences is more
than when we consider finite sequences only. But, is the extra complication necessary? To
see that it is, consider the following experiment: a coin is tossed until if comes head. Suppose
that we want to measure the probability that the experiment stops in an even toss. We
need to consider countable but infinite sequences! Notice that σ-additivity corresponds to the
condition (iii) that we want to impose to our measures.

Let (S,Σ) be a measurable space and let µ : Σ→ R∗. Function µ is said to be a measure
if it is σ-additive and satisfies that µ(∅) = 0 and µ(A) ∈ R∗+ for all A ∈ Σ. A measure space
is (S,Σ, µ), where (S,Σ) is a measurable space and µ : Σ→ R∗+ is a measure.

Exercise 1. Prove the following results:

1. If X : S → R is {∅, S}-measurable, then X(s) = X(s′) for all s, s′ ∈ S.

2. Any function X : S → R is P(S)-measurable.

3. σ({S}) = {∅, S}.

4. If Σ is a σ-algebra, then σ(Σ) = Σ.

2 Probability

When the space S we are dealing with is the space of all possible results of an experiment, the
subsets we want to measure are called events and their measures are understood as probabil-
ities (which can be understood from either a frequentist or a likelihood perspective). Now, if
(S,Σ, p) is a measure space and p(S) = 1 , we say that S is a sample space, that (S,Σ, p) is a
probability space and that p is a probability measure. So defined, the properties we impose for
p to be considered a probability measure are known as Kolmogorov’s axioms; their arguments
are left as exercises.

Theorem 5. Let (S,Σ, p) be a probability space, let E,E ′ ∈ Σ, and let (En)∞n=1 be a sequence
in Σ. Then,

1. p(E) ≤ 1 and p(Ec) = 1− p(E), where Ec = S \ E;

2. p(E ′ ∩ Ec) = p(E ′)− p(E ′ ∩ E) and p(E ∪ E ′) = p(E) + p(E ′)− p(E ∩ E ′);
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3. p(E) =
∑N

n=1 p(E ∩ En), if (En)∞n=1 is a partition of S;1

4. Bonferroni’s simple inequality: p(E ∩ E ′) ≥ p(E) + p(E ′)− 1;

5. Boole’s inequality: p(∪∞n=1En) ≤
∑∞

n=1 p(En);

6. if En ⊆ En+1 for each n, then p(∪∞n=1En) = limn→∞ p(En); and

7. if En ⊇ En+1 for each n, then p(∩∞n=1En) = limn→∞ p(En).

3 Conditional Probability and Independence

Henceforth, we maintain a probability space, (S,Σ, p), fixed.

3.1 Conditional Probability

Let E∗ ∈ Σ be such that p(E∗) > 0. The probability measure given (or conditional on) E∗ is
defined by p(·|E∗) : Σ→ [0, 1], with p(E|E∗) = p(E ∩ E∗)/p(E∗).

Theorem 6. Let E,E ′ ∈ Σ and suppose that p(E) ∈ (0, 1). Then,

p(E ′) = p(E)p(E ′|E) + (1− p(E))p(E ′|Ec).

Proof: By definition,

p(E)p(E ′|E) + (1− p(E))p(E ′|Ec) = p(E)
p(E ′ ∩ E)

p(E)
+ (1− p(E))

p(E ′ ∩ Ec)

p(Ec)

= p(E ′ ∩ E) + p(E ′ ∩ Ec)

= p(E ′),

because of σ-additivity. Q.E.D.

The previous theorem, in fact, admits the following generalization, whose proof is left as
an exercise.

Theorem 7. Let (En)Nn=1 be a partition of S such that every p(En) > 0. Then, for any
E ′ ∈ Σ, one has that p(E ′) =

∑N
n=1 p(En)p(E ′|En).

Theorem 8. Let (En)Nn=1 be a finite sequence of sets in Σ, such that p(∩N−1
n=1 En) > 0. Then,

p(∩Nn=1En) = p(E1)p(E2|E1)p(E3|E1 ∩ E2)...p(EN | ∩N−1
n=1 En).

Proof: The proof is left as an exercise. (Hint: recall mathematical induction!) Q.E.D.

1 A partition of S is a sequence (En)Nn=1, with N finite or equal to infinity, of pairwise disjoint sets in Σ
such that ∪Nn=1En = S.
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3.2 Independence

A family of events E ⊆ Σ is pairwise independent if p(E∩E ′) = p(E)p(E ′) for any two distinct
E,E ′ ∈ E . It is independent if

p(∩N
n=1En) =

N∏
n=1

p(En)

for any finite subfamily {En}Nn=1 of distinct sets in E .

Example 1. Notice that pairwise independence does not suffice for independence. Let S =
{1, 2, 3, 4, 5, 6, 7, 8, 9} and Σ = P(S), and suppose that : p({s}) = 1/9 for each s ∈ S. Let
E1 = {1, 2, 7}, E2 = {3, 4, 7} and E3 = {5, 6, 7}, so p(E1) = p(E2) = p(E3) = 1/3. Now, if
i, j ∈ {1, 2, 3}, i 6= j, then p(Ei ∩ Ej) = 1/9 = p(Ei)p(Ej), but

p(E1 ∩ E2 ∩ E3) = 1/9 6= 1/27 = p(E1)p(E2)p(E3),

so this family is pairwise independent, but not independent.

Notice that ∩E∈EE = ∅ is neither necessary nor sufficient for independence.

Theorem 9. If {E,E ′} is independent, then so is {Ec, E ′}.

4 Random Variables, Moments and Independence

Fix a measurable space (S,Σ).

4.1 Random Variables

Function X : S → R is measurable with respect to Σ (or Σ-measurable) if for every x ∈ R, one
has that

{s ∈ S|X(s) ≤ x} ∈ Σ.

Theorem 10. If X is Σ-measurable, then for all x ∈ R, the following sets lie in Σ: {s ∈
S|X(s) ≥ x}, {s ∈ S|X(s) < x}, {s ∈ S|X(s) > x} and {s ∈ S|X(s) = x}.

A random variable (in R) is a Σ-measurable function X : S → R. Let us now endow the
measurable space with a probability measure p and fix a random variable X : S → R. The
distribution function of X is FX : R→ [0, 1], defined by FX(x) = p({s ∈ S|X(s) ≤ x}). (Note
that FX is well defined because X is Σ-measurable.)

Theorem 11. Let FX be the distribution function of X. Then,

1. limx→−∞ FX(x) = 0 and limx→∞ FX(x) = 1;

2. FX(x) ≥ FX(x′) whenever x ≥ x′;

3. FX is right continuous: for all x ∈ R, limh↓0 FX(x+ h) = FX(x).

4. p({s ∈ S|X(s) > x}) = 1− FX(x);

5. p({s ∈ S|x < X(s) ≤ x′}) = FX(x′)− FX(x), whenever x ≤ x′;

6. p({s ∈ S|X(s) = x}) = FX(x)− limh↑0 FX(x+ h).
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Notice that it is not necessarily true that limh↑0 FX(x+ h) = FX , so we cannot guarantee
that F is continuous. It is a good exercise to find a case in which limh↑0 FX(x + h) 6= FX . It
is also important to see which step in the obvious proof of left-continuity would fail:

{s ∈ S|∃n ∈ N : X(s) ≤ x− 1/n} = {s ∈ S|X(s) < x},

which may be a proper subset of {s ∈ S|X(s) ≤ x}.
The distribution function of a random variable characterizes (totally defines) its associated

probability measure. Random variable X is said to be continuous if FX is continuous. X is
said to be absolutely continuous if there exists an integrable function fX : R→ R+ such that

FX(x) =

x∫
−∞

fX(u)du

for all x ∈ R; in this case, fX is said to be a density function of X.

Example 2 (Standard Uniform Distribution). Suppose that the distribution function of X is

FX(x) =


0, if x < 0;
x, if 0 ≤ x ≤ 1;
1, if x > 1.

Notice that X is absolutely continuous, and one density function is

fX(x) =


0, if x < 0;
1, if 0 ≤ x ≤ 1;
0, if x > 1.

The closure of the set on which F is increasing is known as the support of X.

4.2 Moments

Henceforth, we assume that X is an absolutely continuous random variable, with density fX .
We assume that for every set D ⊆ R such that

∫
D
fX(x)dx exists, it is true that

p({s ∈ S|X(s) ∈ D}) =

∫
D

fX(x)dx.

Moreover, for simplicity, the notation p(X ∈ D) will replace p({s ∈ S|X(s) ∈ D}) from now
on.

Let g : R→ R and define the random variable g ◦X : S → R. The expectation of g ◦X is
defined as

E(g(X)) =

∫ ∞
−∞

g(x)fX(x)dx,

if the integral exists.

Theorem 12. Let g1, g2 : R→ R and a, b, c ∈ R. Then,

1. E(ag1(X) + bg2(X) + c) = aE(g1(X)) + bE(g2(X)) + c;

2. if g1(x) ≥ 0 for all x ∈ R, then E(g1(X)) ≥ 0;
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3. if g1(x) ≥ g2(x) for all x ∈ R, then E(g1(X)) ≥ E(g2(X));

4. if a ≤ g1(x) ≤ b for all x ∈ R, then a ≤ E(g1(x)) ≤ b.

Theorem 13 (Chebychev’s Inequality). Let g : R → R+ be such that E(g(X)) ∈ R. Then,
for all r > 0,

p(g(X) ≥ r) ≤ E(g(X))

r
.

Proof: By definition,

E(g(X)) =

∫ ∞
−∞

g(x)fX(x)dx

≥
∫
{x∈R|g(x)≥r}

g(x)fX(x)dx

≥
∫
{x∈R|g(x)≥r}

rfX(x)dx

= r

∫
{x∈R|g(x)≥r}

fX(x)dx

= rp(g(X) ≥ r),

where the first inequality follows since, for all x ∈ R, g(x) ≥ 0. Q.E.D.

For a finite integer k, the k-th (non-central) moment of X is E(Xk), whenever it exists.
If E(X) exists in R, the k-th central moment of X is E((X −E(X))k), whenever this integral
exists. The first moment of X is its expectation or mean, and its second central moment is its
variance and is denoted V(X).

Exercise 2. Prove the following: Suppose that E(X) and V(X) > 0 exist; then, for all t > 0
one has that

p(|X − E(X)| ≥ t
√

V(X)) ≤ 1

t2
.

For instance, if E(X) and V(X) > 0 exist, then.

p(|X − E(X)| < 2
√

V(X)) ≥ 0.75.

Notice the surprising implication of the previous exercise: the probability that the realiza-
tion of a random variable be at least two standard deviations from its mean is at least 0.75,
regardless of its distribution!

4.3 Independence of Random Variables

Let (Xn)Nn=1 be a finite sequence of random variables. The joint distribution of (Xn)Nn=1 is
F(Xn)Nn=1

: RN → [0, 1], defined by

F(Xn)Nn=1
(x) = p({s ∈ S|(Xn(s))Nn=1 ≤ x}).

Sequence (Xn)Nn=1 is said to be absolutely continuous if there exists a function f(Xn)Nn=1
: RN →

R+ such that

F(Xn)Nn=1
(x) =

∫
v≤x

f(Xn)Nn=1
(u)du
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for all x ∈ RN ; in this case, function f(Xn)Nn=1
is said to be a joint density function for

(Xn)Nn=1. If the sequence is absolutely continuous, and if each random variable Xn has function
fXn as a density function, then (Xn)Nn=1 is said to be independent if f(Xn)Nn=1

=
∏N

n=1 fXn .
A sequence (Xn)∞n=1 of random variables is said to be independent if every finite sequence
(Xnk

)Kk=1 constructed with elements of (Xn)∞n=1 is independent.
As before, if (Xn)Nn=1 is a sequence of absolutely continuous random variables and g :

RN → R, the expectation of g((Xn)Nn=1) is defined as

E(g((Xn)Nn=1)) =

∫ ∞
−∞

g(x)f(Xn)Nn=1
(x)dx,

whenever the integral exists.

Theorem 14. Let (Xn)Nn=1 be a finite sequence of random variables. If (Xn)Nn=1 is independent,
then E(

∏N
n=1Xn) =

∏N
n=1 E(Xn).

Exercise 3. Prove the following corollary: if (X1, X2) is independent, then

Cov(X1, X2) = E((X1 − E(X1))(X2 − E(X2))) = 0.

Perhaps because of the previous example, the idea of “no correlation” is oftentimes con-
fused with independence. One must be careful about this: is two random variables are inde-
pendent, then their correlation is zero; but the other causality is not true: if X is normal,
then X and X2 are uncorrelated, but they certainly are not independent.

5 Conditional Density and Conditional Expectation

For the purposes of this subsection, let (X1, X2) be a pair of random variables, assume that
it is absolutely continuous and denote by f(X1,X2) its density function. The marginal density
of X1 is the function defined by

fX1(x1) =

∫ ∞
−∞

f(X1,X2)(x1, x2)dx2,

for each x1 ∈ R. If fX1(x1) > 0, the conditional density of X2 given that X1 = x1 is given by
the function

fX2|X1(x2|x1) =
f(X1,X2)(x1, x2)

fX1(x1)
,

for each x2 ∈ R.
These definitions are useful when one needs to “decompose” the bivariate problem: if one

needs to know the probability that X1 ∈ [a, b], by definition one needs to compute∫ b

a

∫ ∞
−∞

f(X1,X2)(x1, x2)dx2dx1 =

∫ b

a

fX1(x1)dx1;

and, if one knows that the realization of X1 is x1, and one needs to compute the probability
that X2 ∈ [a, b] given that knowledge, one simply needs to know

∫ b

a
fX2|X1(x2|x1)dx2, as the

conditional density given that X1 = x1 re-normalizes the “prior” density f(X1,X2) to take into
account the knowledge on X1.
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Theorem 15. If (X1, X2) is independent, then, for any x1 such that fX1(x1) > 0, one has
that fX2|X1(x2|x1) = fX2(x2).

Let g : R→ R. The conditional expectation of g(X2) given that X1 = x1 is

E(g(X2)|X1 = x1) =

∫ ∞
−∞

g(x2)fX2|X1(x2|x1)dx2.

Similarly, the conditional expectation of g(X2) given X1, which we denote E(g(X2)|X1), is
the random variable that takes value E(g(X2)|X1 = x1) in any state in which X1 = x1; in
particular, the probability that E(g(X2)|X1 = x1) ∈ [a, b] equals∫

{x1:E(g(X2)|X1=x1)∈[a,b]}
fX1(x1)dx1.

Theorem 16 (The Law of Iterated Expectations). Let (X1, X2) be a pair of random variables.
E(X2) = E(E(X2|X1)).

Proof: By direct computation,

E(X2) =

∫ ∫
x2f(X1,X2)(x1, x2)dx2dx1

=

∫
{x1|fX1

(x1)}
(

∫
x2fX2|X1(x2|x1)dx2)fX1(x1)dx1

=

∫
E(X2|X1 = x1)fX1(x1)dx1

= E(E(X2|X1)).

Q.E.D.

6 The Fundamental Theorems of Probability

6.1 Convergence of Random Variables

There are several concepts of convergence for random variables. We consider two of them: a
sequence (Xn)∞n=1 of random variables
(a) converges in probability to the random variable X if for all ε > 0 one has that

lim
n→∞

p(|Xn −X| < ε) = 1;

(b) it converges in distribution to the random variable X if at all x ∈ R at which FX is
continuous, one has that

lim
n→∞

FXn(x) = FX(x),

where each FXn is the distribution function of Xn and FX is the one of X.

For notational conciseness, we denote the two types of convergence by Xn
p→ X and

Xn
d→ X, respectively. It is important to understand the relationship between these three

concepts: if Xn
p→ X then Xn

d→ X, but the opposite causality is not true. When the limit
variable is constant, convergence in distribution implies convergence in probability, however.
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6.2 The Law of Large Numbers

A sequence (Xn)∞n=1 of random variables is said to be i.i.d. if it is independent and for every
n and n′, p(Xn ∈ D) = p(Xn′ ∈ D) for all D ⊆ R.

Theorem 17 (The Law of Large Numbers). Let (Xn)∞n=1 be an i.i.d. sequence of random
variables, and suppose that, for all n, E(Xn) = µ ∈ R and V(Xn) = σ2 ∈ R++. The sequence
of random variables given by X̄n =

∑n
k=1Xk/n converges in probability to µ.

Proof: Given that (Xn)∞n=1 is i.i.d. E(X̄n) = µ and V(X̄n) = σ2/n.2 Now, by Exercise 2, for
ε > 0 one has that

p(|X̄n − µ| ≥ ε) ≤ σ2

nε2
,

so limn→∞ p(|X̄n − µ| ≥ ε) ≤ limn→∞ σ
2/(nε2) = 0. Q.E.D.

Exercise 4. Prove the following result: let X be an absolutely continuous random variable,
and fix Ω ⊆ R such that p(X ∈ Ω) ∈ (0, 1). Consider the experiment where n ∈ N realizations
of X are taken independently, and let Gn be the relative frequency with which a realization
in Ω is obtained in the experiment. Then, Gn

p→ p(X ∈ Ω).

6.3 The Central Limit Theorem

Theorem 18 (The Central Limit Theorem). Let (Xn)∞n=1 be an i.i.d. sequence of random
variables, and suppose that, for every n, E(Xn) = µ ∈ R, V(Xn) = σ2 ∈ R++ and MXn = MX

is defined in an open neighborhood of 0. Define the sequence (X̄n)∞n=1 as in Theorem 17. Then,

√
n
X̄n − µ
σ

d→
∫ x

−∞

1√
2π
e−

x2

2 dx.

Exercise 5. How can both the law of large numbers and the central limit theorem be true?
That is, if the law says that X̄n converges in probability to a constant(µ), and convergence in
probability implies convergence in distribution, then how can X̄n also converge in distribution
to the standard normal?

Take a good look at what the Central Limit Theorem implies. In particular, it does not
imply that every “large” sample of realizations of a random variable “tends” to be distributed
normally!

2 Showing this is left as an exercise.

9


