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Lecture 2: Unconstrained Optimization

1 Infimum and Supremum

Fix a set Y ⊆ R. A number α ∈ R is said to be an upper bound of Y if y ≤ α for all y ∈ Y ,
and is said to be a lower bound of Y if the opposite inequality holds. Number α ∈ R is said
to be the least upper bound of Y , denoted α = supY , if: (i) α is an upper bound of Y ; and
(ii) γ ≥ α for any other upper bound γ of Y . Analogously, number β ∈ R is said to be the
greatest lower bound of Y , denoted β = inf Y , if: (i) β is a lower bound of Y ; and (ii) if γ is
a lower bound of Y , then γ ≤ β.

Theorem 1. α = supY if, and only if, for all ε > 0 it is true that (i) for all y ∈ Y , one has
that y < α + ε; and (ii) for some y ∈ Y one has that α− ε < y.

The following axiom is crucial in the proof of the Bolzano-Weierstrass Theorem.

Axiom 1 (Axiom of Completeness). Let Y ⊆ R be nonempty. If Y is bounded above, then it
has a least upper bound.

2 Maximizers

From now on, maintain the assumptions that set D ⊆ RK , for a finite K, is nonempty.

Theorem 2. Let Y ⊆ R and let b = supY . One has that b /∈ Y if, and only if, for all a ∈ Y ,
there is an a′ ∈ Y such that a′ > a.

Proof: Sufficiency is left as an exercise. For necessity, note that if there is an a ∈ Y such
that for all a′ ∈ Y it is true that a′ ≤ a, then, by definition, b ≤ a, whereas a ≤ b, which
implies that b = a ∈ Y , a contradiction. Q.E.D.

It follows that we need a stronger concept of extremum, in particular one that implies
that the extremum lies within the set. Thus, a point b ∈ R is said to be the maximum of set
Y ⊆ R, denoted b = maxA, if b ∈ Y and for all a ∈ Y it is true that a ≤ b. The proofs of the
following two results are left as exercises

Theorem 3. If maxY exists, then it is unique.

Theorem 4. If maxY exists, then supY exists and supY = maxY . If supY exists and
supY ∈ Y , then maxY exists and maxY = supY .

Exercise 1. Given Y, Y ′ ⊆ R, prove the following:

1. If supY and inf Y ′ exist, and for all (a, a′) ∈ Y × Y ′, one has that a ≤ a′, then
supY ≤ inf Y ′.

1



2. If supY and supY ′ exist, λ, λ′ ∈ R++ and

Ỹ = {ã|∃(a, a′) ∈ Y × Y ′ : λa+ λ′a′ = ã},

then sup Ỹ = supY + supY ′.

3. If supY and supY ′ exist, and for all a ∈ Y there is an a′ ∈ Y ′ such that a ≤ a′, then
supY ≤ supY ′.

Show also that a strict version of the third statement is not true.

Now, it typically is of more interest in economics to find extrema of functions, rather than
extrema of sets. To a large extent, the distinction is only apparent: what we will be looking
for are the extrema of the image of the domain under the function. A point x̄ ∈ D is said to
be a global maximizer of f : D → R if for all x ∈ D it is true that f(x) ≤ f(x̄). Point x̄ ∈ D
is said to be a local maximizer of f : D → R if there exists some ε > 0 such that for every
x ∈ Bε(x̄) ∩D it is true that f(x) ≤ f(x̄).

When x̄ ∈ D is a local (global) maximizer of f : D → R, the number f(x̄) is said to
be a local (the global) maximum of f . Notice that, in the latter case, f(x̄) = max f [D],
although more standard notation for max f [D] is maxD f or maxx∈D f(x).1 Notice that there
is a conceptual difference between maximum and maximizer! Also, notice that a function
can have only one global maximum even if it has multiple global maximizers, but the same
is not true for the local concept. The set of maximizers of a function is usually denoted by
argmaxDf .

By analogy, b ∈ R is said to be the supremum of f : D → R, denoted b = supD f or
b = supx∈D f(x), if b = sup f [D]. Importantly, note that there is no reason why ∃x ∈ D such
that f(x) = supD f even if the supremum is defined.

3 Existence

Theorem 5 (Weierstrass). Let C ⊆ D be nonempty and compact. If the function f : D → R is
continuous, then there are x̄, x ∈ C such that for all x ∈ C it is true that f(x) ≤ f(x) ≤ f(x̄).

Proof: Let (yn)∞n=1 be a sequence in f [C] and such that yn → y. Fix (xn)∞n=1 in C such that
f(xn) = yn. Since C is bounded, there exists a subsequence (xnm)∞m=1 that converges to some
x, with x ∈ C because C is closed. By continuity, y = limm→∞ ynm = limm→∞ f(xnm) = f(x),
so y ∈ f [C].

Now, suppose that for all ∆ ∈ R, there is y ∈ f [C] such that |y| ≥ ∆. Then, for all n ∈ N,
there is xn ∈ C for which |f(xn)| ≥ n. Since C is compact, as before, there exists a subsequence
(xnm)∞m=1 that converges to some x ∈ C. By continuity, |f(x)| = limm→∞ |f(xnm)| =∞, which
is impossible.

It follows from the two arguments above that f [C] is compact. Now, let ȳ = sup f [C]. By
Theorem 1, for all n ∈ N there is some yn ∈ f [C] for which ȳ−1/n < yn < ȳ. Clearly, yn → ȳ,
so, since f [C] is closed, ȳ ∈ f [C], and it follows that there is x̄ ∈ C such that f(x̄) = ȳ. By
definition, then, for every x ∈ C it is true that f(x) ≤ ȳ = f(x̄).

1 A point x̄ ∈ D is said to be a local minimizer of f : D → R if there is an ε > 0 such that for all
x ∈ Bε(x̄) ∩D it is true that f(x) ≥ f(x̄). Point x̄ ∈ D is said to be a global minimizer of f : D → R if for
every x ∈ D it is true that f(x) ≥ f(x̄). From now on, we only deal with maxima, although the minimization
problem is obviously covered by analogy.
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Existence of x is left as an exercise. Q.E.D.

The importance of this result is that when the domain of a continuous function is closed
and bounded, then the function does attain its maxima and minima within its domain.

4 Characterizing maximizers

Even though maximization is not a differential problem, when one has differentiability there
are results that make it easy to find maximizers. For this section, we take set D to be open.

4.1 Problems in R
For simplicity, we first consider the case K = 1.

Lemma 1. Suppose that f : D → R is differentiable. Let x̄ ∈ X. If f ′(x̄) > 0, then there
is some δ > 0 such that for every x ∈ Bδ(x̄) ∩ D we have f(x) > f(x̄) if x > x̄, and that
f(x) < f(x̄) if x < x̄.

Proof: By assumption, we have f ′(x̄) ∈ R++. Then, by definition, there is some δ > 0 such
that for any x ∈ B′δ(x̄) ∩D,

|f(x)− f(x̄)

x− x̄
− f ′(x̄)| < f ′(x̄),

and, since f ′(x̄) > 0, (f(x)− f(x̄))(x− x̄) > 0. Q.E.D.

The analogous result for the case of a negative derivative is presented, without proof, as
the following corollary.

Corollary 1. Suppose that f : D → R is differentiable. Let x̄ ∈ D. If f ′(x̄) < 0, then there
is some δ > 0 such that for every x ∈ Bδ(x̄) ∩ D we have f(x) < f(x̄) if x > x̄, and that
f(x) > f(x̄) if x < x̄.

Theorem 6. Suppose that f : D → R is differentiable. If x̄ ∈ int(D) is a local maximizer of
f then f ′(x̄) = 0.

Proof: Suppose not: f ′(x̄) 6= 0. If f ′(x̄) > 0, then, by Lemma 1, there is δ > 0 such
that for all x ∈ Bδ(x̄) ∩ D satisfying x > x̄ we have that f(x) > f(x̄). Since x̄ is a local
maximizer of f , then there is ε > 0 such that for all x ∈ Bε(x̄)∩D it is true that f(x) ≤ f(x̄).
Since x̄ ∈ int(D), there is γ > 0 such that Bγ(x̄) ⊆ D. Let β = min{ε, δ, γ} > 0. Clearly,
(x̄, x̄+β) ⊂ B′β(x̄) 6= ∅ and B′β(x̄) ⊆ D. Moreover, B′β(x̄) ⊆ Bδ(x̄)∩D and B′β(x̄) ⊆ Bε(x̄)∩D.
This implies that for some x one has f(x) > f(x̄) and f(x) ≤ f(x̄), an obvious contradiction.
A similar contradiction appears if f ′(x̄) < 0, by Corollary 1. Q.E.D.

Theorem 7. Let f : D → R be of class C2. If x̄ ∈ int(D) is a local maximizer of f then
f ′′(x̄) ≤ 0.

Proof: Since x̄ ∈ int(D), there is a ε > 0 for which Bε(x̄) ⊆ D. For every h ∈ Bε(0), since
f is twice differentiable, by Taylor’s Theorem, there is some x∗h in the interval joining x̄ and
x̄+ h, such that

f(x̄+ h) = f(x̄) + f ′(x̄)h+
1

2
f ′′(x∗h)h

2
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Since x̄ is a local maximizer, there is a δ > 0 such that x ∈ Bδ(x̄) ∩D implies f(x) ≤ f(x̄).
Let β = min{ε, δ} > 0. By construction, for any h ∈ B′β(0) one has that

f ′(x̄)h+
1

2
f ′′(x∗h)h

2 = f(x̄+ h)− f(x̄) ≤ 0.

By Theorem 6, since f is differentiable and x̄ is a local maximizer, f ′(x̄) = 0, from where
h ∈ B′β(0) implies that f ′′(x∗h)h

2 ≤ 0, and hence that f ′′(x∗h) ≤ 0. Now, letting h→ 0, we get
that limh→0 f

′′(x∗h) ≤ 0, and hence that f ′′(x̄) ≤ 0, since f ′′ is continuous and each xh lies in
the interval joining x̄ and x̄+ h. Q.E.D.

Notice that the last theorems only give us necessary conditions:2 this is not a tool that
tells us which points are local maximizers, but it tells us what points are not. A complete
characterization requires both necessary and sufficient conditions. We now find sufficient
conditions.

Theorem 8. Suppose that f : D → R is twice differentiable. Let x̄ ∈ int(D). If f ′(x̄) = 0
and f ′′(x̄) < 0, then x̄ is a local maximizer.

Proof: Since f : D → R is twice differentiable and f ′′(x̄) < 0, we have, by Corollary 1, that
for some δ > 0 it is true that whenever x ∈ Bδ(x̄) ∩ D we have that (i )f ′(x) < f ′(x̄) = 0,
when x > x̄; and (ii )f ′(x) > f ′(x̄) = 0, when x < x̄. Since x ∈ int(D), there is an ε > 0 such
that Bε(x̄) ⊆ D. Let β = min{δ, ε} > 0. By the Mean Value Theorem, we have that for all
x ∈ Bβ(x̄),

f(x) = f(x̄) + f ′(x∗)(x− x̄)

for some x∗ in the interval between x̄ and x (why?). Thus, if x > x̄, we have x∗ ≥ x̄, and,
therefore, f ′(x∗) ≤ 0, so that f(x) ≥ f(x̄). On the other hand, if x < x̄, then f ′(x∗) ≥ 0, so
that f(x) ≤ f(x̄). Q.E.D.

Notice that the sufficient conditions are stronger than the set of necessary conditions: there
is a little gap that the differential method does not cover.

4.2 Higher-dimensional problems

We now allow for functions defined on higher-dimesional domains (namely K ≥ 2). The
results of the one-dimensional case generalize as follows.

Theorem 9. If f : D → R is differentiable and x∗ ∈ D is a local maximizer of f , then
Df(x∗) = 0.

Theorem 10. If f : D → R is of class C2 and x∗ ∈ D is a local maximizer of f , then D2f(x∗)
is negative semidefinite.

As before, these conditions do not tell us which points are maximizers, but only which
ones are not. Before we can argue sufficiency, we need to introduce the following lemma.

Theorem 11. Suppose that f : D → R is of class C2 and let x̄ ∈ D. If Df(x̄) = 0 and
D2f(x̄) is negative definite, then x̄ is a local maximizer.

2 And there are further necessary conditions.

4



5 Maxima and concavity

For this section, we take D ⊆ RK , K ∈ N, D 6= ∅ and drop the openness assumption.
Note that the results that we obtained in the previous sections hold only locally. We now

study the extent to which local extrema are, in effect, global extrema.

Theorem 12. Suppose that D is a convex set and f : D → R is a concave function. Then, if
x̄ ∈ D is a local maximizer of f , it is also a global maximizer.

Proof: We argue by contradiction: suppose that x̄ ∈ D is a local maximizer of f , but it is
not a global maximizer. Then, there is ε > 0 such that for every x ∈ Bε(x̄) ∩ D, f(x)(x̄);
and there is x∗ ∈ D such that f(x∗) > f(x̄). Clearly, then, x∗ /∈ Bε(x̄), which implies that
‖x∗ − x̄‖ ≥ ε. Now, since D is convex and f is concave, we have that for θ ∈ [0, 1],

f(θx∗ + (1− θ)x̄) ≥ θf(x∗) + (1− θ)f(x̄),

but, since f(x∗) > f(x̄), we further have that if θ ∈ (0, 1], then θf(x∗) + (1− θ)f(x̄) > f(x̄),
so that f(θx∗ + (1− θ)x̄) > f(x̄).

Now, consider θ∗ ∈ (0, ε/‖x∗ − x̄‖). Clearly, θ∗ ∈ (0, 1), so f(θ∗x∗ + (1 − θ∗)x̄) > f(x̄).
However, by construction,

‖(θ∗x∗ + (1− θ∗)x̄)− x̄‖ = θ∗‖x∗ − x̄‖ < (
ε

‖x∗ − x̄‖
)‖x∗ − x̄‖ = ε,

which implies that (θ∗x∗ + (1 − θ∗)x̄) ∈ Bε(x̄), and, moreover, by convexity of D, we have
that (θ∗x∗ + (1 − θ∗)x̄) ∈ Bε(x̄) ∩ D. This contradicts the fact that f(x) ≤ f(x̄) for all
x ∈ Bε(x̄) ∩D. Q.E.D.

Theorem 13. Suppose that D is convex, f : D → R is of class C2 and for each x ∈ D,
Df ′′(x) is negative definite. Then, there exists at most one point x̄ ∈ D such that Df(x̄) = 0.
If such point exists, it is a global maximizer.

Proof: We first prove the last part of the theorem. Suppose that there is x̄ ∈ D such that
Df(x̄) = 0. By assumption, Df ′′(x̄) is negative definite, and therefore, by Theorem 11, x̄ is a
local maximizer. Since Df(x) is negative definite everywhere, we have that f is concave and,
therefore, by Theorem 12, x̄ is a global maximizer.

We must now show that there cannot exist more than one such point. We argue by
contradiction: suppose that there are distinct x̄1, x̄2 ∈ D such that f ′(x̄1) = f ′(x̄2) = 0. By
our previous argument, both x̄1 and x̄2 are global maximizers, so that f(x̄1) = f(x̄2). Now,
since D2f(x) is negative definite everywhere, we have that f is strictly concave, and

f(
1

2
x̄1 +

1

2
x̄2) >

1

2
f(x̄1) +

1

2
f(x̄2) = f ′(x̄1) = f ′(x̄2),

contradicting the fact that both x̄1 and x̄2 are global maximizers, since D is convex. Q.E.D.

For the sake of practice, it is a good idea to work out an exercise like Exercise 3.9 in pages
57 and 58 of Simon and Blume.

6 Parametric Programming

For the purposes of this section, fix a non-empty set Ω ⊂ RM , for a positive integer M .
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6.1 Continuity

Theorem 14 (Theorem of the Maximum). Let f : D × Ω → R be continuous. The value
function v : Ω→ R, defined by

v(ω) = max
x∈D

f(x, ω),

is continuous.

6.2 Differentiability

Suppose furthermore that sets D and Ω are both open. Suppose that f : D × Ω → R is of
class C2 and the partial Hessian with respect to x, matrix D2

x,xf(x, ω) is negative definite at
all (x, ω) ∈ D × Ω. Suppose, moreover that function x∗ : Ω→ D captures the maximizers of
f given omega: for each ω ∈ Ω, point x∗(ω) is the unique solution to problem

max
x∈D

f(x, ω).

Theorem 15 (The Envelope Theorem). Under the assumptions of this subsection, functions
x∗ and v are continuously differentiable, and Dv(ω̄) = Dωf(x∗(ω̄), ω̄).
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