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Preface

Generalized linear models (logit/probit regression, log-linear
models, etc.) are now part of the standard empirical toolkit.

Sometimes the assumption of a linear predictor is unduly
restrictive. Many useful models in social science are non-linear.

This short course shows how generalized nonlinear models may be
viewed as a unified class, and how to work with such models using
the R package gnm.

This is a fairly specialized course. A much broader view of
statistical modelling can be found in another Spring School course,
An Overview of Statistical Models and Statistical Thinking.

Computer lab sessions will provide some familiarity with gnm.
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Note: some of these slides are out of date.  
Please check against the current version of the 
package manual (gnmOverview.pdf).
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Part I

Introduction
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Linear and generalized linear models

Linear models:
e.g.,

E(yi) = β0 + β1xi + β2zi

E(yi) = β0 + β1xi + β2x
2
i

E(yi) = β0 + γ1δ1xi + exp(θ2)zi

In general:

E(yi) = ηi(β) = linear function of unknown parameters

Also assumes variance essentially constant:

var(yi) = φai

with ai known (often ai ≡ 1).
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Linear and generalized linear models

Generalized linear models

Problems with linear models in many applications:

I range of y is restricted (e.g., y is a count, or is binary, or is a
duration)

I effects are not additive

I variance depends on mean (e.g., large mean ⇒ large variance)

Generalized linear models specify a non-linear link function and
variance function to allow for such things, while maintaining the
simple interpretation of linear models.
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Linear and generalized linear models

Generalized linear model:

g[E(yi)] = ηi = linear function of unknown parameters

var(yi) = φaiV (µi)

with the functions g (link function) and V (variance function)
known.
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Linear and generalized linear models

Examples:

I binary logistic regressions (including Rasch models,
Bradley-Terry models, etc.)

I rate models for event counts

I log-linear models for contingency tables (including
multinomial logit models)

I multiplicative models for durations and other positive
measurements

I hazard models for event history data

etc., etc.

Introduction 12

Linear and generalized linear models

e.g., binary logistic regression:

yi =

{
1 event happens

0 otherwise

µi = E(yi) = probability that event happens

var(yi) = µi(1− µi)

Variance is completely determined by mean.

Common link functions are logit, probit, and (complementary)
log-log, all of which transform constrained µ into unconstrained η.
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Linear and generalized linear models

e.g., multiplicative (i.e., log-linear) rate model for event counts.

‘Exposure’ for observation i is a fixed, known quantity ti.

Rate model:

E(yi) = ti exp(β0) exp(β1xi) exp(β2zi)

i.e.,
logE(yi) = log ti + β0 + β1xi + β2zi

— effects are rate multipliers.

Variance is typically taken as the Poisson-like function V (µ) = µ
(variance is equal to, or is proportional to, the mean).
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Generalized nonlinear models

Generalized linear: η = g(µ) is a linear function of the unknown
parameters. Variance depends on mean through V (µ).

Generalized nonlinear: still have g and V , but now relax the
linearity assumption.

Many important aspects remain unchanged:

I fitting by maximum likelihood or quasi-likelihood

I analysis of deviance to assess significance of effects

I diagnostics based on residuals, etc.

But technically more difficult [essentially because ∂η/∂β = X
becomes ∂η/∂β = X(β)].
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Generalized nonlinear models

Some practical consequences of the technical difficulties:

I automatic detection and elimination of redundant parameters
is very difficult — it’s no longer just a matter of linear algebra

I automatic generation of good starting values for ML fitting
algorithms is hard

I great care is needed in cases where the likelihood has more
than one maximum (which cannot happen in the linear case).
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Structured interactions

Some motivation: structured interactions

GNMs are not exclusively about structured interactions, but many
applications are of this kind.

A classic example is log-linear models for structurally-square
contingency tables (e.g., pair studies, before-after studies, etc.).

Pairs are classified twice, into row and column of a table of counts.

The independence model is

logE(yrc) = θ + βr + γc

or in computer language

> gnm(y ~ row + col, family = poisson)
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Structured interactions

Some standard (generalized linear) models for departure from
independence are

I quasi-independence,

y ~ row + col + Diag(row, col)

I quasi-symmetry,

y ~ row + col + Symm(row, col)

I symmetry,

y ~ Symm(row, col)

I (with categories ordered) uniform association,

y ~ row + col + Rscore:Cscore

where Rscore and Cscore are (possibly scaled versions of)
the row and column index numbers.
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Structured interactions

Some applications demand more complex, subject-matter-driven
interaction structures.

In social-class mobility studies various ‘levels’ or ‘topological’
association structures have been proosed. For example Xie (1992)
uses, for 7 social classes, the 6-level association structure

2 3 4 6 5 6 6
3 3 4 6 4 5 6
4 4 2 5 5 5 5
6 6 5 1 6 5 2
4 4 5 6 3 4 5
5 4 5 5 3 3 5
6 6 5 3 5 4 1

The gnm package provides a special function Topo, in order to
facilitate working with such structured interactions. See ?Topo.
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Structured interactions

Row-column association
The uniform association model has

logE(yrc) = βr + γc + δurvc

with the ur and vc defined as fixed, equally-spaced scores for the
rows and columns.

A natural generalization is to allow the data to determine the
scores instead. This can be done either heterogeneously,

logE(yrc) = βr + γc + φrψc

or (in the case of a structurally square table) homogeneously,

logE(yrc) = βr + γc + φrφc

These are generalized non-linear models.
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Structured interactions

Higher-order interactions

The number of parameters in an unstructured interaction term, for
example 3-way γrct, can become very large.

Structured versions can help with both statistical efficiency and
interpretation.

A nice example of this is the UNIDIFF model for ‘similar’
association in a set of 2-way tables: more tomorrow.
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Introduction to the gnm package

Introduction to the gnm package

The gnm package aims to provide a unified computing framework
for specifying, fitting and criticizing generalized nonlinear models in
R.

The central function is gnm, which is designed with the same
interface as R’s standard glm.

(Since generalized linear models are included as a special case, the
gnm function can be used in place of glm, and will give equivalent
results.)

Limitations: An important limitation of gnm (and indeed of the
standard glm) is to models in which the mean-predictor function is
completely determined by available explanatory variables. Latent
variables (random effects) are not handled.
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Introduction to the gnm package

Non-linear model terms

The two key functions Mult and Nonlin are ‘symbolic wrappers’
for use inside model formulas.

A multiplicatively structured interaction is specified as
Mult(first, second). For example, a term of the form

(α+ βx)γjk

where j and k index levels of factors A and B, would be specified
as Mult(x, A:B).

Or, for a multiplier which depends on x but which is guaranteed
positive, we can use Mult(Exp(-1 + x), A:B), corresponding
mathematically to exp(βx)γjk.
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Introduction to the gnm package

The Nonlin function

Not all nonlinear terms are products of independently-specified
‘constituent multipliers’.

Example: homogeneous row and column scores,

αr + βc + φrφc

(Goodman, 1979) — Nonlin(MultHomog(row, col))

Example: ‘diagonal reference’ dependence on a square
classification,

w1γr + w2γc

(Sobel, 1981, 1985) — Nonlin(Dref(row, col))

Any (differentiable) nonlinear term can be specified using Nonlin.
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Introduction to the gnm package

Over-parameterization

The gnm function makes no attempt to remove redundant
parameters from nonlinear terms. This is deliberate.

As a consequence, fitted models are typically represented in a way
that is over-parameterized: not all of the parameters are
‘estimable’ (i.e., ‘identifiable’, ‘interpretable’).

A simple example: φrψc is equivalent to (2φr)(ψc/2).

The gnm package provides various tools (checkEstimable,
getContrasts, se) for checking the estimability of parameter
combinations, and for obtaining valid standard errors for estimable
combinations.
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Introduction to the gnm package

Control over the fitting process

The gnm function has various optional arguments to allow the user
to control aspects of the ML fitting process. These include

I convergence criteria (tolerance, iterMax)

I starting values (start)

I the printing of information at each iteration (trace).

In many gnm models, random starting values are used by default.
This in turn gives a random representation of the model.
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Exercise

Exercise

In the computer lab, your login name is ‘Cn’, where n is the
number of your terminal (e.g., C9). The password is (to be
notified orally).

After login, drag (i.e., copy) the folder ‘Generalized nonlinear
models’ from ‘S:\springschool05\FirthTurner’ (found via ‘My
Computer’ on the Start menu) to your Desktop. Inside that
folder — the folder now on your desktop, that is — is an R
workspace icon: just double-click it to start R.

1. Load the gnm package, then load the occupationalStatus
data set, which is a contingency table classified by the
occupational status of fathers (origin) and their sons (destination).

2. Use the generic function plot to create a mosaic plot of the
table. Print occupationalStatus to see the cell frequencies
represented by the plot.
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Exercise

3. We shall consider a number of models for these frequencies,
which by default are named Freq.

The null association model assumes that the origin (o) and
destination (d) are independent and the frequencies can be
modelled by main effects only:

logE(Freqod) = θ + αo + βd

Fit this model using gnm with family = poisson, assigning the
result to a suitable name. Print this object.

4. gnm objects inherit from glm and lm objects, i.e. the methods
used by generic functions for gnm objects may be the same as, or
based on, those for glm and lm objects. Use apropos("^plot")
to search for help files on objects beginning with “plot” and open
the one most relevant for gnm objects.
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Exercise

From the help page, find out how to use plot to create a plot of
residuals vs. fitted values and do this for the null association
model. The poor fit should be very apparent!

5. Create a vector of equally-spaced row scores for the cells in the
table:

Rscore <- as.vector(row(occupationalStatus))

Create a vector of column scores named Cscore in a similar way
(by using col in place of row).

These score vectors can be used to fit a uniform association model:

logE(Freqod) = θ + αo + βd + γ(Rscore)(Cscore)

again using gnm. The extra term can be represented in the model
formula by Rscore:Cscore.
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Exercise

Fit the uniform association model, assigning the result a different
name from the null model. Print the resulting object and look at a
residual vs. fitted plot. Look at the effect of modelling the diagonal
elements separately, by adding Diag(origin, destination).

6. Keeping the Diag term in the model, use gnm to fit a model
with a homogenoeous multiplicative interaction between origin and
destination instead of the uniform association term (using
Nonlin(MultHomog(...)); see p7 of GnmR).

7. Since occupationalStatus is a table, the residual component
of the gnm object is also a table. Use residuals to access the
deviance residuals, obtain the absolute values of these residuals
using abs, then plot the result. Note the residuals for the diagonal
elements are essentially zero because there is one Diag parameter
for each diagonal cell.
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Exercise

8. Use coef to access the coefficients of the model and assign the
result. Re-fit the model using update and assign the coefficients
of the re-fitted model to another name. Compare the coefficients
side-by-side using cbind. Which parameters have been
automatically constrained to zero? Which coefficients are the same
in both models?

9. Use getContrasts to estimate simple contrasts of the
parameters in the interaction term. Re-fit the model using the
argument constrain = "pick" to set the last parameter of the
interaction term to zero. Compare the parameters of the
interaction term to the output of getContrasts. Save the
coefficients and re-fit the model, this time setting a different
parameter of the interaction term to zero. Compare the
coefficients of the two models: which are the same in both?
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Exercise

10. Now fit a model with a heterogeneous multiplicative
interaction (using Mult(...); see GnmR p6), assigning the result.

11. Use deviance to extract the deviance from the model object.
Look at the effect on the deviance when i) the intercept of the first
multiplicative factor is constrained and ii) the last parameter of the
first multiplicative factor is constrained. Can you explain your
observations?

12. Use anova to compare all the models fitted to the
occupationalStatus data. Choose the best model in terms of fit
and simplicity. Use plot to check for any problems, e.g. outliers
with high leverage, trends in the residuals, non-normal residuals,
etc.
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Part II

Models with multiplicative terms
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Introduction

Multiplicative terms, in an otherwise-additive predictor function,
impose (hopefully interpretable!) structure on interactions.

Prominent examples include:

I Row-column asociation

I Certain Rasch models, including ideal-point models of
legislator voting

I UNIDIFF-type models, e.g. as used in social mobility

I the ‘stereotype’ regression model of Anderson (1984), for
ordered categorical response
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Row-column association

Row-column association models

RC(1): αr + βc + γrδc,

row + col + Mult(row, col)

RC(2): αr + βc + γ
(1)
r δ

(1)
c + γ

(2)
r δ

(2)
c

row + col + Mult(row, col, multiplicity = 2)

etc.

Much developed by Goodman, Clogg, Becker (1970s, 1980s), with
extensions to higher-way tables, etc.
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Rasch-type models, ideal-point models of voting

Rasch-type models, ideal-point models of voting

The ‘simple’ Rasch model for the binary response yis of subject s
to test item i is a logistic regression,

logit(µis) = γs − αi

in which γs denotes the ability of subject s, and αi the difficulty of
item i.

Lots of applications, especially for more elaborate forms of the
model.

In practice, it is often found that the assumption of ‘equal (and
without loss of generality, unit) slopes’ fails to hold: some items
are better at discriminating than are others.

Birnbaum’s ‘2-parameter’ version generalizes the model to address
this:

logit(µis) = βiγs − αi
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Rasch-type models, ideal-point models of voting

Application to scaling of legislative votes:

I legislator m votes yes/no on roll call r

I each legislator has a notional ‘ideological position’, γm

I for each roll call r, logit[pr(yes)] = αr + βrγm

I generalization: position in two or more dimensions.

More in part III.
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UNIDIFF (log-multiplicative) models for strength of association

UNIDIFF-type models

High-order interactions in their ‘raw’ form can involve large
numbers of parameters. Often more economical/interpretable
summaries are possible.

The classic ‘UNIDIFF’ model relates to a 3-way table of counts
yrct, viewed as a set of T two-way tables yrc1, yrc2, . . . , yrct.

Interest is in the row-column association, and variation between
tables t in the strength of that association.

The UNIDIFF model postulates a common pattern of (log) odds
ratios, modulated by a constant that is specific to each table:

log(µrct) = αrt + βct + eγtδrc
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UNIDIFF (log-multiplicative) models for strength of association

log(µrct) = αrt + βct + eγtδrc

In R:

> gnm(y ~ row:table + col:table
+ Mult(Exp(table - 1), row:col),
family = poisson)

This model has been highly influential in comparative sociological
studies of class and mobility. Interest focuses on the γt parameters.

(Note that only the differences γt− γs are estimable/interpretable.)
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UNIDIFF (log-multiplicative) models for strength of association

Generalizations, specializations:

I the set of tables itself is structured, e.g., arranged serially in
time, or is a cross-classification of countries and years. Then
γt may itself be related to other variables, for example

γt = γt or γtc = γt + γc

I the same multipliers might be assumed to affect more than
one set of associations, e.g.,

log(µrclt) = αrt + βct + φlt + eγt(δrc + εcl)

I the assumed-common association pattern(s) may themselves
be simplified, for example by a topological ‘levels’ structure.

etc., etc.
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Stereotype model for ordinal response

Stereotype Models

The stereotype model (Anderson, 1984) is suitable for ordered
categorical data. It is a special case of the multinomial logistic
model:

pr(yi = c|xi) =
exp(β0c + βT

c xi)∑
r exp(β0r + βT

r xi)

in which only the scale of the relationship with the covariates
changes between categories:

pr(yi = c|xi) =
exp(β0c + γcβ

T xi)∑
r exp(β0r + γrβ

T xi)
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Stereotype model for ordinal response

The stereotype model can be fitted using gnm by re-expressing the
categorical data as counts and fitting the log-linear model

logµic = β0c + γc

∑
r

βrxir.

We can look at one of the examples from Anderson’s paper:

> data(backPain)
> backPain[1:5, ]

We need to express each measurement of pain as a set of counts,
equal to 1 in the correct category and 0 elsewhere.
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Stereotype model for ordinal response

The counts can be obtained using class.ind from package nnet

> library(nnet)
> .incidence <- class.ind(backPain$pain)
> .counts <- as.vector(t(.incidence))

Then we need to create a factor identifying each original
observation and a factor identifying the different categories:

> .rowID <- factor(t(row(.incidence)))
> backPain <- backPain[.rowID, ]
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Stereotype model for ordinal response

> backPain$pain <- C(factor(
rep(levels(backPain$pain),
nrow(.incidence)),
levels = levels(backPain$pain),
ordered = TRUE),

treatment)

Let’s take a look at what all this data manipulation has achieved:

> cbind(.rowID[1:12], .counts[1:12],
backPain[1:12, 4:1])
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Stereotype model for ordinal response

The sterotype model can then be fitted as follows

> oneDimensional <- gnm(
.counts ~ .rowID + pain

+ Mult(pain - 1, x1 + x2 + x3 - 1),
family = poisson, data = backPain)

> oneDimensional

The .rowID parameters are a bit of a nuisance. A better approach
is to use the eliminate argument of gnm to specify that the .rowID
parameters replace the intercept in the model. Then gnm will use a
method exploiting the structure of these parameters in order to
improve the computational efficiency of their estimation, and the
parameters will be excluded from summaries of the model object.
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Stereotype model for ordinal response

> oneDimensional <- gnm(
.counts ~ pain + Mult(pain - 1, x1 + x2 + x3 - 1),
eliminate = ~.rowID,
family = poisson, data = backPain)

> oneDimensional
> vcov(oneDimensional)

We can compare the stereotype model to the multinomial logistic
model:

> threeDimensional <- gnm(
.counts ~ pain + pain:(x1 + x2 + x3),
eliminate = ~.rowID,
family = poisson, data = backPain)
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Multiplicative effects or heteroscedasticity?

A note of caution on interpretation

Care is needed in interpreting apparent multiplicative effects.

For example, in political science much use has been made of
generalized logit and probit models in which the standard
binary-response assumption (in terms of probit)
pr(yi = 1) = Φ(x′

iβ/σ) is replaced by a model which allows
non-constant variance in the underlying latent regression:

pr(yi = 1) = Φ[x′
iβ/ exp(z′

iγ)]

This clearly results in a multiplicative model for the mean: in R,
the above would be specified as

> gnm(y ~ -1 + Mult(x, Exp(z)), family = binomial(link="probit"))

It is therefore impossible to distinguish, with binary data, between
two distinct generative mechanisms: underlying variance depends
on z; or effect of x is modulated by z.
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Exercises

UNIDIFF model

Exercise: UNIDIFF model for social mobility

Ths exercise uses a dataset kindly provided by Louis-André Vallet,
on mobility among seven social classes in France between 1970 and
1993.

1. Load the dataset France into your R workspace, and view it as a
table:

> load("Data/France.RData")
> xtabs(Freq ~ orig + dest + year, France)

2. Fit the ‘constant social fluidity’ log-linear model in which orig
and dest have the same association in all four survey years:

> CSFmodel <- gnm(
Freq ~ orig:year + dest:year + orig:dest,
family = poisson, data = France)
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Exercises

UNIDIFF model

3. Now test whether the strength of association between orig and
dest differs from year to year, using the UNIDIFF model:

> UNIDIFF <- update(CSFmodel, . ~ . - orig:dest
+ Mult(Exp(-1 + year), orig:dest))

> anova(CSFmodel, UNIDIFF)

You should find that the UNIDIFF model is a significant
improvement, but still exhibits significant lack of fit.

4. Look at the year coefficients in the Mult term, by picking out
the four relevant coefficients from the list provided by

> getContrasts(UNIDIFF)

Interpret the estimated coefficients. (Note that the reported
standard errors will be too optimistic, on account of the observed
lack of fit.)
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Exercises

UNIDIFF model

5. Since the four survey years are roughly equally spaced, it might
be possible to summarize the change in mobility by a straight-line
trend. We can do this by converting year from a 4-level factor to
a quantitative variable, and then re-fitting:

> time <- as.numeric(France$year)
> UNIDIFFtrend <- update(UNIDIFF, . ~ .

- Mult(Exp(-1 + year), orig:dest)
+ Mult(Exp(-1 + time), orig:dest))

> anova(CSFmodel, UNIDIFFtrend, UNIDIFF)
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Exercises

Stereotype model

Exercise: Stereotype model for back pain

1. Load the backPain data set and work through the commands
on p42 to re-express the data as counts.

2. Using gnm, fit the empty ‘baseline’ model:

gnm(.counts ~ pain, eliminate = .rowID,
family = poisson, data = backpain)

Print the result. This model assumes that the probability of an
individual experiencing a given level of pain is the same regardless
of the values of the prognostic variables.
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Exercises

Stereotype model

3. Use update to extend the null model to the stereotype model
on p40 and interpret the result.

4. In order to make the category-specific multipliers
(Mult.Factor1.painworse etc.) identifiable — so that, for
example, valid standard errors can be calculated — we must
constrain both the location and the scale of these parameters.

Using getContrasts would fix the location by setting one
parameter to zero. Confirm that this constraint is insufficient by
running getContrasts on these parameters.
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Exercises

Stereotype model

5. We can constrain the scale by setting the coefficient of one of
the variables in the second constituent multiplier to one. This can
be achieved by treating one of the variables as an ‘offset’ in the
second multiplier rather than a variable whose coefficient needs to
be estimated.

Refit the model replacing x1 with offset(x1) in the formula for
the second constituent multiplier.

Use getContrasts to estimate simple contrasts of the
category-specific multipliers in the new model.
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Exercises

Stereotype model

6. The stereotype model is clearly an improvement on the null
model, but is it necessary to have a separate multiplier for each
category of pain? The estimates from getContrasts are very
similiar for categories “same” and “slight.improvement”. We can
try fitting a common multiplier for these two categories.

Load package car and create a new factor from backPain$pain,
merging the second and third categories as follows:

newPain <- recode(backPain$pain,
"c(’same’, ’slight.improvement’) =

’same|slight.improvement’")

Re-fit the stereotype model using the new factor in the formula for
the first constituent multiplier and look at the impact on the
model deviance.
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Exercises

Stereotype model

7. Using getContrasts to identify the group-specific multipliers,
choose the two that are most similar and refit the model with a
common multiplier for the corresponding groups.

Repeat until you have a model with just two group-specific
multipliers.

How many different multipliers are necessary?
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Part III

Two larger examples
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Conformity to parental rules: diagonal reference models

Diagonal reference models: Conformity to parental rules

Data from van der Slik et al, (2002).

An analysis of the value that parents place on their children
conforming to their rules.

Two response variables: mother’s conformity score (MCFM),
father’s (FCFF).

Covariates are education level of mother and of father (MOPLM,
FOPLF) plus 5 others.
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Conformity to parental rules: diagonal reference models

Basic diagonal reference model for MCFM:

E(yrc) = β1x1+β2x2+β3x3+β4x4+β5x5+
eδ1

eδ1 + eδ2
γr+

eδ2

eδ1 + eδ2
γc

Fit this by

> A <- gnm(MCFM ~ -1 +
AGEM + MRMM + FRMF + MWORK + MFCM +
Nonlin(Dref(MOPLM, FOPLF)),

family = gaussian, data = conformity)
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Conformity to parental rules: diagonal reference models

> coef(A)

AGEM MRMM FRMF

0.06364 -0.32425 -0.25324

MWORK MFCM Dref(MOPLM, FOPLF).MOPLM

-0.06430 -0.06043 0.34389

Dref(MOPLM, FOPLF).FOPLF Dref(MOPLM, FOPLF).1 Dref(MOPLM, FOPLF).2

0.65611 4.95123 4.86328

Dref(MOPLM, FOPLF).3 Dref(MOPLM, FOPLF).4 Dref(MOPLM, FOPLF).5

4.86458 4.72342 4.43516

Dref(MOPLM, FOPLF).6 Dref(MOPLM, FOPLF).7

4.18873 4.43379

> prop.table(exp(coef(A)[6:7]))

Dref(MOPLM, FOPLF).MOPLM Dref(MOPLM, FOPLF).FOPLF

0.4225734 0.5774266

So, controlling for the other covariates, father’s education is
estimated to carry about 58% of the total effect of parents’
education.
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Conformity to parental rules: diagonal reference models

The Dref function allows dependence of the weights on other
variables.

van der Slik et al (2002) consider weights dependent upon
mother’s conflict score (MFCM), as in

δk = ξk + φkx5 (k = 1, 2)

which can be specified in R as

> F <- gnm(MCFM ~ -1 + AGEM + MRMM + FRMF + MWORK + MFCM +
Nonlin(Dref(MOPLM, FOPLF, formula = ~ 1 + MFCM)),
family = gaussian,
data = conformity, verbose = FALSE)

And so on. See Section 6.3 of GnmR for more details.
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Voting in the US House of Representatives: Logit/probit ideal-point models

Logistic ideal-point models for legislator voting

Data on 20 roll calls from the US House of Representatives in
2001, each coded 0/1 such that 1 indicates liberality.

Idea: for each roll call, voting is described by a logistic regression
on House members’ (unknown) ideological positions.

One-dimensional model:

logit(µrm) = αr + βrγm

Two dimensions:

logit(µrm) = αr + β(1)
r γ(1)

m + +β(2)
r γ(2)

m

This is a fairly large dataset/model: there are 439 House members.

Some members can be discarded as ‘uninformative’ (voted on
fewer than 10 roll calls, or always voted the same way).
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Voting in the US House of Representatives: Logit/probit ideal-point models

First, set up the data for our modelling:

data(House2001)

## Put the votes in a matrix, and

## discard members with too many NAs etc:

House2001m <- as.matrix(House2001[-1])

informative <- apply(House2001m, 1, function(row){

valid <- !is.na(row)

validSum <- if (any(valid)) sum(row[valid]) else 0

nValid <- sum(valid)

uninformative <- (validSum == nValid) ||

(validSum == 0) ||

(nValid < 10)

!uninformative})

House2001m <- House2001m[informative, ]

parties <- House2001$party[informative]

## Expand the data for statistical modelling:

House2001v <- as.vector(House2001m)

House2001f <- data.frame(member = rownames(House2001m),

party = parties,

rollCall = factor(rep((1:20),

rep(nrow(House2001m), 20))),

vote = House2001v)
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Voting in the US House of Representatives: Logit/probit ideal-point models

For a large model such as this, we need good starting values. The
utility function residSVD can be used to decompose
multiplicatively the residuals from a smaller model:

baseModel <- glm(vote ~ -1 + rollCall,

family = binomial, data = House2001f)

Start <- residSVD(baseModel, rollCall, member)

We will now fit the one-dimensional model. First, though, we
apply some ‘flattening’ to the response variable, to reduce bias and
avert numerical difficulties: 0 becomes 0.03 and 1 becomes 0.97.

voteAdj <- 0.5 + 0.94*(House2001f$vote - 0.5)

House2001model1 <- gnm(voteAdj ~ Mult(rollCall - 1, member - 1),

eliminate = ~ rollCall,

family = binomial, data = House2001f,

na.action = na.exclude, trace = TRUE, tolerance = 1e-03,

start = -Start)

## Deviance is 2234.847, df = 5574
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Voting in the US House of Representatives: Logit/probit ideal-point models

We can plot the members’ estimated positions, coloured by party
membership:

> partyColors <- rep("black", length(parties))
> partyColors <- ifelse(parties == "D", "red", partyColors)
> partyColors <- ifelse(parties == "R", "blue", partyColors)
## Now make the graph
> plot(coef(House2001model1)[21:321], col = partyColors,

xlab = "Alphabetical index (Abercrombie 1 to Young 301)",
ylab = "Member’s relative position, one-dimensional model")
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Voting in the US House of Representatives: Logit/probit ideal-point models
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Voting in the US House of Representatives: Logit/probit ideal-point models

Roll call 12 appears to be different from the rest:

> coef(House2001model1)[1:20]

Mult1.Factor1.rollCall1 Mult1.Factor1.rollCall2 Mult1.Factor1.rollCall3

3.3272688 3.1187364 4.3788873

Mult1.Factor1.rollCall4 Mult1.Factor1.rollCall5 Mult1.Factor1.rollCall6

3.9046925 3.5438839 2.0740049

Mult1.Factor1.rollCall7 Mult1.Factor1.rollCall8 Mult1.Factor1.rollCall9

2.6443166 3.5397983 3.9401251

Mult1.Factor1.rollCall10 Mult1.Factor1.rollCall11 Mult1.Factor1.rollCall12

1.5309173 4.1769722 -0.5547739

Mult1.Factor1.rollCall13 Mult1.Factor1.rollCall14 Mult1.Factor1.rollCall15

2.0614189 4.3679824 4.4400554

Mult1.Factor1.rollCall16 Mult1.Factor1.rollCall17 Mult1.Factor1.rollCall18

2.3971024 2.1049206 4.1963022

Mult1.Factor1.rollCall19 Mult1.Factor1.rollCall20

4.2155210 2.0440617

Maybe there’s a second dimension?
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Voting in the US House of Representatives: Logit/probit ideal-point models

Start2 <- residSVD(baseModel, rollCall, member, d = 2)

> House2001model2 <- gnm(

voteAdj ~ Mult(rollCall - 1, member - 1, multiplicity = 2),

eliminate = ~ rollCall,

family = binomial, data = House2001f,

na.action = na.exclude, trace = TRUE, tolerance = 1e-03,

start = Start2)

## Deviance is 1545.166, df = 5257
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Voting in the US House of Representatives: Logit/probit ideal-point models
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Voting in the US House of Representatives: Logit/probit ideal-point models

Remarks:

1. The logistic regression model used here is an example of a
Rasch model (‘item response theory’)

2. Probit gives indistinguishably similar results.

3. As is evident from the results of this small study, the choice of
‘items’ is crucial to the results of scaling.

4. Factor analysis would be another way to explore this, and to
scale the members (using factor scores). But factor analysis gives
quite different results, on account of the assumption that the
unobserved positions are normally distributed.
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Exercises

Diagonal reference model

Exercise: Diagonal reference model for data from Clifford
and Heath

1. Load the voting data. This is a data frame of the percentage
voting Labour (percentage) and the total number of people
(total) in groups classified by the class of the head of household
(destination) and the class of their father (origin). We shall
fit a diagonal reference model to these data.

First we want to convert percentage into a binomial response. So
that gnm will automatically weight the proportion of sucesses by
the group size, we choose to do this by creating a two-column
matrix with the columns giving the number of households voting
Labour (’success’) and the number of households voting otherwise
(’failure’):

count <- with(voting, percentage/100 * total)
yvar <- cbind(count, voting$total - count)
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Exercises

Diagonal reference model

2. Fit a diagonal reference model to these data (see p57), using
yvar as the response, and family = binomial. Use summary to
summarise the result. Evaluate the weights for the origin and
destination diagonal effects, as on p58.

3. It could be that individuals which have come into or out of the
salariat (class 1) vote differently from other individuals. We can
define factors indicating movement in and out of class 1 as follows:

in <- with(voting, origin != 1 & destination == 1)
out <- with(voting, origin == 1 & destination != 1)

Re-fit the diagonal reference model, specifying ~ 1 + in + out
as the formula argument of Dref, so the weights are
parameterised by a main effect with additional effects for in and
out. Assign these effects to base, in.adj and out.adj. See if
the fit of the model has improved.
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Exercises

Diagonal reference model

4. Evaluate the weights for the different groups of people as below:

in.to.1 <- prop.table(exp(in.adj + base))
out.of.1 <- prop.table(exp(out.adj + base))
other <- prop.table(exp(base))

5. The weights for groups that have moved in to the salariat are
similar to the general weights. Fit a model that only has separate
weights for the groups moving out of the salariat, and compare the
results.
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Exercises

Logistic ideal-point model for legislator voting

Exercise: Scaling of the US House of Representatives

We will re-run the scaling analysis of the House2001 data, with roll
call 12 removed.

1. First, run through the one-dimensional scaling as shown in the
lecture, by running example(House2001).

2. Now re-do the analysis with roll call 12 removed from the data.
(Do this by modifying commands copied and pasted from the
examples in ?House2001.)

> House2001m <- House2001m[, -12]
> House2001v <- as.vector(House2001m)
> House2001f <- data.frame(member = rownames(House2001m),

party = parties,
rollCall = factor(rep((1:20)[-12],

rep(nrow(House2001m), 19))),
vote = House2001v)
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Logistic ideal-point model for legislator voting

> voteAdj <- 0.5 + 0.94*(House2001f$vote - 0.5)
> baseModel <- glm(voteAdj ~ -1 + rollCall,

family = binomial, data = House2001f)
> Start <- residSVD(baseModel, rollCall, member)
> House2001model1 <- gnm(

voteAdj ~ Mult(rollCall - 1, member - 1),
eliminate = ~ rollCall,
family = binomial, data = House2001f,
na.action = na.exclude, trace = TRUE,
tolerance = 1e-03,
start = -Start)

3. Look at the slope coefficients for the 19 roll calls:

> coef(House2001model1)[1:19]

Two larger examples 74

Exercises

Logistic ideal-point model for legislator voting

4. Finally, graph the members’ estimated ideological positions:

> positions <- coef(House2001model1)[20:320]
> plot(positions, col = partyColors)

and find graphically the names of the more liberal among the
Republicans, and the more conservative among the Democrats:

> identify(1:301, positions,
labels = rownames(House2001m))

(right-click to stop the identify mechanism).


