Note: some of these slides are out of date. Please check against the current version of the package manual (gnmOverview.pdf).

Introduction to Generalized Nonlinear Models in Social Research	2

Preface

Generalized linear models (logit/probit regression, log-linear models, etc.) are now part of the standard empirical toolkit.
Sometimes the assumption of a linear predictor is unduly restrictive. Many useful models in social science are non-linear.

This short course shows how generalized nonlinear models may be viewed as a unified class, and how to work with such models using the R package gnm.
This is a fairly specialized course. A much broader view of statistical modelling can be found in another Spring School course, An Overview of Statistical Models and Statistical Thinking.
Computer lab sessions will provide some familiarity with gnm.

Introduction to Generalized Nonlinear Models in Social ResearchLOutlines	
Plan Part I: Introduction Part II: Models with multiplicative terms Part III: Two larger examples	

Introduction to Generalized Nonlinear Models in Social Research
 $\left\llcorner_{\text {Outlines }}\right.$
 $\left\llcorner_{\text {Part I: Introduction }}\right.$

Part I: Introduction

Linear and generalized linear models

Generalized nonlinear models

Structured interactions

Introduction to the gnm package

Exercise

```
Introduction to Generalized Nonlinear Models in Social Research
Part II: Models with multiplicative terms
```

Part II: Models with multiplicative terms
Introduction

Row-column association

Rasch-type models, ideal-point models of voting

UNIDIFF (log-multiplicative) models for strength of association

Stereotype model for ordinal response

Multiplicative effects or heteroscedasticity?

Exercises

```
Introduction to Generalized Nonlinear Models in Social Research
Outlines
\(\left\llcorner_{\text {Part III: }}\right.\) Two larger examples
```

Part III: Two larger examples

Conformity to parental rules: diagonal reference models

Voting in the US House of Representatives: Logit/probit ideal-point models

Exercises

Introduction	${ }^{7}$
	Part I

Introduction	
$\left\llcorner_{\text {Linear and generalized linear models }}\right.$	10

Generalized linear model:

$$
\begin{aligned}
g\left[E\left(y_{i}\right)\right] & =\eta_{i}=\text { linear function of unknown parameters } \\
\operatorname{var}\left(y_{i}\right) & =\phi a_{i} V\left(\mu_{i}\right)
\end{aligned}
$$

with the functions g (link function) and V (variance function)
known.

	Introduction
Linear and generalized linear models	8

Linear models:

e.g.,

$$
\begin{gathered}
E\left(y_{i}\right)=\beta_{0}+\beta_{1} x_{i}+\beta_{2} z_{i} \\
E\left(y_{i}\right)=\beta_{0}+\beta_{1} x_{i}+\beta_{2} x_{i}^{2} \\
E\left(y_{i}\right)=\beta_{0}+\gamma_{1} \delta_{1} x_{i}+\exp \left(\theta_{2}\right) z_{i}
\end{gathered}
$$

In general:

$$
E\left(y_{i}\right)=\eta_{i}(\beta)=\text { linear function of unknown parameters }
$$

Also assumes variance essentially constant:

$$
\operatorname{var}\left(y_{i}\right)=\phi a_{i}
$$

with a_{i} known (often $a_{i} \equiv 1$).

Introduction	
$\left\llcorner_{\text {Linear and generalized linear models }}\right.$	9

Generalized linear models

Problems with linear models in many applications:

- range of y is restricted (e.g., y is a count, or is binary, or is a duration)
- effects are not additive
- variance depends on mean (e.g., large mean \Rightarrow large variance)

Generalized linear models specify a non-linear link function and variance function to allow for such things, while maintaining the simple interpretation of linear models.

Introduction	
$\left\llcorner_{\text {Linear and generalized linear models }}\right.$	11

Examples:

- binary logistic regressions (including Rasch models, Bradley-Terry models, etc.)
- rate models for event counts
- log-linear models for contingency tables (including multinomial logit models)
- multiplicative models for durations and other positive measurements
- hazard models for event history data
etc., etc.

Introduction
 Linear and generalized linear models

e.g., binary logistic regression:

$$
\begin{gathered}
y_{i}= \begin{cases}1 & \text { event happens } \\
0 & \text { otherwise }\end{cases} \\
\mu_{i}=E\left(y_{i}\right)=\text { probability that event happens } \\
\operatorname{var}\left(y_{i}\right)=\mu_{i}\left(1-\mu_{i}\right)
\end{gathered}
$$

Variance is completely determined by mean.

Common link functions are logit, probit, and (complementary)
log-log, all of which transform constrained μ into unconstrained η.

```
Introduction
\(\left\llcorner_{\text {Linear and generalized linear models }}\right.\)
```

e.g., multiplicative (i.e., log-linear) rate model for event counts.
'Exposure' for observation i is a fixed, known quantity t_{i}.
Rate model:

$$
E\left(y_{i}\right)=t_{i} \exp \left(\beta_{0}\right) \exp \left(\beta_{1} x_{i}\right) \exp \left(\beta_{2} z_{i}\right)
$$

i.e.,

$$
\log E\left(y_{i}\right)=\log t_{i}+\beta_{0}+\beta_{1} x_{i}+\beta_{2} z_{i}
$$

— effects are rate multipliers.
Variance is typically taken as the Poisson-like function $V(\mu)=\mu$ (variance is equal to, or is proportional to, the mean).
Introduction 14
$\left\llcorner_{\text {Generalized nonlinear models }}\right.$

Generalized linear: $\eta=g(\mu)$ is a linear function of the unknown parameters. Variance depends on mean through $V(\mu)$.

Generalized nonlinear: still have g and V, but now relax the linearity assumption.

Many important aspects remain unchanged

- fitting by maximum likelihood or quasi-likelihood
- analysis of deviance to assess significance of effects
- diagnostics based on residuals, etc.

But technically more difficult [essentially because $\partial \eta / \partial \beta=X$ becomes $\partial \eta / \partial \beta=X(\beta)$].
Introduction 15
$\left\llcorner_{\text {Generalized nonlinear models }}\right.$

Some practical consequences of the technical difficulties:

- automatic detection and elimination of redundant parameters is very difficult - it's no longer just a matter of linear algebra
- automatic generation of good starting values for ML fitting algorithms is hard
- great care is needed in cases where the likelihood has more than one maximum (which cannot happen in the linear case).

Introduction
$L_{\text {Structured interactions }}$

Some motivation: structured interactions

GNMs are not exclusively about structured interactions, but many applications are of this kind.
A classic example is log-linear models for structurally-square contingency tables (e.g., pair studies, before-after studies, etc.).

Pairs are classified twice, into row and column of a table of counts.
The independence model is

$$
\log E\left(y_{r c}\right)=\theta+\beta_{r}+\gamma_{c}
$$

or in computer language
> gnm(y ~ row + col, family = poisson)

Introduction
 $\left\llcorner_{\text {Structured interactions }}\right.$

Some standard (generalized linear) models for departure from independence are

- quasi-independence
y ~ row + col + Diag(row, col)
- quasi-symmetry

$$
\mathrm{y} \sim \text { row }+ \text { col }+\operatorname{Symm}(\text { row, col })
$$

- symmetry,
y ~ Symm(row, col)
- (with categories ordered) uniform association,
y ~ row + col + Rscore:Cscore
where Rscore and Cscore are (possibly scaled versions of) the row and column index numbers.

Introduction
 $\left\llcorner_{\text {Structured interactions }}\right.$

Some applications demand more complex, subject-matter-driven interaction structures.

In social-class mobility studies various 'levels' or 'topological' association structures have been proosed. For example Xie (1992) uses, for 7 social classes, the 6 -level association structure

2346566
3346456
4425555
6651652
4456345
5455335
6653541

The gnm package provides a special function Topo, in order to facilitate working with such structured interactions. See ?Topo.

Introduction	
$\left\llcorner_{\text {Structured interactions }}\right.$	19

Row-column association

The uniform association model has

$$
\log E\left(y_{r c}\right)=\beta_{r}+\gamma_{c}+\delta u_{r} v_{c}
$$

with the u_{r} and v_{c} defined as fixed, equally-spaced scores for the rows and columns.
A natural generalization is to allow the data to determine the scores instead. This can be done either heterogeneously,

$$
\log E\left(y_{r c}\right)=\beta_{r}+\gamma_{c}+\phi_{r} \psi_{c}
$$

or (in the case of a structurally square table) homogeneously,

$$
\log E\left(y_{r c}\right)=\beta_{r}+\gamma_{c}+\phi_{r} \phi_{c}
$$

These are generalized non-linear models.

Introduction	
$\left\llcorner_{\text {Structured interactions }}\right.$	20

Higher-order interactions

The number of parameters in an unstructured interaction term, for example 3-way $\gamma_{r c t}$, can become very large.

Structured versions can help with both statistical efficiency and interpretation.

A nice example of this is the UNIDIFF model for 'similar' association in a set of 2-way tables: more tomorrow.

Introduction	
Introduction to the gnm package 21	2

Introduction to the gnm package

The gnm package aims to provide a unified computing framework for specifying, fitting and criticizing generalized nonlinear models in R.

The central function is gnm, which is designed with the same interface as R's standard glm.
(Since generalized linear models are included as a special case, the gnm function can be used in place of glm, and will give equivalent results.)

Limitations: An important limitation of gnm (and indeed of the standard glm) is to models in which the mean-predictor function is completely determined by available explanatory variables. Latent variables (random effects) are not handled.

Introduction
$L_{\text {Introduction to the gnm package }}$

Non-linear model terms

The two key functions Mult and Nonlin are 'symbolic wrappers' for use inside model formulas.
A multiplicatively structured interaction is specified as Mult(first, second). For example, a term of the form

$$
(\alpha+\beta x) \gamma_{j k}
$$

where j and k index levels of factors A and B, would be specified as Mult ($\mathrm{x}, \mathrm{A}: \mathrm{B}$).
Or, for a multiplier which depends on x but which is guaranteed positive, we can use Mult $(\operatorname{Exp}(-1+\mathrm{x}), \mathrm{A}: \mathrm{B})$, corresponding mathematically to $\exp (\beta x) \gamma_{j k}$.

$L_{\text {Introduction to the gnm package }}$

The Nonlin function

Not all nonlinear terms are products of independently-specified 'constituent multipliers'.
Example: homogeneous row and column scores,

$$
\alpha_{r}+\beta_{c}+\phi_{r} \phi_{c}
$$

(Goodman, 1979) - Nonlin(MultHomog(row, col))
Example: 'diagonal reference' dependence on a square classification,

$$
w_{1} \gamma_{r}+w_{2} \gamma_{c}
$$

(Sobel, 1981, 1985) — Nonlin(Dref(row, col))
Any (differentiable) nonlinear term can be specified using Nonlin.

Introduction
$L_{\text {Introduction to the gnm package }}$

Over-parameterization

The gnm function makes no attempt to remove redundant parameters from nonlinear terms. This is deliberate.
As a consequence, fitted models are typically represented in a way that is over-parameterized: not all of the parameters are 'estimable' (i.e., 'identifiable', 'interpretable').

A simple example: $\phi_{r} \psi_{c}$ is equivalent to $\left(2 \phi_{r}\right)\left(\psi_{c} / 2\right)$.

The gnm package provides various tools (checkEstimable, getContrasts, se) for checking the estimability of parameter combinations, and for obtaining valid standard errors for estimable combinations.

Introduction	
$L_{\text {Introduction to the gnm package }}$	25

Control over the fitting process

The gnm function has various optional arguments to allow the user to control aspects of the ML fitting process. These include

- convergence criteria (tolerance, iterMax)
- starting values (start)
- the printing of information at each iteration (trace).

In many gnm models, random starting values are used by default. This in turn gives a random representation of the model.

Introduction	26
$\left\llcorner_{\text {Exercise }}\right.$	26

Exercise

In the computer lab, your login name is ' $\mathrm{C} n$ ', where n is the number of your terminal (e.g., C9). The password is (to be notified orally).
After login, drag (i.e., copy) the folder 'Generalized nonlinear models' from 'S: \springschool05\FirthTurner' (found via 'My Computer' on the Start menu) to your Desktop. Inside that folder - the folder now on your desktop, that is - is an R workspace icon: just double-click it to start R.

1. Load the gnm package, then load the occupationalStatus data set, which is a contingency table classified by the occupational status of fathers (origin) and their sons (destination).
2. Use the generic function plot to create a mosaic plot of the table. Print occupationalStatus to see the cell frequencies represented by the plot.

Introduction
Exercise

3. We shall consider a number of models for these frequencies, which by default are named Freq.
The null association model assumes that the origin (o) and destination (d) are independent and the frequencies can be modelled by main effects only:

$$
\log E\left(\text { Freq }_{o d}\right)=\theta+\alpha_{o}+\beta_{d}
$$

Fit this model using gnm with family = poisson, assigning the result to a suitable name. Print this object.
4. gnm objects inherit from g / m and $/ m$ objects, i.e. the methods used by generic functions for gnm objects may be the same as, or based on, those for g / m and $/ m$ objects. Use apropos("^plot") to search for help files on objects beginning with "plot" and open the one most relevant for gnm objects.
${ }^{\text {Introduction }}$
$\left\llcorner_{\text {Exercise }}\right.$

From the help page, find out how to use plot to create a plot of residuals vs. fitted values and do this for the null association model. The poor fit should be very apparent!
5. Create a vector of equally-spaced row scores for the cells in the table:

Rscore <- as.vector(row(occupationalStatus))
Create a vector of column scores named Cscore in a similar way (by using col in place of row).
These score vectors can be used to fit a uniform association model:

$$
\log E\left(\text { Freq }_{o d}\right)=\theta+\alpha_{o}+\beta_{d}+\gamma(\text { Rscore })(\text { Cscore })
$$

again using gnm. The extra term can be represented in the model formula by Rscore: Cscore.

Introduction	
$\left\llcorner_{\text {Exercise }}\right.$	29

Fit the uniform association model, assigning the result a different name from the null model. Print the resulting object and look at a residual vs. fitted plot. Look at the effect of modelling the diagonal elements separately, by adding Diag(origin, destination).
6. Keeping the Diag term in the model, use gnm to fit a model with a homogenoeous multiplicative interaction between origin and destination instead of the uniform association term (using Nonlin(MultHomog (. . .)); see p7 of GnmR).
7. Since occupationalStatus is a table, the residual component of the gnm object is also a table. Use residuals to access the deviance residuals, obtain the absolute values of these residuals using abs, then plot the result. Note the residuals for the diagonal elements are essentially zero because there is one Diag parameter for each diagonal cell.

```
\(\stackrel{\text { Introduction }}{L_{\text {Exercise }}}\)
```

8. Use coef to access the coefficients of the model and assign the result. Re-fit the model using update and assign the coefficients of the re-fitted model to another name. Compare the coefficients side-by-side using cbind. Which parameters have been automatically constrained to zero? Which coefficients are the same in both models?
9. Use getContrasts to estimate simple contrasts of the parameters in the interaction term. Re-fit the model using the argument constrain = "pick" to set the last parameter of the interaction term to zero. Compare the parameters of the interaction term to the output of getContrasts. Save the coefficients and re-fit the model, this time setting a different parameter of the interaction term to zero. Compare the coefficients of the two models: which are the same in both?

Introduction	
Lexercise	31

10. Now fit a model with a heterogeneous multiplicative interaction (using Mult (...); see GnmR p6), assigning the result.
11. Use deviance to extract the deviance from the model object. Look at the effect on the deviance when i) the intercept of the first multiplicative factor is constrained and ii) the last parameter of the first multiplicative factor is constrained. Can you explain your observations?
12. Use anova to compare all the models fitted to the occupationalStatus data. Choose the best model in terms of fit and simplicity. Use plot to check for any problems, e.g. outliers with high leverage, trends in the residuals, non-normal residuals, etc.

Models with multiplicative terms	32

Part II

Models with multiplicative terms

Models with multiplicative terms	
$\left\llcorner_{\text {Introduction }}\right.$	33

Multiplicative terms, in an otherwise-additive predictor function, impose (hopefully interpretable!) structure on interactions.
Prominent examples include:

- Row-column asociation
- Certain Rasch models, including ideal-point models of legislator voting
- UNIDIFF-type models, e.g. as used in social mobility
- the 'stereotype' regression model of Anderson (1984), for ordered categorical response

Models with multiplicative terms
$\left\llcorner_{\text {Row-column association }}\right.$

Row-column association models

```
\(\mathbf{R C}(\mathbf{1}): \alpha_{r}+\beta_{c}+\gamma_{r} \delta_{c}\),
    row + col + Mult(row, col)
\(\mathbf{R C ( 2 ) : ~} \alpha_{r}+\beta_{c}+\gamma_{r}^{(1)} \delta_{c}^{(1)}+\gamma_{r}^{(2)} \delta_{c}^{(2)}\)
row + col + Mult(row, col, multiplicity = 2)
etc.
Much developed by Goodman, Clogg, Becker (1970s, 1980s), with extensions to higher-way tables, etc.
```


Rasch-type models, ideal-point models of voting

The 'simple' Rasch model for the binary response $y_{i s}$ of subject s to test item i is a logistic regression,

$$
\operatorname{logit}\left(\mu_{i s}\right)=\gamma_{s}-\alpha_{i}
$$

in which γ_{s} denotes the ability of subject s, and α_{i} the difficulty of item i.
Lots of applications, especially for more elaborate forms of the model.

In practice, it is often found that the assumption of 'equal (and without loss of generality, unit) slopes' fails to hold: some items are better at discriminating than are others.
Birnbaum's '2-parameter' version generalizes the model to address this:

$$
\operatorname{logit}\left(\mu_{i s}\right)=\beta_{i} \gamma_{s}-\alpha_{i}
$$

Application to scaling of legislative votes:

- legislator m votes yes/no on roll call r
- each legislator has a notional 'ideological position', γ_{m}
- for each roll call $r, \operatorname{logit}[\operatorname{pr}(y e s)]=\alpha_{r}+\beta_{r} \gamma_{m}$
- generalization: position in two or more dimensions.

More in part III.

Models with multiplicative terms	37
$\left\llcorner_{\text {UNIDIFF (log-multiplicative) models for strength of association }}\right.$	

UNIDIFF-type models

High-order interactions in their 'raw' form can involve large numbers of parameters. Often more economical/interpretable summaries are possible.
The classic 'UNIDIFF' model relates to a 3-way table of counts $y_{r c t}$, viewed as a set of T two-way tables $y_{r c 1}, y_{r c 2}, \ldots, y_{r c t}$.
Interest is in the row-column association, and variation between tables t in the strength of that association.
The UNIDIFF model postulates a common pattern of (log) odds ratios, modulated by a constant that is specific to each table:

$$
\log \left(\mu_{r c t}\right)=\alpha_{r t}+\beta_{c t}+e^{\gamma_{t}} \delta_{r c}
$$

Models with multiplicative terms $\left\llcorner_{\text {UNIDIFF }}\right.$ (log-multiplicative) models for strength of association	${ }^{38}$
$\log \left(\mu_{r c t}\right)=\alpha_{r t}+\beta_{c t}+e^{\gamma_{t}} \delta_{r c}$ In R : $\begin{aligned} >\operatorname{gnm}(y & \sim \\ & \text { row:table }+ \text { col:table } \\ & + \text { Mult (Exp(table }-1) \text {, row:col) }, \\ & \text { family = poisson) } \end{aligned}$	

This model has been highly influential in comparative sociological studies of class and mobility. Interest focuses on the γ_{t} parameters.
(Note that only the differences $\gamma_{t}-\gamma_{s}$ are estimable/interpretable.)

Models with multiplicative terms	
U UNIDIFF (log-multiplicative) models for strength of association 39	39

Generalizations, specializations:

- the set of tables itself is structured, e.g., arranged serially in time, or is a cross-classification of countries and years. Then γ_{t} may itself be related to other variables, for example

$$
\gamma_{t}=\gamma t \quad \text { or } \quad \gamma_{t c}=\gamma_{t}+\gamma_{c}
$$

- the same multipliers might be assumed to affect more than one set of associations, e.g.,

$$
\log \left(\mu_{r c l t}\right)=\alpha_{r t}+\beta_{c t}+\phi_{l t}+e^{\gamma_{t}}\left(\delta_{r c}+\epsilon_{c l}\right)
$$

- the assumed-common association pattern(s) may themselves be simplified, for example by a topological 'levels' structure.
etc., etc.

Models with multiplicative terms
\square Stereotype model for ordinal response

Stereotype Models

The stereotype model (Anderson, 1984) is suitable for ordered categorical data. It is a special case of the multinomial logistic model:

$$
\operatorname{pr}\left(y_{i}=c \mid \boldsymbol{x}_{i}\right)=\frac{\exp \left(\beta_{0 c}+\boldsymbol{\beta}_{c}^{T} \boldsymbol{x}_{i}\right)}{\sum_{r} \exp \left(\beta_{0 r}+\boldsymbol{\beta}_{r}^{T} \boldsymbol{x}_{i}\right)}
$$

in which only the scale of the relationship with the covariates changes between categories:

$$
\operatorname{pr}\left(y_{i}=c \mid \boldsymbol{x}_{i}\right)=\frac{\exp \left(\beta_{0 c}+\gamma_{c} \boldsymbol{\beta}^{T} \boldsymbol{x}_{i}\right)}{\sum_{r} \exp \left(\beta_{0 r}+\gamma_{r} \boldsymbol{\beta}^{T} \boldsymbol{x}_{i}\right)}
$$

```
Models with multiplicative terms
\(\left\llcorner_{\text {Stereotype model for ordinal response }}\right.\)
```

41

The stereotype model can be fitted using gnm by re-expressing the categorical data as counts and fitting the log-linear model

$$
\log \mu_{i c}=\beta_{0 c}+\gamma_{c} \sum_{r} \boldsymbol{\beta}_{r} \boldsymbol{x}_{i r}
$$

We can look at one of the examples from Anderson's paper:
> data(backPain)
> backPain[1:5,]
We need to express each measurement of pain as a set of counts, equal to 1 in the correct category and 0 elsewhere.

```
Models with multiplicative terms
    LStereotype model for ordinal response
```

The counts can be obtained using class.ind from package nnet

```
> library(nnet)
```

> .incidence <- class.ind(backPain\$pain)
> .counts <- as.vector(t(.incidence))
Then we need to create a factor identifying each original observation and a factor identifying the different categories:
> .rowID <- factor (t(row(.incidence)))
> backPain <- backPain[.rowID,]

```
Models with multiplicative terms 
LStereotype model for ordinal response
```

```
> backPain$pain <- C(factor(
```

> backPain$pain <- C(factor(
 rep(levels(backPain$pain),
rep(levels(backPain$pain),
 nrow(.incidence)),
 nrow(.incidence)),
 levels = levels(backPain$pain),
levels = levels(backPain\$pain),
ordered = TRUE),
ordered = TRUE),
treatment)

```
treatment)
```

Let's take a look at what all this data manipulation has achieved:
$>$ cbind(.rowID[1:12], .counts [1:12], backPain[1:12, 4:1])

```
Models with multiplicative terms
L
The sterotype model can then be fitted as follows
> oneDimensional <- gnm( .counts ~ .rowID + pain
+ Mult (pain - 1, x1 + x2 + x3 - 1), family \(=\) poisson, data = backPain)
> oneDimensional
```

The .rowID parameters are a bit of a nuisance. A better approach is to use the eliminate argument of gnm to specify that the .rowID parameters replace the intercept in the model. Then gnm will use a method exploiting the structure of these parameters in order to improve the computational efficiency of their estimation, and the parameters will be excluded from summaries of the model object.

Models with multiplicative terms	45
$L_{\text {Stereotype model for ordinal response }}$	4

```
    LStereotype model for ordinal respons
```

```
> oneDimensional <- gnm(
        .counts ~ pain + Mult(pain - 1, x1 + x2 + x3 - 1),
        eliminate = ~.rowID,
        family = poisson, data = backPain)
    > oneDimensional
    > vcov(oneDimensional)
```

We can compare the stereotype model to the multinomial logistic model:
> threeDimensional <- gnm(
.counts ~ pain + pain: $(x 1+x 2+x 3)$,
eliminate $=\sim$.rowID,
family $=$ poisson, data $=$ backPain)

Models with multiplicative terms
$\left\llcorner_{\text {Multiplicative effects or heteroscedasticity? }}\right.$

A note of caution on interpretation

Care is needed in interpreting apparent multiplicative effects.
For example, in political science much use has been made of generalized logit and probit models in which the standard binary-response assumption (in terms of probit)
$\operatorname{pr}\left(y_{i}=1\right)=\Phi\left(x_{i}^{\prime} \beta / \sigma\right)$ is replaced by a model which allows non-constant variance in the underlying latent regression:

$$
\operatorname{pr}\left(y_{i}=1\right)=\Phi\left[x_{i}^{\prime} \beta / \exp \left(z_{i}^{\prime} \gamma\right)\right]
$$

This clearly results in a multiplicative model for the mean: in R , the above would be specified as
> gnm(y ~ $-1+\operatorname{Mult}(x, \operatorname{Exp}(z)), f a m i l y=$ binomial(link="probit"))
It is therefore impossible to distinguish, with binary data, between two distinct generative mechanisms: underlying variance depends on z; or effect of x is modulated by z.

```
Models with multiplicative terms
    LExercises
    LUNIDIFF model
```


Exercise: UNIDIFF model for social mobility

Ths exercise uses a dataset kindly provided by Louis-André Vallet, on mobility among seven social classes in France between 1970 and 1993.

1. Load the dataset France into your R workspace, and view it as a table:
> load("Data/France.RData")
> xtabs(Freq ~ orig + dest + year, France)
2. Fit the 'constant social fluidity' log-linear model in which orig and dest have the same association in all four survey years:
> CSFmodel <- gnm(
Freq ~ orig:year + dest:year + orig:dest, family $=$ poisson, data $=$ France)
```
Models with multiplicative terms
    Exercises
    LUNIDIFF model
3. Now test whether the strength of association between orig and dest differs from year to year, using the UNIDIFF model:
```

```
> UNIDIFF <- update(CSFmodel, . ~ . - orig:dest
```

> UNIDIFF <- update(CSFmodel, . ~ . - orig:dest
+ Mult(Exp(-1 + year), orig:dest))
+ Mult(Exp(-1 + year), orig:dest))
> anova(CSFmodel, UNIDIFF)

```

You should find that the UNIDIFF model is a significant improvement, but still exhibits significant lack of fit.
4. Look at the year coefficients in the Mult term, by picking out the four relevant coefficients from the list provided by
> getContrasts(UNIDIFF)
Interpret the estimated coefficients. (Note that the reported standard errors will be too optimistic, on account of the observed lack of fit.)
\begin{tabular}{|c|}
\hline \begin{tabular}{l}
Models with multiplicative terms \\
\(\square\) Exercises \\
L UNIDIFF model
\end{tabular} \\
\hline \begin{tabular}{l}
5. Since the fo be possible to trend. We can a quantitative \\
> time <- as \\
> UNIDIFFtre \\
> anova(CSFm
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|lc|}
\hline & \begin{tabular}{l} 
Models with multiplicative terms \\
\(\left\llcorner_{\text {Exercises }}\right.\) \\
\\
\(\quad\) \\
Stereotype model
\end{tabular} \\
\hline
\end{tabular}

\section*{Exercise: Stereotype model for back pain}
1. Load the backPain data set and work through the commands on p42 to re-express the data as counts.
2. Using gnm, fit the empty 'baseline' model:
```

gnm(.counts ~ pain, eliminate = .rowID,

```
    family \(=\) poisson, data \(=\) backpain)

Print the result. This model assumes that the probability of an individual experiencing a given level of pain is the same regardless of the values of the prognostic variables.
\begin{tabular}{|l|}
\hline \begin{tabular}{l} 
Models with multiplicative terms \\
\(L_{\text {Exercises }}\) \\
\(L_{\text {Stereotype model }}\)
\end{tabular} \\
3. Use update to extend the null model to the stereotype model \\
on p40 and interpret the result. \\
4. In order to make the category-specific multipliers \\
(Mult. Factor1. painworse etc.) identifiable - so that, for \\
example, valid standard errors can be calculated — we must \\
constrain both the location and the scale of these parameters. \\
Using getContrasts would fix the location by setting one \\
parameter to zero. Confirm that this constraint is insufficient by \\
running getContrasts on these parameters.
\end{tabular}
\begin{tabular}{|lc|}
\hline Models with multiplicative terms & 53 \\
\(\left\llcorner_{\text {Exercises }}\right.\) \\
\(\left\llcorner_{\text {Stereotype model }}\right.\) & \\
\hline
\end{tabular} the variables in the second constituent multiplier to one. This can be achieved by treating one of the variables as an 'offset' in the second multiplier rather than a variable whose coefficient needs to be estimated.
Refit the model replacing x 1 with offset ( x 1 ) in the formula for the second constituent multiplier
Use getContrasts to estimate simple contrasts of the category-specific multipliers in the new model.
6. The stereotype model is clearly an improvement on the null model, but is it necessary to have a separate multiplier for each category of pain? The estimates from getContrasts are very similiar for categories "same" and "slight.improvement". We can try fitting a common multiplier for these two categories.
Load package car and create a new factor from backPain\$pain, merging the second and third categories as follows:
\begin{tabular}{|l|l|}
\hline \begin{tabular}{c} 
Models with multiplicative terms \\
LEexcrises \\
LStereotype model
\end{tabular} & 54 \\
\hline 7. Using getContrasts to identify the group-specific multipliers, \\
choose the two that are most similar and refit the model with a \\
common multiplier for the corresponding groups. \\
Repeat until you have a model with just two group-specific \\
multipliers. \\
How many different multipliers are necessary?
\end{tabular}

Models with multiplicative terms
52
Exercises
LStereotype model \(^{\text {Ex }}\)
5. We can constrain the scale by setting the coefficient of one of
```

newPain <- recode(backPain\$pain,

```
newPain <- recode(backPain$pain,
    "c('same', 'slight.improvement') =
    "c('same', 'slight.improvement') =
        'same|slight.improvement'")
        'same|slight.improvement'")
Re-fit the stereotype model using the new factor in the formula for the first constituent multiplier and look at the impact on the model deviance.
    model deviance.
```

```
Models with multiplicative terms
```

7. Using getContrasts to identify the group-specific multipliers, choose the two that are most similar and refit the model with a . multipliers.
How many different multipliers are necessary?

Two larger examples						
\llcorner Conformity to parental rules: diagonal reference models	56					

Diagonal reference models: Conformity to parental rules

Data from van der Slik et al, (2002).
An analysis of the value that parents place on their children conforming to their rules.

Two response variables: mother's conformity score (MCFM), father's (FCFF).
Covariates are education level of mother and of father (MOPLM, FOPLF) plus 5 others.

Two larger examples \llcorner Conformity to parental rules: diagonal reference models	57

Basic diagonal reference model for MCFM:

$$
E\left(y_{r c}\right)=\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+\beta_{4} x_{4}+\beta_{5} x_{5}+\frac{e^{\delta_{1}}}{e^{\delta_{1}}+e^{\delta_{2}}} \gamma_{r}+\frac{e^{\delta_{2}}}{e^{\delta_{1}}+e^{\delta_{2}}} \gamma_{c}
$$

Fit this by

$$
\begin{aligned}
>\mathrm{A}<-\operatorname{gnm}(\mathrm{MCFM} \sim & -1+ \\
& \text { AGEM }+ \text { MRMM }+ \text { FRMF }+ \text { MWORK }+\mathrm{MFCM}+ \\
& \text { Nonlin(Dref (MOPLM, FOPLF)), } \\
\text { family }= & \text { gaussian, data }=\text { conformity })
\end{aligned}
$$

Two larger examples
$\left\llcorner_{\text {Conformity to parental rules: diagonal reference models }}\right.$

The Dref function allows dependence of the weights on other variables.
van der Slik et al (2002) consider weights dependent upon mother's conflict score (MFCM), as in

$$
\delta_{k}=\xi_{k}+\phi_{k} x_{5} \quad(k=1,2)
$$

which can be specified in R as
$>$ F <- gnm (MCFM ~ - - AGEM + MRMM + FRMF + MWORK + MFCM + Nonlin(Dref(MOPLM, FOPLF, formula $=\sim 1+$ MFCM)), family = gaussian, data $=$ conformity, verbose $=$ FALSE $)$

And so on. See Section 6.3 of GnmR for more details.

```
Two larger examples
Voting in the US House of Representatives: Logit/probit ideal-point models
```


Logistic ideal-point models for legislator voting

Data on 20 roll calls from the US House of Representatives in 2001, each coded $0 / 1$ such that 1 indicates liberality.
Idea: for each roll call, voting is described by a logistic regression on House members' (unknown) ideological positions.
One-dimensional model:

$$
\operatorname{logit}\left(\mu_{r m}\right)=\alpha_{r}+\beta_{r} \gamma_{m}
$$

Two dimensions:

$$
\operatorname{logit}\left(\mu_{r m}\right)=\alpha_{r}+\beta_{r}^{(1)} \gamma_{m}^{(1)}++\beta_{r}^{(2)} \gamma_{m}^{(2)}
$$

This is a fairly large dataset/model: there are 439 House members.
Some members can be discarded as 'uninformative' (voted on fewer than 10 roll calls, or always voted the same way).

Two larger examples - Voting in the US House of Representatives: Logit/probit ideal-point models	61			
First, set up the data for our modelling: ```data(House2001) ## Put the votes in a matrix, and ## discard members with too many NAs etc: House2001m <- as.matrix(House2001[-1]) informative <- apply(House2001m, 1, function(row){ valid <- !is.na(row) validSum <- if (any(valid)) sum(row[valid]) else 0 nValid <- sum(valid) uninformative <- (validSum == nValid) \|	(validSum == 0)		(nValid < 10) !uninformative}) House2001m <- House2001m[informative,] parties <- House2001$party[informative] ## Expand the data for statistical modelling: House2001v <- as.vector(House2001m) House2001f <- data.frame(member = rownames(House2001m), party = parties, rollCall = factor(rep((1:20), rep(nrow(House2001m), 20))), vote = House2001v)```	

Two larger examples	
$\left\llcorner_{\text {Voting in the US House of Representatives: } \text { Logit/probit ideal-point models }}\right.$	64

Two larger examples						
$\left\llcorner_{\text {Voting in the US House of Representatives: Logit/probit ideal-point models }}\right.$	62					

For a large model such as this, we need good starting values. The utility function residSVD can be used to decompose multiplicatively the residuals from a smaller model:
baseModel <- glm(vote ~ -1 + rollCall,
family = binomial, data $=$ House2001f)
Start <- residSVD(baseModel, rollCall, member)
We will now fit the one-dimensional model. First, though, we apply some 'flattening' to the response variable, to reduce bias and avert numerical difficulties: 0 becomes 0.03 and 1 becomes 0.97 .
voteAdj <- 0.5 + 0.94*(House2001f\$vote - 0.5)
House2001model1 <- gnm(voteAdj ~ Mult(rollCall - 1, member - 1), eliminate $=$ ~ rollCall,
family = binomial, data $=$ House2001f,
na.action $=$ na.exclude, trace $=$ TRUE, tolerance $=1 \mathrm{e}-03$, start $=$-Start)
\#\# Deviance is 2234.847, df $=5574$

Two larger examples	63
L Voting in the US House of Representatives: Logit/probit ideal-point models	

We can plot the members' estimated positions, coloured by party membership:
> partyColors <- rep("black", length(parties))
> partyColors <- ifelse(parties == "D", "red", partyColors)
> partyColors <- ifelse(parties == "R", "blue", partyColors)
\#\# Now make the graph
> plot (coef(House2001model1) [21:321], col = partyColors,
xlab = "Alphabetical index (Abercrombie 1 to Young 301)",
ylab = "Member's relative position, one-dimensional model")

Two larger examples
$\left\llcorner_{\text {Voting in }}\right.$ the US House of Representatives: Logit/probit ideal-point models

Roll call 12 appears to be different from the rest:
> coef(House2001model1) [1:20]
Mult1.Factor1.rollCall1 Mult1.Factor1.rollCall2 Mult1.Factor1.rollCall3

$$
\begin{array}{ll}
3.1187364 & 4.3788873
\end{array}
$$

Mult1.Factor1.rollCall4 Mult1.Factor1.rollCall5 Mult1.Factor1.rollCall6
$\begin{array}{rrr}3.9046925 & 3.5438839 & 2.0740049\end{array}$
Mult1.Factor1.rollCall7 Mult1.Factor1.rollCall8 Mult1.Factor1.rollCall9
Mult1.Factor1.rollCall10 Mult1.Factor1.rollCall11 Mult1.Factor1.rollCall12 $\begin{array}{rr}\text { rollCall10 Mult1.Factor1.rollCall11 Mult1.Factor1.rollCall12 } \\ 1.5309173 & 4.1769722\end{array}$
Mult1.Factor1.rollCall13 Mult1.Factor1.rollCall14 Mult1.Factor1.rollCall15
$2.0614189 \quad 4.3679824 \quad 4.4400554$
Mult1.Factor1.rollCall16 Mult1.Factor1.rollCall17 Mult1.Factor1.rollCall18
Mult1.Factor1.rollCall19 Mult1.Factor1.rollCall20 $\quad 4.1963022$
$4.2155210 \quad 2.0440617$
Maybe there's a second dimension?

Two larger examples
\llcorner Voting in the US House of Representatives: Logit/probit ideal-point models
66

Start2 <- residSVD(baseModel, rollCall, member, d = 2)
> House2001model2 <- gnm(
voteAdj \sim Mult (rollCall - 1, member - 1, multiplicity $=2$), eliminate = ~ rollCall,
family $=$ binomial, data $=$ House2001f,
na.action $=$ na.exclude, trace $=$ TRUE, tolerance $=1 \mathrm{e}-03$, start = Start2)
\#\# Deviance is 1545.166 , df $=5257$

[^0]2. Fit a diagonal reference model to these data (see p57), using yvar as the response, and family = binomial. Use summary to summarise the result. Evaluate the weights for the origin and destination diagonal effects, as on p58.
3. It could be that individuals which have come into or out of the salariat (class 1) vote differently from other individuals. We can define factors indicating movement in and out of class 1 as follows:
in <- with(voting, origin != 1 \& destination == 1)
out <- with(voting, origin == $1 \&$ destination != 1)

Re-fit the diagonal reference model, specifying ~ $1+$ in + out as the formula argument of Dref, so the weights are parameterised by a main effect with additional effects for in and out. Assign these effects to base, in. adj and out.adj. See if the fit of the model has improved.

[^1]4. Evaluate the weights for the different groups of people as below:
in.to. 1 <- prop.table(exp(in.adj + base))
out.of. 1 <- prop.table(exp(out.adj + base))
other <- prop.table(exp(base))
5. The weights for groups that have moved in to the salariat are similar to the general weights. Fit a model that only has separate weights for the groups moving out of the salariat, and compare the results. scale the members (using factor scores). But factor analysis gives quite different results, on account of the assumption that the unobserved positions are normally distributed.

Two larger examples	69
$\left\llcorner_{\text {Exercises }}\right.$	
$\quad\left\llcorner_{\text {Diagonal reference model }}\right.$	

Exercise: Diagonal reference model for data from Clifford and Heath

1. Load the voting data. This is a data frame of the percentage voting Labour (percentage) and the total number of people (total) in groups classified by the class of the head of household (destination) and the class of their father (origin). We shall fit a diagonal reference model to these data.

First we want to convert percentage into a binomial response. So that gnm will automatically weight the proportion of sucesses by the group size, we choose to do this by creating a two-column matrix with the columns giving the number of households voting Labour ('success') and the number of households voting otherwise ('failure'):
count <- with(voting, percentage/100 * total)
yvar <- cbind (count, voting\$total - count)

```
Two larger examples
\llcornerExercises
    L
```


Exercise: Scaling of the US House of Representatives

We will re-run the scaling analysis of the House2001 data, with roll call 12 removed.

1. First, run through the one-dimensional scaling as shown in the lecture, by running example(House2001).
2. Now re-do the analysis with roll call 12 removed from the data. (Do this by modifying commands copied and pasted from the examples in ?House2001.)
> House2001m <- House2001m[, -12]
> House2001v <- as.vector(House2001m)
> House2001f <- data.frame(member = rownames(House2001m), party = parties, rollCall $=$ factor $(r e p((1: 20)[-12]$, rep(nrow(House2001m), 19))), vote $=$ House2001v)
```
Two larger examples
    LExercises
    Logistic ideal-point model for legislator voting
        > voteAdj <- 0.5 + 0.94*(House2001f$vote - 0.5)
        > baseModel <- glm(voteAdj ~ -1 + rollCall,
            family = binomial, data = House2001f)
    > Start <- residSVD(baseModel, rollCall, member)
    > House2001model1 <- gnm(
                    voteAdj ~ Mult(rollCall - 1, member - 1),
                    eliminate = ~ rollCall,
                    family = binomial, data = House2001f,
                na.action = na.exclude, trace = TRUE,
                tolerance = 1e-03,
                start = -Start)
```

3. Look at the slope coefficients for the 19 roll calls:
$>\operatorname{coef}$ (House2001model1) [1:19]

Two larger examples
Exercises
$L_{\text {Logistic ideal-point model for legislator voting }}$
4. Finally, graph the members' estimated ideological positions:
> positions <- coef(House2001model1) [20:320]
> plot(positions, col = partyColors)
and find graphically the names of the more liberal among the Republicans, and the more conservative among the Democrats:
> identify(1:301, positions,
labels = rownames(House2001m))
(right-click to stop the identify mechanism).

[^0]: Two larger examples

 - Exercises
 $L_{\text {Diagonal reference model }}$

[^1]: Two larger examples
 $\left\llcorner_{\text {Exercises }}\right.$
 $\left\llcorner_{\text {Diagonal reference model }}\right.$

