T(O ok OTReg tteznls ,jiic,x_iff*»c;--g p °8 iy Ao
ey 35) T T
. [ﬁf:ﬂ_—;}.{—'\)h "\w fé‘-‘) et 4’{7
Summer School - update |

| /S ":f;\,\,! 2o\

Tasks to be done —

1. Draft and seek approval for revised business plan.

e Develop a budget in consultation with finance in a format to go into the five-
year plan

e Decide where the budget will be held; the working assumption is in CLL

e If necessary submit budget plans to Finance and General Purposes
Committee ahead of the five-year planning process: we need confirmation
that the budget is agreed by 31° March if we are to go ahead in 2012.

e Update/draft narrative business plan to International Committee on 26"
January.

e Full business plan to International Committee for sign-off on 2" March.

e Completion of course approval form for the Summer School
e http://www2.warwick.ac.uk/services/academicoffice/quality/categories/courseapproval/course/
(10 to complete)

e (BP to Senior Officers on 4™ March)?
e BP to Steering before the end of March for sign-off.

2. Design modules and have them approved.

e Departments to be given clear guidance on format required for module
descriptions (for academic approval and for marketing) at meeting of

Summer School group in mid-January.
e http://www2.warwick.ac.uk/services/academicoffice/qualitv/categories/courseapproval/module/
(each department to complete)

‘e Modules submitted for approval by mid-February
7@' e Modules approved by mid-March -
e Descriptions of modules for marketing ready by 1° March

e S

3. Establish management arrangements

e Establish Summer School Working Group in mid-January, to consist of
representatives of departments offering modules, IATL, CLL and International
Office. Interim Chair: Director of the International Office. Pro-Vice-
Chancellor, Education and Student Experience to be consulted about
permanent Chair. Meetings to be held as required.

e Departmental responsibilities to be clearly defined; suggestions:

—%' Academic departments Module design, teaching and assessment
e | IATL Academic guidance to ensure excellence and

A F : e 3 * A |
/’*: / 2 | / ':]) (j,L ‘f\j; . ,}V I’{/;; {f ’)f":{’*-’: i«yx jll p }\uﬁ_ f j - ‘(,.
. / L““ e o W 3

a)“\(.

innovation in teaching

-~ | CLL Admissions and enrolment; budget holder
— | International Office Approval documentation

Marketing and promotion

e Agree non-teaching staffing requirements.

4. Develop a marketing plan _ Q‘—w‘wt .
C\ g O 37T

e Consult with Communications Department

e Ensure consistency and attractiveness of the offer

e Establish prominent web-presence

e Develop electronic and print materials

e Write a communications plan, to cover existing contacts (partner universities,
alumni, current students), conferences and fairs, media opportunities

e Agree soft-launch activities prior to hard launch at NAFSA at end of May

o (lu) Neot . *’&'vﬁ f\WVJr\ CLJ /]f Aduss

5. Confirm accommodation, food and other social arrangements

e Student accommodation (60 rooms) booked

e Teaching accommodation confirmed by academic departments as part of
their module offer

e Food arrangements for students to be agreed

e Social activities plan (including trips and on-campus activities) prepared

e Agree role of student hosts/helpers

. o I NWML,j
Cm»r"sfafg%’ A ('m)’[{: ac* f;;(‘,;(wqﬁil) %ﬁu&

-

\(T C @ \/)JW V’;e“' :ﬁv\ L]i » &“(“{ [{} (. ([\

jétw@" KC""‘”‘LD | \1\, EQ
e sl b J ks '”) &La kss j:b(A)

At | '
Nk Mk THTE (\lﬂmé;;/ s

L /(ﬁ e -LAI
o o Hodke ’D’*V” L b e ’ l :
T Wk 7 Mot i ot
(g\,\/-@(},ﬁﬂéds VA / (‘(‘L. e 77

/(,::‘%& {)\ %«» —P\'\\Mt*\-\ “Pﬂx?}.b}c»q o 3'(&}/ vv{k((QL,V . rkgd/t) ,

Constructivist Computing for Interdisciplinary Modelling
Principal Module Aims

Constructivist computing is a conceptual framework for computing that is broader in scope
than traditional 'computational thinking'. The overall aim of this module 1s to convey the
potential for constructivist computing to account for and to enhance computing practice even
in areas beyond the remit of computational science. Constructivist computing is based on the
principles, tools and potential applications of Empirical Modelling (EM), a new approach to
modelling and computing that has been developed by staff and students here in Computer
Science at Warwick over many years. Students will be: (a) instructed in fundamental EM
concepts and techniques; (b) shown how EM is informed by perspectives relating to
computer science, philosophy and constructivist thinking; (c) introduced to the fundamental
notion of construal as it applies to key application areas; and (d) participate in collaborative
modelling studies directed at topics particularly relevant to their personal interests and
disciplinary specialisms.

Module Overview

The module will be delivered over three weeks, each week (comprising 5 days) representing
a different phase of teaching and learning activity. In broad terms, Week 1 will motivate
constructivist computing and introduce the basic principles, concepts and tools, Week 2 will
be an in-depth study of papers and models relating to specific application areas for
constructivist computing, and Week 3 will be devoted to group-based collaborative modelling
studies focusing on a core theme that will be advertised in advance of the module.

An example of a suitable core theme might be modelling the musical and dramatic production
and appreciation of Mozart's opera The Magic Flute. The model-building activity relevant to
such a theme would be broad, and draw on several disciplines. For instance, model-building
could address the structural, thematic and harmonic aspects of the musical score, the
characteristics of the cast (e.g. vocal range and physical characteristics) both as given and as
ideally required, the layout of scenes and cast members involved in them, the design of
costume and scenery, the movement of singers as planned by the artistic director,
characteristics of specific performances such as relate to choice of tempi and potential cuts,
the libretto and narrative, and the logistics (e.g.) of timetabling rehearsals and organising
scene changes during a performance. Such a modelling exercise would draw on skills from
computing, music, drama, business, design and education. (Note that the quality of the
modelling that can be done with respect to any particular aspect may not compare with
special-purpose professional tools, but the character of the modelling is distinctive and
untypical of traditional computer models. Particularly significant is the flexibility, openness
to reinterpretation and extension, and the way in which different aspects of the modelling are
integrated and can be reconfigured.)

Other possible core themes might engage with different disciplines. They might include:
educational applications for teaching mathematics; accessible models of medical knowledge;
modelling in support of mathematical research; modelling for business; modelling relating to
literature and archaeology in the humanities; modelling for geographical applications. Rather
than having a single core theme for each summer school, it may be appropriate to have two
complementary themes e.g. one representative of science and the other of arts and the
humanities.

Outline syllabus

The first week will introduce the notion of constructivist computing, as supported by
Empirical Modelling (EM). The key notion of a construal will be introduced and discussed n
relation to modelling and programming. The key concepts of observables, dependencies and
agents will be explained and illustrated with standard examples. The nature of applications
characteristic of constructivist computing will be explored, with reference to topics such as
learning technologies, personalised applications, models for medical use, model-building to
support experimental science or mathemetical research, business modelling and humanities
computing. An appropriate philosophical orientation for constructive computing will be
discussed with reference to critiques of the "rationalistic" account of computing, such as that
discussed in Winograd and Flores, Latour's proposals for rehabilitation of the concept of
construction in his paper The Promises of Constructivism, William James's radical
empiricism and other topical philosophical stances.

In keeping with the spirit of constructivist computing, practical study of models will be an
essential strand of the module. The tools to be introduced will include the Cadence and
EDEN interpreters and auxiliary environments such as the EM presentation environment
(EMPE) and the dependency modelling tool (DMT).

Week 1 will involve ten lectures and ten laboratory sessions. Through a personal consultation
with each student, we shall identify their particular strengths and interests and set up project
groups to address different aspects of the core theme in Week 3.

Week 2 will look in more detail at specific applications of EM relating to the chosen core
theme, as represented by papers and model drawn from the EM archive. Each of the five days
will be devoted to in-depth study of one or more existing models devoted to a specific theme
(cf. the range of different kinds of observables, dependencies and agents represented in
modelling strands associated with the illustrative core theme mentioned above, for which
there are precedents in the EM archive in the form of construals of musical compositions,
timetabling models, visualisations and animations etc). Relevant key papers drawn from the
EM archive will be studied in parallel. During this week, students will work on exercises in
analysing and documenting models, typically making use of special-purpose tools such as the
EMPE and the DMT.

In Week 2, there will be one or two introductory lectures and one or more sessions involving
the analysis and demonstration of models relating to each aspect of the core theme. For the
rest of the week, students will work in laboratory sessions alongside a small team of Warwick
assistants (preferably undergraduates familiar with EM principles and tools who 1deally
would have themselves already worked on the modelling exercises and prototyped models
related to the core theme).

Week 3 will be devoted to group work aimed at documenting and enhancing existing
prototype models and conceiving and/or developing new models addressing the core theme.
In the constructivist spirit, practical modelling activity will play a central role in this; even the
conception of models will involve some experiments in model-building. An additional
component of this activity that involves no conceptual shift within the EM framework might
be enhancement of the modelling tools better to address the specific demands of the core

theme.

The assessment for the module will be based on laboratory work in Week 1, the analysis and
documentation exercise in Week 2, and the contribution to the group work in Week 3, as
expressed through practical work and assessed through group presentations and individual
oral examinations to be held at the end of the module.

To complement the above teaching programme, we shall organise one or two seminars from
external speakers with specialist expertise relating to the core theme, such as an expert in
humanities computing or former EM doctoral students who have worked on (e.g.)
collaborative group work using EM. We shall also engage other teaching assistants (e.g. from
the Warwick Student Opera Group) to enact authentic activities relating to the core theme
that help to illuminate the processes involved in the application (such as a "blocking
rehearsal" for an ensemble from the Magic Flute, at which the precise movements and
interactions of the singers are planned out in detail).

Supplementary issues

The notion of constructivist computing stems from the Empirical Modelling (EM) research
project. The scope of EM is reflected in the outline syllabus for the 4th year module C5405
Introduction to Empirical Modelling - taught by Meurig Beynon and Steve Russ over the last
9 years - as set out below. CS405 is a 15 CATS module comprising 20 lectures and 10 two
hour laboratory sessions that is examined by coursework and a 3 hour examination each
weighted at 7.5 CATS. There are rich online resources for CS405 (see the module webpage at
http.//www2. warwick.ac.uk/fac/sci/dcs/research/em/teaching/cs405/ for which the password
if 'vadicalempiricism') and these are complemented by the EM website at

http.//’www.dcs. warwick.ac.uk/modelling/ which features over 100 publications and 175
models in the EM archive.

Whilst the ideas behind constructivist computing are well-suited for appreciation by students
who have no knowledge of traditional computer science and lack technical computing skills,
it is unclear to what extent such students will be able to engage with practical modelling
activities without some support from assistants with EM expertise. For this reason, the
viability of the module may depend on being able to recruit students with suitable expertise in
EM. There are some logistic issues to be addressed here since EM is only taught in the 4th
year of the undergraduate programme and few 4th year students can guarantee availability
in the vacation after the end of their degree studies. The students probably best suited to the
teaching assistant role are those who have done EM projects in their third year and it is
unclear how such students can be supervised when neither Beynon nor Russ is a salaried
Computer Science staff member.

Appendix
Outline syllabus for CS405 Introduction to Empirical Modelling

The precise structure and syllabus of the module will vary from year to year. The key themes
which will be represented are:

Motivating ideas and orientation: The study of Empirical Modelling is motivated
by dissatisfaction with the account of computing-in-the-wild that can be given by
classical computer science. Important issues in computing cannot be addressed by
invoking logic and algorithmic thinking alone. Relevant critiques include: Brian
Cantwell-Smith on the foundations of computing; Kent on the limitations of abstract
data representations; Winograd and Flores on groupware design; Brookes on the
challenges of software development; Jackson on the limitations of formal
specification; Naur on the essential role of intuition in system development; McCarty
on the nature of 'humanities computing'. Relevant practical developments include: the
application and extension of spreadsheet principles, both in educational software (e.g.
dynamic geometry packages) and in software development tools (e.g. Flex and the
Windows Presentation Foundation framework), and the continuing interest in how to
resolve the problems of ensuring that software matches its requirements (e.g. as
represented in the motivating ideas behind object-oriented programming, the work of
Harel on participatory design, and agile development methods).

Conceptual framework: Classical computer science gives an excellent account of
scientific applications of computing technology in which the role of the computer is to
compute results on the basis of an established mathematical theory. In many practical
applications of computers, the emphasis is different: the computer is used to construct
artefacts that aid understanding (resembling what the philosopher of science David
Gooding terms construals). Sense-making proceeds in parallel with the making of
such construals in a constructivist idiom. Activities of this kind cannot be
satisfactorily described within a 'rationalistic' logicist framework. Empirical
Modelling focuses on the way in which understanding is developed through
observation and experiment, prior to the emergence of established concepts that can
be expressed in a formal language. Its philosophical stance is pragmatic in the spirit of
William James's radical empiricism.

Concepts and principles: The key concepts of Empirical Modelling are observables,
dependencies and agents. Where classical computer science seeks a foundation in
formal semantics, Empirical Modelling appeals to the Jamesian idea that all knowing
is rooted in the connections that are themselves given in experience, in the way for
instance that images and ideas come to mind in the very act of reading symbols on a
page. Empirical Modelling artefacts can evolve seamlessly from construals to models
to programs in ways that reflect the transition from the personal and subjective to the
public and objective. Such artefacts can be concurrently manipulated from the
perspectives of many human agents so as to achieve conceptual integrity; objects,
processes and systems - potentially with formal semantics - emerge. The LSD
notation has been developed as a way of giving an account of this activity of
rationalisation and objectification.

Tools and techniques: To date, Empirical Modelling has been principally supported
by the EDEN interpreter and its variants (command line, distributed, web-enabled).

EDEN was introduced as an evaluator for "definitive (definition-based) notations".
Definitive notations provide a means to express dependencies between observables of
different kinds, generalising the types of relationships that can be established between
values in the cells of a spreadsheet. Environments constructed using EDEN are unlike
conventional programs: they typically have the same provisionality, openness and
messiness that is characteristic of our partial personal understanding of experience.
Tools for Empirical Modelling have recently been significantly enhanced by the
development of an interpreter that attacks the same goal of supporting flexible
modelling of personal understanding by exploiting dependency and object-orientation.
Cadence is a research prototype which complements (and may eventually subsume)
model-building with EDEN, giving support for the emergence of objects and
processes that is characteristic of mature models. Other supporting tools include the
Dependency Modelling Tool and the Abstract Definitive Machine.

o Applications: Empirical Modelling has potential applications in many areas,
including educational technology, computer-aided design, software development,
humanities computing, visualisation, games development and concurrent systems
simulation. These are illustrated in the many models that can be found in the
Empirical Modelling projects archive. They have also been the subject of graduate
student research, as documented in the theses that can be accessed from the
Publications link on the Empirical Modelling webpage.

There is scope to study the module in several ways, with many different kinds and levels of
background experience. For the advanced student, there are good prospects for contributing
to Empirical Modelling research through dissertation work. It is also possible to follow the
module with little prior knowledge of computing.

CS405 Introduction to Empirical Modelling Page 1 of 2

CS405 Introduction to Empirical Modelling THE UNIVERSITY OF

WARWICK

Academic Aims

The module introduces students to the principles, tools and potential applications of Empirical Modelling (EM), a new approach to
computing that has been developed by staff and students here in Computer Science at Warwick over many years (see the EM website).
The module offers a complementary perspective on computer science broader in scope than 'computational thinking', and is oriented
towards aspects of computing practice for which formal methods offer fimited support. These include activities such as conceptual
design, requirements cultivation and exploratory modelling that involve close human-computer co-operation and often engage many
human participants concurrently. The most appropriate areas of application for EM are those in which sense-making and model-building
develop in parallel, as in a constructivist style. They include computer support for learning, decision support and creative design in
business, engineering and the humanities.

Learning OCutcomes

The module promotes awareness of the fundamental and distinctive role that empirical knowledge plays in conceiving and implementing
computer-based systems. It also teaches practical skills that are relevant to the individual and team work that typically precedes the
explicit specification and design of such systems. Over and above this, it introduces ways of thinking about computing and ways of using
computers that are topical in relation to current and emerging technologies and applications.

Content

The module involves 40 contact hours, comprising 20 one-hour lecture sessions and 10 two-hour sessions of practical laboratory work.
Assessment will be 50% by the submission of a short paper and an associated documented modelling exercise to the annual edition of
the Warwick Electronic Bulletin early in Term 2, and 50% by a three hour examination in Term 3.

The precise structure of the module varies from year to year. The key themes which will be represented are:

+ Motivating ideas and orientation: The study of Empirical Modelling is motivated by dissatisfaction with the account of
computing-in-the-wild that can be given by classical computer science. Important issues in computing cannot be addressed by
invoking logic and algorithmic thinking alone. Relevant critiques include: Brian Cantwell-Smith on the foundations of computing;
Kent on the limitations of abstract data representations; Winograd and Flores on groupware design; Brookes on the challenges of
software development; Jackson on the limitations of formal specification; Naur on the essential role of intuition in system
development; McCarty on the nature of *humanities computing'. Relevant practical developments include: the application and
extension of spreadsheet principles, both in educational software (e.g. dynamic geometry packages) and in software development
tools (e.g. Flex and the Windows Presentation Foundation framework), and the continuing interest in how to resolve the problems
of ensuring that software matches its requirements (e.g. as represented in the motivating ideas behind object-oriented
programming, the work of Harel on participatory design, and agile development methods).

e Conceptual framework: Classical computer science gives an excellent account of scientific applications of computing technology
in which the role of the computer is to compute results on the basis of an established mathematical theory. In many practical
applications of computers, the emphasis is different: the computer is used to construct artefacts that aid understanding
(resembling what the philosopher of science David Gooding terms construals). Sense-making proceeds in parallel with the making
of such construals in a constructivist idiom. Activities of this kind cannot be satisfactorily described within a 'rationalistic’ logicist
framework. Empirical Modelling focuses on the way in which understanding is developed through observation and experiment, prior
to the emergence of established concepts that can be expressed in a formal language. Its philosophical stance is pragmatic in the
spirit of William James's radical empiricism.

* Concepts and principles: The key concepts of Empirical Modelling are observables, dependencies and agents. Where classical
computer science seeks a foundation in formal semantics, Empirical Modelling appeals to the Jamesian idea that all knowing is
rooted in the connections that are themselves given in experience, in the way for instance that images and ideas come to mind in
the very act of reading symbols on a page. Empirical Modelling artefacts can evolve seamlessly from construals to models to
programs in ways that reflect the transition from the personal and subjective to the public and objective. Such artefacts can be
concurrently manipulated from the perspectives of many human agents so as to achieve conceptual integrity; objects, processes
and systems - potentially with formal semantics - emerge. The LSD notation has been developed as a way of giving an account of
this activity of rationalisation and objectification.

+ Tools and techniques: To date, Empirical Modelling has been principally supported by the EDEN interpreter and its variants
(command line, distributed, web-enabled). EDEN was introduced as an evaluator for "definitive (definition-based) notations”.
Definitive notations provide a means to express dependencies between observables of different kinds, generalising the types of
relationships that can be established between values in the cells of a spreadsheet. Environments constructed using EDEN are
unlike conventional programs: they typically have the same provisionality, openness and messiness that is characteristic of our
partial personal understanding of experience. Tools for Empirical Modelling have recently been significantly enhanced by the
development by Nick Pope of an interpreter that attacks the same goal of supporting flexible modelling of personal understanding
by exploiting dependency and object-orientation. Cadence is a research prototype in which Pope's interpreter complements (and
may eventually subsume) model-building with EDEN, giving support for the emergence of objects and processes that is
characteristic of mature models. Other supporting tools include the Dependency Modelling Tool and the Abstract Definitive
Machine.

attp://www2.warwick.ac.uk/fac/sci/des/teaching/modules/cs405 14/02/2011

C8405 Introduction to Empirical Modelling Page 2 of 2

Applications: Empirical Modelling has potential applications in many areas, including educational technology, computer-aided
design, software development, humanities computing, visualisation, games development and concurrent systems simulation.
These are illustrated in the many models that can be found in the Empirical Modelling projects archive. They have also been the

subject of graduate student research, as documented in the theses that can be accessed from the Publications link on the Empirical
Modelling webpage.

There is scope to study the module in several ways, with many different kinds and levels of background experience. For the advanced
student, there are good prospects for contributing to Empirical Modelling research through dissertation work. It is also possible to follow

the module with little prior knowledge of computing. By way of context for the latter claim, consult the online Sudoku Experience
workshops.

Page contact: Jackie Pinks Last revised: Tue 30 Nov 2010

http://www2.warwick.ac.uk/fac/sci/des/teaching/modules/cs405 14/02/2011

UNIVERSITY OF WARWICK

Proposal Form for New or Revised Modules (MA1- version 4)

Approval information

Approval Type

X New module [] Revised module

[] Discontinue module

Date of
Introduction/Change

01/10/2011

If new, does this
module replace
another? If so, enter
module code and title:

NA

If revised/discontinued,
please outline the
rationale for the
changes:

NA

Confirmation that
affected departments
have been consulted:

TBC

‘Module Summary

" " S anLE S oy Lot 0L e
RS s T S A ol

1. Module Code (if
known)

CS***

2. Module Title

Interdisciplinary Modelling through Constructivist
Computing

3. Lead department:

Computer Science

4. Name of module
leader

Meurig Beynon

5. Level

UG:[] Level 4 (Certificate)
X] Level 6 (Honours)
PG:[] Level 7 (Masters) [] Level 8 (Doctoral)

See Guidance Notes for relationship to years of study

[] Level 5 (Infermediate)

6. Credit value(s)
(CATS)

15

7. Principal Module
Aims

This module will bring together students from different
disciplines to address core themes through teamwork
based on computer-based modelling. The principal

1

Module Summary

objective is to study ways in which computing
technology can support such interdisciplinary modelling,
and to highlight the merits of constructivist computing in
this role. Constructivist computing is based on the
principles, tools and potential applications of Empirical
Modelling (EM), a new approach to modelling and
computing that has been developed by staff and
students here in Computer Science at Warwick over
many years. Students will be instructed in fundamental
EM concepts and tfechniques; be shown how EM is
informed by perspectives relating to computer science,
philosophy and constructivist thinking; be infroduced 1o
the fundamental notion of construal as it applies 1o key
application areas; and participate in a collaborative
modelling study directed at topics daligned to their
persondl interests and disciplinary specialisms.

8. Contact Hours
(summary)

72

9. Assessment methods
(summary)

Written report of Lab work - 25%

Model analysis & documentation - 25%
Group presentation - 25%

Individual oral examination - 25%

Module Context

10. Please list all departments involved in the teaching of this module. If taught by
more than one department, please indicate percentage split.

Computer Science

11. Availability of module

Degree . C/0C/ .
Code Title Study Year A/B/C Credits
International Summer School 20or3] 5
students
12. Minimum number of registered students required for module to run
8
13. Pre- and Post-Requisite Modules
NA
Module ContentandTeaching o
14. Teaching and Learning Activities
Lectures 10 (Week 1) + 10 (Week 2) + 2 external speakers
Seminars 5 seminars / demos on key models (weeks 2-3)
Tutorials 1 hour tutorial fime for each student in total (20 minutes
per week) with 3 students per tutorial session
Laboratory sessions 5 x 3 hours (Week 1) + 5 x 3 hours (Week 2)
3 x 3 hours (Week 3)
These will comprise practical sessions involving
construction and analysis together with group work
(Week 3)
Practical workshops relating to core themes (3 hrs)
Group presentation sessions (2 hours)
Total contact hours 72
Module duration | 3
(weeks)
Other activity
(please describe): e.g.
distance-learning.
intensive weekend
teaching efc.
15. Assessment Method (Standard)
Type of assessment Length % weighting

Module Content and Teaching

Examinations 0 Hours 0
Assessed Lab report / 25% + 25%
essays/coursework Model analysis +

documentation - each

equivalent to 2000 Words
Other formal Team presentation with | 25% + 25%
assessment individual contributions

(2 hours)

Individual oral exam

(30 minutes)

16. Methods for providing feedback on assessment.

General feedback via module webpage/forum, individual feedback via futorials.
Detailed written feedback at the end of the module.

17. Outline Syllabus

The moduie will be delivered over three weeks, each week (comprising 5 days)
representing a different phase of teaching and learning activity. In broad terms,
Week 1 will motivate constructivist computing and infroduce the basic principles,
concepts and tools, Week 2 will be an in-depth study of papers and models
relating to specific application areas for constructivist computing, and Week 3 will
e devoted 1o group-based collaborative modelling focusing on one

of three core themes that will be advertised in advance of the module.

The portfolio of core themes for the module proposed for Summer 2012 is:

A. Modelling the musical and dramatic production and appreciation of Mozart's
opera The Magic Fute. In this context, model-building could address the
stfructural, thematic and harmonic aspects of the musical score, the
characteristics of the cast (e.g. vocal range and physical characteristics) both as
given and as ideally required, the layout of scenes and cast members involved in
them, the design of costume and scenery, the movement of singers as planned
by the artistic director, characteristics of specific performances such as relate to
choice of tempi and potential cuts, the libretto and narrative, and the logistics
(e.g.) of fimetabling rehearsals and organising scene changes during ad
performance. Such a modelling exercise would draw on skills from computing,
music, drama, business, design and education.

B. Making a model of a complex medical condition, such as HIV/AIDS, from
multiple perspectives, in such a way as to be useful to trainee doctors, nursing
staff with less specialist medical fraining, epidemiologists, patients, partners, and
people without relevant medical knowledge. In this context, a model might
simulate the case history of an AIDS patient according to current understanding
of the pathophysiology of AIDS, taking account of the stages by which the HIV

4

Module Content and Teaching

infection impacts on a patient, adjusting their susceptibility o other infections, and
assessing the risk of verfical fransmission. A complementary analysis of the
observables, dependencies and agencies at work would address factors that
might influence the spread of the illness, such as the physical appearence of a
patient and impact of cultural beliefs and customs. Relevant specialisms in this
context include computing, medicine, education, statistics and social and
anthropological studies.

C. Developing a suitable environment and associated suite of models fo
showcase the potential for using contructivist computing in teaching and leamning
mathematics and theoretical computer science. Different perspectives to be
represented in this modelling might relate to the role being adopted by the
model-builder (e.g. whether interaction is in the mode of developer, teacher or
learner); what aspects of the curriculum are being targeted (e.g. basic
mathematics for computer science, algorithmics, relafional database theory,
boolean circuit theory); the educational level (from elementary through
intermediate to advanced level in school to undergraduate level in Computer
Science and Mathematics); the focus (e.g. recreational mathematics, applied
mathematics, mathematical research). Relevant areas of expertise in this context
would include mathematics, computer science and education with particular
emphasis on logical, computing, puzzle and problem-solving skills.

Each model-building study will be broad, have many aspects, and draw on
several disciplines. In Week 3, each core theme will be addressed by a team of
five students who will work alongside a Warwick Computer Science student with
prior experience of EM in relevant areas of application. Though the quality of the
models developed for specific aspects may not compete with what could be
created using special-purpose commercial fools, the modelling has a quite
distinctive characters and produces models unlike fraditional computer models.
Particularly significant is the flexibility, openness to reinterpretation and extension,
and the way in which different aspects of the modelling are integrated and can
be reconfigured.

Week 1 will infroduce the notion of constfructivist computing, as supported by
Empirical Modelling (EM). The key notion of a construal will be intfroduced and
discussed in relafion to modelling and programming. The key concepts of
observables, dependencies and agents will be explained and illustrated with
standard examples. Practical model-building will be complemented by paper-
based techniques for analysing complex systems based on classifying observables
according to how they are perceived and manipulated by agents. The nature of
applications characteristic of consfructivist computing will be explored with
reference to topics such as leaming technologies, personalised applications,
models for medical use, model-building to support experimental science or
mathematical research, business modelling and humanities computing. An
appropriate philosophical orientation for constructive computing will be briefly
discussed with reference to critiques of the fraditional "rationalistic” account of

5

Module Content and Teaching

computing, Latour's proposals for rehabilitating the concept of construction in his
paper "The Promises of Constfructivism", and William James's radical empiricism.

In keeping with the spirit of constructivist computing, practical model building will
be an essential sfrand of the module. The tools 1o be infroduced will include the
Cadence and EDEN interpreters and auxiliary environments such as the EM
presentatfion environment (EMPE) and the dependency modelling ool (DMT).

Week 1 will involve ten lectures and ten laboratory sessions. Through personall
consultations with students, we shall identify their particular strengths and interests
and direct them towards different aspects of the core themes to be addressed in
Week 3.

Week 2 will look in more detail at specific applications of EM relating to the
chosen core themes, as represented by papers and model drawn from the EM
archive. Each of the five days will be devoted to in-depth study of one or more
existing models devoted to a specific theme (cf. the range of different kinds of
observables, dependencies and agents represented in modelling strands
associated with the core themes mentioned above, for which there are
precedents in the EM archive in the form of construals of musical compositions,
organs of the human body, timetabling models, mathematical algorithms and
puzzles, visudlisations and animations etc). Relevant key papers drawn from the
EM archive will be studied in parallel. During this week, students will work on
exercises in analysing and documenting models, typically making use of special-
purpose tools such as the EMPE and the DMT.

In Week 2, there will be one or two infroductory lectures and one or more sessions
involving the analysis and demonstration of models relating to various aspects of
the core themes. For the rest of the week, students will work in laboratory sessions
alongside a small team of Warwick assistants (preferably undergraduates familiar
with EM principles and tools who ideadlly would have themselves already worked
on the modelling exercises and prototyped models related to the core themes).

Week 3 will be devoted to group work aimed at documenting and enhancing
existing protfotype models and conceiving and/or developing new models
addressing the core themes. In the constructivist spirit, practical modelling activity
will play a central role in this; even the conception of models will involve some
experiments in model-building. An additional component of this activity that
involves no conceptual shift within the EM framework might be enhancement of
the modelling tools better to address the specific demands of a core theme.

The assessment for the module will be based on laboratory work in Week 1, the
analysis and documentation exercise in Week 2, and the contribution to the
group work in Week 3, as expressed through practical work and assessed through
group presentations and individual oral examinations to be held at the end of
Week 3.

Module Content and Teaching

To complement the above teaching programme, we shall organise one or two
seminars from external speakers with specialist expertise relating to core themes,
such as an expert in humanities computing or former EM doctoral students who
have worked on (e.g.) collaborative group work using EM. We shall also engage
other teaching assistants (e.g. from the Warwick Student Opera Group) to enact
authentic activities relating to a core theme that help to illuminate the processes
involved in the application (such as a "blocking rehearsal® for an ensemble from
the Magic Flute, at which the precise movements and interactions of the singers
are planned out in detail).

18. lllustrative Bibliography

Selected papers and models drawn from the EM publications and archived
models at http://www.dcs.warwick.ac.uk/modelling

Fred Brooks, The Mythical Man Month Re-Visited, Addison-Wesley, 1995

Brian Cantwell-Smith, "The Foundations of Computing', In Scheutz, M.(ed)
Computationalism: New Directions, MIT Press, p23.58, 2002

Chris Date and Hugh Darwen, Relational Database Writings (several books from
1985-1999), Addison-Wesley.

Paul Dourish, Where the Action is, MIT Press 2001

David Gooding, Experiment and the Making of Meaning: Human Agency in
Scientific Observation and Experiment, Kluwer Academic, 1990

William James, Essays in Radical Empiricism, Bison Books 1996

Michael Jackson, "What can we expect of program verification?", [IEEE Computer,
39(10):53{59, October 2006

David Harel and Rami Marelly, Come, Let's Play: Scenario-Based Programming
Using LSCs and the Play-Engine, Springer-Verlag, 2003

William Kent, Data and Reality, 1st Books Library, 2000

Bruno Latour, "The Promises of Constructivism”, In Ihde, D. (ed.) Chasing
Technoscience: Matrix of Materiality, 2006

Willard McCarty, Humanities Computing, Palgrave-MacMillan, 2005

Drew McDermott, "A Critique of Pure Reason", Computer Intelligence 3 pp. 151-
160 (1987) + subsequent responses in same journal.

Peter Naur, "Intuition in Software Development”, TAPSOFT, Vol. 2, pages 60-79, 1985
Bonnie Nardi, A Small Matter of Programming, MIT Press, 1993.

Terry Winograd and Fernando Flores, Understanding Computers and Cognition: A
New Foundation for Design, Addison-Wesley, 1986.

19. Learning outcomes
Successful completion of the module leads fo the leaming outcomes. The leamning
outcomes identify the knowledge, skills and attfributes developed by the module.

Learning Outcomes should be presented in the format “By the end of the module
students should be able to...” using the table at the end of the module approval form:

Resources

Resources

20. List any additional requirements and indicate the outcome of any discussions
about these.

Approval

21. Module leader’s
signature

22. Date of approval

23. Name of Approving
Committee (include
minute reference if
applicable)

24. Chair of
Committee’s signature

25. Head of
Depariment(s)
Signature

Examination Information

Al. Name of examiner
(if different from
module leader)

A2. Indicate all available methods of assessment in the table below

% Examined

% Assessed by other|Llength of examination

methods

paper

A3. Will this module be examined together with any other module (sectioned

papern)? If so, please give details below.

Ad4. How many papers
will the module be
examined by?

L] 1 paper

[] 2 papers

A5. When would you
wish the exam take
place (e.g. Jan, April,
Summer)?

Ab. Is reading time
required?

[] Yes

[] No

A7. Please specify any special exam timetable arrangements.

A8. Stationery requirements

No. of Answer books?

Graph paper?

Calculator?

Any other special
stationery requirements
(e.g. Data books,
tables etc)?

A9. Type of examination paper

Seen? [] Yes [] No
Open Book? [] Yes [] No
Restricted? [1 Yes [] No

Examination information

If restricted, please
provide a list of
permitted texts:

10

uorjeulwexe JeJo [enpIATpu]
uotlelussaid dnoiy

Jyaom dnols 03 poaloAdp SUOTSSES AIoleIogeT]

yIom dnoaid
110ddns 031 S7001 pue senbiuyosl peseq-I9induwoo
gurdoieasp Aq pojussexd so3usTleyd oY} 8STUd009Y

110dea Qe
UOT1RIUSUNDOP pUR STSATBRUER [OPON

SUOTSS9S %.HOPN.HOQNA

3uTIndwod 31STATIONIZSUOD UT
pedordep senbtuyoe) pue syoo} Tedroutad ayjz A7ddy

UOT}RIUSWNIOP pUE SISATRUE [OpON

SUOISSes AJojeIoge]
pue (suoljeljsuowsp [apouw 8jexodiodut
UoTysm asoyl ATTeId8dsa) soanioer

STenI1suod Jg Surisixe
pIepuels jussald pue oSIJI9Xd ‘pueisiepup

UoT}eUTWRXS [RIO [BNPIATIPUJ
110dex qeq
UOT1BIUSWUNIOOP pUBR SISATBUR [9POK

SUOTSSses AJI0}BIOGR] pPUR S9IN1097]

Aouede pue sarouspusdap

‘sa{qeatesqo Jo suiejlied Apoque 3BU} STBNIISUOD
Jo sideouoo o1seq oy} pue Jurfepop [eotarduyg Jo
seTdroutad oIseq oyl YiTm AJTIRITIWR] 81BIFSUOWS(

juswssesse oyl Jo sjusuodwod [TV

‘yaom Teorloead dnold pue [enpralpuj
SUOTSS8S AJO3RIOUR] PUB S8IN3087

spIoJje surindwod
1STAT)ONIISUOD JRY) BUITTopow AIeUTTAIOSIpJIS3UlL
JI0] YJomeuweIJ Tenjydeoucd ayi oieideddy

(91 UOIOBS Ul SBIAIOD 8oUdIaal)
¢OWO2JNO0 BUILIDS| SIY} JO JUBWBASIYID
8y} aInspauwl [[IM (S)poyjaw
JUSLUSSOSSD SAIDWIWINS YIIYM

(S| UOI}OSS Ul SBIIAOD aduala)al)
¢{owoono Buiwpag)

SIU} 9ASIYDD 0} sjuapnys a|qous
spoyjaw Bujuips| pub Buiyons} yaiym

("o} 8|qo oq
PINOYs juspnjs 8y} 8inpow 8y} Jo pua ay} Ag)

SINOILNO ONINIVIT

Interdisciplinary Modelling through Constructivist Computing

A provisional bUdget for the module has been drawn up. Costs are accounted under
three headings:

- Teaching costs (including preparation and assessment)

- Consumables

- Administrative / support infrastructure for the module

The costs are based on current university hourly rates for part-time teaching

The teaching costs total £6572.36 which can be broken down as follows:

Lectures and seminars £1904.50
Student assistance £3313.35
Staff lab demonstration £ 469.17
Tutorials £ 160.65
External contributors £ 352.36
Additional activities £ 132.33
Assessment £ 240.00

£6572.36

The consumables are costed at £269.56 and can be broken down as follows:

Photocopying materials for lectures £ 100.00
Photocopying materials for labs £ 72.00
Photocopying to support coursework £ 22.50
Printing to support coursework £ 75.00

£ 269.50

The administrative and support costs can be broken down as follows:

Tool / model maintenance, webpage / forum £ 198.50
Secretarial support £ 225.00
Technical support £ 300.00
Refreshments (Warwick Hospitality rates) £ 780.00

£1503.50

This makes an estimated overall cost of £8345.36.

(For more details of how these costs have been arrived at, see the appended
annotated budget.)

Lectures and seminars (20+5) in total 25 hours of specialist teaching

numlect = 25;
lectrate = 76.18;
lectures is numlect * lectrate;

lectures = £1904.50
HHHHRAHHEH TR RS R H

student assistant support, assuming 3 undergraduate students
distinguish assistance during the three weeks of the module (studM)
from preparation activity to be conducted in summer of 2011 (studP)

studMrate = 11.31;
studM is studMrate * 15 * 3;
studPrate = 7.94;
studP is studPrate * 25 * 3;

student is studP + studM;
studN = 3;
students is student * studN;

3 students at £1104.45 = £3313.35
students assistance on the module (studM) is 15 hours per week

primarily looking after the daily 3 hours lab sessions
there will also be a staff member supervising the lab session (demos)

demorate = 12.03;

numberlabs = 13;

hrsperlab = 3;

demos is demorate * numberlabs * hrsperlab;

cost of staff member lab supervision is £469.17
HHHBHBHAHH R R A R R R R
module students will get in total 1 hour of tutorial time with lecturer

tutorials will be in groups of three, probably cutting across team groupings
20 minutes per week with each of 5 tutorial groups, 5 hours tutorial in total

tuthrs = 5;

tutrate = 32.13;

tutorials = 5 * 32.13;

cost of tutorials is £160.65
BEHHHHHH B H AR R R AR R

External speakers giving guest seminar/lecture - travel+fee for 2 speakers

numexts = 2;

exttravel = 100;

extfee = 76.18;

extinput is numexts * (exttravel + extfee);

cost of external input is £352.36

blocking rehearsal for the Magic Flute: 5 people for one hour at demo rate
addactMFhrs = 1;

addactMFstuds = 5;

addactMF is addactMFstuds * addactMFhrs * demorate;

other activities: 2 hours involving (e.g.) 3 staff at demo rate

addactxhrs = 2;

addactXstaff = 3;

addactX is addactXhrs * addactxstaff * demorate;

addactivities is addactMF + addactX;

total cost of additional activities is £132.33
HHAEBRHARHH G H R HR R R RS R RS

marking at 20 minutes per assessment item per student, charged at demo rate
markingRate is demorate;

totalmarkingtime = 1.33;

assessment is markingRate * numstuds * totalmarkingtime;

assessment cost in total £240

RHEAHASFRHB G HH IR R SRR

Total cost of the teaching components of the module:

teaching is students + demos + tutorials + lectures + extinput + addactivities +
assessment;

Total teaching costs £6572.36
RABBHHHRHH R H TR G R R R

photocopying costs based on handouts of 4 sheets per lecture and lab session
photocopying is charged at 5 pence per sheet

numstuds = 15;

lectnoteslen = 4;

lectnotescopies is numstuds + 5;

lectnotespersht = 5;

numlects = 25;

lectpccost is numlects * (lectnoteslen * lectnotescopies * lectnotespersht)/100.0;

photocopies for lectures cost £100
labnoteslen = 4;

labnotescopies is numstuds + 5;
labnotespersht = 5;

numlabs = 18;
labpccost is numlabs * (labnoteslen * labnotescopies * labnotespersht)/100.0;

photocopies for labs cost £72

photocopycost is lectpccost + labpccost;

printing and copying costs for individual students

at 5p per sheet, 100 printer credits, 30 photocopy credits
takes account of resources generated in team work

and (e.g.) papers cited for study in tutorials

printingcost is (numstuds * 5 * 100)/100.0;
indivphotocopycost is (numstuds * 5 * 30)/100.0;

an additional £75 for printing and £22.50 for photocopying by individuals
consumables is photocopycost + printingcost + indivphotocopycost;

consumables in total cost £269

BHAEHHHF RS ARG SRR B H BB HR ST

assistance in tool/model maintenance, preparing & managing webpages/forum etc
this could be partly during the module, partly in the week prior to the module
equates to one 25 hours week for a student at lower rate

moduleadmin is studPrate * 25;

tool/model maintenance, module webpage, forum etc administration costs £198.50

1 hour of secretarial assistance per day at £15 per hour- to include cost of
(e.g.) memos and spreadsheets, photocopying, preparing & clearing refreshments

sechrsperday = 1;
secRate = 15;
secs is sechrsperday * secRate * 15;

secretarial assistance costs £225

1 hour of technical per day
lab technician / systems programmer at £20 per hour

techhrsperday = 1;

techRate = 20;

techs is techhrsperday * techRate * 15;
technical assistance costs £3608

refreshments twice per day - tea and coffeee and cold drinks at £1.30 per person

tcwaterperhead = 1.30;
refreshments is tcwaterperhead * (numstuds + 5) * 15 * 2;

refreshments cost £780 at Warwick Hospitality rates

envadmin is secs + techs + refreshments + moduleadmin;

admin / systems cost of maintaining day to day environment is £1503.50
HHBHHHH R R RH R HHHERHRHHEHR

totalcost is teaching + consumables + envadmin;

overall cost £8345.36

Preliminary enquiry from Meurig Beynon regarding proposed ISS proposal

Background

The university established its International Summer School (ISS) for undergraduate students last year. It is a
part of the university strategy. With reference to the university's documentation: "The aim of the Summer
School was to showcase the best of Warwick to non-traditional Warwick students who were part-way
through their degree course, but had not yet graduated". It would be beneficial to the department to be
involved in this initiative both from an internal and an external perspective - it might be a good way in
which to raise the departmental profile internationally both at undergraduate and postgraduate levels. My
purpose here is to seek provisional departmental support for an ISS proposal.

The first modules on the ISS programme will be offered in July 2012. Together with Steve Russ, I proposed
a module last year. This would have been scheduled to run in 2012 but for my failure to gain the support of
the Computer Science department when the proposal was presented for approval at the Science Faculty
Board. After reflecting on last year's experience, I've been considering preparing another - hopefully more
appropriately focused - proposal for an ISS module to be launched in the summer of 2013. The new proposal
is on a theme much more closely aligned to mainstream computer science: that of "understanding computer
programming” (provisional draft of content attached). From what I know of ISS modules that have been
proposed by other departments, it is common for them to be led by an Emeritus member of staff, and - if it is
possible to get the requisite moral and practical support from departmental colleagues and research students
- I would be more than happy to take on the role of module leader and principal contributor.

An outline proposal

An ISS module runs for 3 weeks and with 15 or so international undergraduate students with 2-3 years of
experience of university study. The students earn credit from the module that they can take back to thelr
home institution - the ISS modules already approved will count for 15 CATS. :

As a rough indication of what I have in mind for the module, about half of the total time would be devoted
to workshop-style sessions on mainstream topics such as Turing machines, object-oriented programming (as
in an introductory Java or Greenfoot), functional programming, software specification, databases, and
software for educational use (e.g. NetLogo, Scratch). This material would be complemented by similar
sessions in which these themes were considered from an EM perspective. Other programming-related topics
(such as high-performance computing, dependable systems, agent-oriented modelling) might also feature in
guest lectures, as would contributions from former EM research students with industrial experience of
software development. Credit would be gained primarily through the practical programming-related
exercises associated with the workshops.

Resources

The mainstream computer science material could be drawn from existing computer science modules. The
aim in each area would be to focus on ideas and practical exercises that are conceptually interesting where
'understanding computer programming' is concerned. The EM material already exists for the most part in
lectures and illustrative models presented in the CS405 module. The bibliography for the module would
comprise 10-15 key papers (e.g. Turing, Fred Brooks, David Harel, Bonnie Nardi, Peter Naur, Michael
Jackson etc) and a similar number of EM publications.

For 2012, the University was prepared to fund each module up to 8K pounds to cover preparation and
delivery costs. I would not myself need to be paid for my part in teaching on the module and envisage using
such a budget entirely to support other preparation, teaching, technical and administrative demands. Subject
to consultation with academics, RAs could be used in this role.

Understanding computer programming (working title)

Computer programming is at the heart of computer science. Warwick Computer Science has a strong and
well-established tradition of research in this area. It has been a leading international contributor to building
on the algorithmic and logical foundations for computer science laid in the work of Turing. Over the years,
Warwick CS has been at the forefront of research in matters associated with paradigms and principles of
programming, programming language design and semantics, and specialised forms of programming for
practical applications.

Perhaps surprisingly, in view of the vast investment of intellectual effort in programming over the last 50
years, many aspects of programming remain conceptually challenging and problematic in practice. There is
evidence for this in 'the software crisis' - as manifest in the well-publicised failures of high-profile IT
projects. Though diverse programming paradigms and modes of programming specification have been
developed, it is not straightforward to make these coherent or integrate them effectively in practice. Visions
for human-machine symbiosis, end-user programming, automated modes of programming based on learning
and evolutionary models have been around for decades, but have yet to be realised. Technological
developments, such as multi-processors, multi-media and web architectures, coupled with modes of use that
feature embedding and embodiment, continue to extend the boundaries of 'programming’ in the wild. In
computer science education, despite the invention of many hundred varieties of Logo for instance, the
question of what programming languages are suitable for introducing computing at school remains
unresolved. The relationship between computer science and ‘programming’ as it is represented in
Information and Communication Technologies (ICT) (as in the use of spreadsheets, databases and special-
purpose applications e.g. for CAD, animation and music synthesis) is controversial and unclear.

Empirical Modelling (EM), as developed in Computer Science at Warwick over the last 25 years, provides a
broader conceptual framework within which to study computer programming, together with principles and
tools that make it possible to approach programming from a fresh and illuminating perspective. Whereas
classical programming (as represented in algorithmics and PL design and semantics) focuses on the
relationship between a program and the behaviour it induces in the machine, the primary focus in EM is on
understanding how this machine behaviour relates to the real-world context in which it is embedded. Such a
shift in focus necessarily draws attention to the relationship between formal and intuitive aspects of
mathematics: a theme highlighted in the work of the mathematician Emil Post (of the Post Correspondence
Problem), and further elaborated in relation to programming practice from many different perspectives by
(e.g.) Brian Cantwell-Smith, Peter Naur, Winograd and Flores, Bonnie Nardi, Michael Jackson and Willard
McCarty.

A key element in rethinking programming within EM is putting the primary emphasis on the immediate
experience of the programmer. Rather than specifying behaviours in a tightly constrained context, the
programmer's attention is directed at developing a flexible interactive context in which rich kinds of agency
can be enacted. This mode of development is in line with the use of spreadsheets, web development, and
particular varieties of programming practice where visualisation and/or the user experience has a critical
role, as in computer games. A distinctive feature of EM that has been prominent from the beginning is the
use of dependency maintenance such as is now becoming a feature of commercial PLs (Flex, Microsoft
WPF, JavaScript). The fact that introducing dependency to traditional programming environments
exacerbates the problems of incoherence is itself a strong motivation for the radical reconceptualisation that
underpins EM.

The broad aim of this module would be to present a perspective on computer programming that draws on the
expertise of Warwick Computer Science in key mainstream areas and the complementary commentary,
critique and reconstruction that EM offers.

Understanding computer programming (working title)

Computer programming is at the heart of computer science. Warwick Computer Science has a strong and
well-established tradition of research in this area. It has been a leading international contributor to
building on the algorithmic and logical foundations for computer science laid in the work of Turing. Over
the years, Warwick CS has been at the forefront of research in matters associated with paradigms and
principles of programming, programming language design and semantics, and specialised forms of
programming for practical applications.

Perhaps surprisingly, in view of the vast investment of intellectual effort in programming over the last 50
years, many aspects of programming remain conceptually challenging and problematic in practice. There
is evidence for this in 'the software crisis' - as manifest in the well-publicised failures of high-profile IT
projects. Though diverse programming paradigms and modes of programming specification have been
developed, it is not straightforward to make these coherent or integrate them effectively in practice.
Visions for human-machine symbiosis, end-user programming, automated modes of programming based
on learning and evolutionary models have been around for decades, but have yet to be realised.
Technological developments, such as multi-processors, multi-media and web architectures, coupled with
modes of use that feature embedding and embodiment, continue to extend the boundaries of
'programming' in the wild. In computer science education, despite the invention of many hundred varieties
of Logo for instance, the question of what programming languages are suitable for introducing computing
at school remains unresolved. The relationship between computer science and 'programming’ as it is
represented in Information and Communication Technologies (ICT) (as in the use of spreadsheets,
databases and special-purpose applications e.g. for CAD, animation and music synthesis) is controversial
and unclear.

Empirical Modelling (EM), as developed in Computer Science at Warwick over the last 25 years, provides
a broader conceptual framework within which to study computer programming, together with principles
and tools that make it possible to approach programming from a fresh and illuminating perspective.
Whereas classical programming (as represented in algorithmics and PL design and semantics) focuses on
the relationship between a program and the behaviour it induces in the machine, the primary focus in EM
is on understanding how this machine behaviour relates to the real-world context in which it is embedded.
Such a shift in focus necessarily draws attention to the relationship between formal and intuitive aspects
of mathematics: a theme highlighted in the work of the mathematician Emil Post (of the Post
Correspondence Problem), and further elaborated in relation to programming practice from many
different perspectives by (e.g.) Brian Cantwell-Smith, Peter Naur, Winograd and Flores, Bonnie Nardi,
Michael Jackson and Willard McCarty.

A key element in rethinking programming within EM is putting the primary emphasis on the immediate
experience of the programmer. Rather than specifying behaviours in a tightly constrained context, the
programmer's attention is directed at developing a flexible interactive context in which rich kinds of
agency can be enacted. This mode of development is in line with the use of spreadsheets, web
development, and particular varieties of programming practice where visualisation and/or the user
experience has a critical role, as in computer games. A distinctive feature of EM that has been prominent
from the beginning is the use of dependency maintenance such as is now becoming a feature of
commercial PLs (Flex, Microsoft WPF, JavaScript). The fact that introducing dependency to traditional
programming environments exacerbates the problems of incoherence is itself a strong motivation for the
radical reconceptualisation that underpins EM.

The broad aim of this module would be to present a perspective on computer programming that draws on
the expertise of Warwick Computer Science in key mainstream areas and the complementary
commentary, critique and reconstruction that EM offers.

