Schemebuilder

concept presumes that deep knowledge about design components has been acquired and
represented in a preconceived way (information about it must be stored in the CLIPS
database), and that there is a much codified insight into how the components operate in
conjunction and how this operation can be evaluated

conceptual design only in so far as deals with choice of components in system at a high-level
of abstraction, avoiding the detailed design

benefits of the approach: depends on the extent to which the system can generate options for
system configuration that are acceptable to the human designer (automation of choice
presumes that the options identified by the computer would genuinely be candidate designs
for an intelligent designer, and makes most sense where there are a very wide range of
possibilities that couldn't easily be surveyed and evaluated by the designer). Possible criteria
to use to assess this: would like to think that a very large proportion of the suggested system
configurations would be the configuration of choice in some circumstances, and/or that the
computer can accelerate the evaluation process. Perhaps a good way to express the decision
process is in terms of two phases: choose the system decomposition, by selecting components
ete, then choose parameters to optimise the components to suit this decomposition.

usefulness of the system depends heavily upon being able to identify an area of application
where it appropriate to use the design paradigm of choosing components from a catalogue to
a template, then proceeding to detailed design. presumes that the kind of analysis that is
needed to populate the database for Schemebuilder has firsi been done: not clear whether this
kind of analysis is typical of existing design analyses - if not, then adds considerable
investment overhead. also need to have confidence that the implementation platform is
sufficiently stable to justify the investment (the evolution from KEE, Matlab and Simulink
sends disturbing signal there)

good points of Schemebuilder as far as I can judge: bond graph concept provides very useful
conceptual framework, lends itself to the analysis of system dynamics in traditional
mathematical modelling idiom. functionally-oriented, in so far as the function of a system
can be captured by such models. particularly valuable in this respect, since it redresses the
balance between geometric and functional design, and suggests a process that in some
applications will be better conceived than starting from the geometry etc. also draws on one
traditional mode of design that invites automation

limitation: seem to be two dimensions to design

breadth - want to study many alternative designs

depth - want to examine and develop a particular design in detail
idea of a preconceived framework for choice and evaluation of a design is best suited to a
process-oriented perspective. Works well only if we know what kinds of decision must be
taken at each stage, and can anticipate the interactions in the design process. not clear that
Schemebuilder is well-suited to handling interaction between different design views, since
appears to be based on a formulaic systematic consideration of design concerns rather than
integrated concurrent development from several design viewpoints

problematic aspect: danger that the automated design concept is taken too far. For instance,
idea of encompassing geometry looks dubious (cf problems of beginning with geometry and
embracing function). Approach can only be valuable in this aspect if the geometrical
constraints and expectations are very modest. Important issue 1s to determine where the
boundaries must be set for the Schemebuilder approach: to identify where it might be an
appropriate design tool, and where its concepts are not applicable.

Conjecture: not good for aesthetic design, or where dominant constraints are imposed by
context for use (e.g. size, shape, environmental factors?), mode of use (e.g. suitable for blind
person, fault tolerant?). Idea here is that - whilst it may in general be possible in principle to



develop enough experience of such issues that it becomes possible to capture relevant
knowledge in the underlying database - many designs pose one-off specific challenges for
which it is not cost-effective to seek a general solution, whilst others involve considerations
in which human judgement and idiosyncrasies are critical.

Schemebuilder can be seen as supporting a spreadsheet-style paradigm for design, where
declare the structure of the system, then experiment to determine best choice of parameters,
but need to be in situation where the framework for the experimental process has been
predetermined and is no longer open to further elaboration. Particular issue for the proposed
project is whether tolerances are an area where this kind of experimental insight exists: in
principle, we can use Schemebuilder to record the interaction between "choice of parameters
within given tolerance" and "system performance", but this may be a difficult relationship to
capture in a closed rule-base in general. need a theory for tolerances.

Overall impression: Schemebuilder relies heavily in many aspects on preprocessing of design
knowledge to a very high level of sophistication - this poses challenges both for analysis of
designs and for choice of application area. Can't do much to change this state of affairs, so as
to achieve greater flexibility, without change of modelling paradigm. Current software
components have capability to deliver good performance where the knowledge representation
/ theory building task can be / has been accomplished thoroughly, but are not well-suited to
the flexibility that is required if the design process is less precisely identified, involves more
essential human judgement, and involves a high degree of interaction and iteration between
different design viewpoints. Possible strategy: attempt to emulate Schemebuilder using
Empirical Modeling tools (comparative study?)



