et Lan”

it

MANAGER

Eh et
AT RS RS I S

Software
Development

A

S,

)
hig
b
[2
15
n

Paradigms and Al

ProcR AMMer, | Programming = '(2—:)_e ™ Applications | | §ER

v

Foundations

% PHILOSOPHER

THE Four Aeent PeERSPECTIVES

AT FownNDATIONS
CoMPWT, INTELL Vil 3.)9p

Brian Cantwell Smith: 2 lessons of logic
'First factor': what must be realised in a

physical substrate if the
system is to do any work

"proof theory" form

‘Second factor': what the symbols are about

"model theory" content

First lesson: content can't be reduced to form

e

Second lesson:
T Hirst and second factors have to be related

"soundness and completeness”
& Want principles to connect content and form
» In computer science |
semantics = unambiguous execution
BUT in this sense ...

2nd factor is "semantics of the semantics" |

cf Me DerMoTT
L0 CITIRUE bF PULE REpn

3 tenets of classical logic to be reconstructed

"V CONTEXT DEPENDENCE

- Use can be ignored. A sentence must N\
7{ represent its whole content explicitly. A

/\/AINTERACTION OF FIRST/SECOND FACTORS
locally first & second factors treated .-
7(independently, ultimately globally related. /N

CF Defn of formal :
"From step to step, in a formal proof, the
first-factor inference procedure N
can not depend on or affect S
second-factor semantic interpretation”

V/ MORE DISCRIMINATE MODELLING
language and modelling are treated as
N distinct types of representation: Py
¢\ linguistic reference relation non-transitive,
but
modelling is transitive and "free":
can use a model of X in place of X.

)\ "promiscuous modelling"

%,

S FIWARE
Harel: Biting the Silver Bullet - January 1992

Developments in 1-person prog 1950-75
largely eliminated the problems

"No single reason: mix of factors that prevailed"

How about reactive systems? ...
.... Brooks, Parnas pessimistic

Harel's analysis:

————

good mathematical semantics
=> can execute models

Need to be visual

Can do extensive testing with prototypes

. in 25 years problems will have goneﬁv away ...

O P S TP

? is there a fundamental distinction between
1-person programming
and
reactive systems engineering

is there fundamental distinction between {‘.
1-person programming

and ‘
reactive systems engineering '
- \

dh o L TR ST R

o —— T e = BT
i e s T AT =

NO - both involve
requirements analysis + program specification
2nd factor 1st factor

S

YES - requirements analysis for
reactive systems involves

 design of computational devices
from first principles

« essential interaction between 1st/2nd factors
e = il = — =
Much more is preconceived in 1-person prog:

« computational devices
- requirement described off-line

IR0 CRAMMIN &~

= KANSRIR MATIONS HiMAN
rF STATE :N‘T&Jﬁ PRETAT}M

YRoERAMM INE

Object-oriented programming: a case study

1967 Birtwistle et al: Simula

¢ programming = system description
’ Key abstraction - the object
) Idea: identify objects in the application

build a model to reflect capabilities
to act to change state in system

=> Problems:
« propagation of state-change via content

non-computable relations:
"doodling vs signing away my house"

principles for constructing objects unclear

4 parallelism badly modelled wrt indivisibility

Object-oriented programming: a case study
1872 - Parnas et al

¢ objects for information hiding: 1st factor
=> objects as a programming device

1980 - Smalltalk
class concept / inheritance
=> Principles of Simula obscured
* Powerful mix of 1st & 2nd factor concerns
* No clear basis for prescribing parallelism

1985 - Pierre America:
Semantics for Parallel OO Language

Theorists describe POOL formally ...

Formalising limits power to link 1st/2nd factor

ApprLica Tioms

Motivation for linking 1st & 2nd factors

Need to know how to:

W
- write programs that are easy to interpret
. write interactive programs to adapt to user

- - integrate requirements analysis and spec

- model CAD, where
user introduces knowledge incrementally

« program a robot to make correspondence:
between internal model & sensory input

#AMD Dogs THid Me'm.n ANY TH NG
7

L)

Conventions to link 1st and 2nd factor aspects:

descriptive identifiers

lazy evaluation

data structures to reflect the application
objects

etc

BUT
This is inadequate ... need new principles
to deal with 1st and 2nd factor interaction

