Introduction xii

Introduction

Computer software has become an important component of the technological age.
There are, however, long-known difficulties of developing such software — as first
identified in the “software crisis” of the 1960’s. The issues raised by this crisis
remain unresolved and the subject of much on-going research. Despite decades of
investigation and accumulated experience, developing software remains a difficult
problem.

The roots of these difficulties can be traced back to the earliest days of
modern software development. As processing power rose, computers were no
longer confined to simple data processing tasks. Increasingly complex pieces of
software were being written and the problems now associated with software de-
velopment began to emerge. Computers were moving beyond tabulating census
results, code-breaking and other ‘number-crunching’ tasks. Complex software
systems such as SAGE air-defence, SABRE ticket reservation system and IBM’s
System/360 were forcing the development of new tools and techniques and re-
sulting in the emergence of new kinds of software development challenges. By
the 1960’s the “software gap”, the gulf between what was specified and what
was delivered, had lead to “slipped schedules, extensive rewriting, much lost ef-
fort, large numbers of bugs, and an inflexible and unwieldy product” [NR69, p.
122]. While many of these manifestations of the software crisis persist in modern
software development, some authors such as Glass have questioned to what ex-
tent we can still claim to be in crisis mode with so many examples of successful
software systems [Gla98, Gla00]. Some of the issues encountered are captured

in the tension between the ‘theory’ and the ‘practice’ of software development.




Introduction xiii

Typically, this dichotomy is constructed between formalised theory and informal
practice. In 1969, at the second NATO conference, Dijkstra attacked the distinc-
tion labelling it “obsolete, worn out, inadequate and fruitless” and refusing to
be labelled “either impractical or not theoretical” [BR70, p. 13]. Yet evidence
of this distinction still exists in modern software development, with frequent ap-
pearances in book and conference titles. These two perspectives are characterised
by their seemingly opposing viewpoints, each with their own staunch proponents.

The theoretical approach emphasises the structured, formalised and planned
approach to software. Here development begins with a methodology — a partic-
ular approach to solving the software development problem — that tends to be
followed rigorously.

Examples include structured software development methods and mathe-
matical specification languages. However this approach is not always favoured
and common criticisms include the emphasis on the formalised process that does
not allow for the experimentation and unstructured development favoured by
other software developers. Yet these experimental approaches to software devel-
opment have been labelled as ‘hacking’ — where almost no look ahead planning
occurs, with the development descending into a ‘trial and error’ approach. Agile
methodologies, such as ‘XP’ [BA04], have evolved to provide some framework for
this approach to development. While these approaches can yield results quickly
and are much better placed to adapt to changing requirements, critics of this
approach argue this results in an insufficient understanding of the software and
the decisions involved in its development.

In terms of current practice, software development approaches tend to fit
into only one of these two cultures. Few approaches can claim to fully embrace
both the theoretical and practical cultures. Yet, while the divide between these
two approaches might seem stark and somewhat irreconcilable, there are many
reasons to be optimistic. The tensions between them are not necessarily hostile:
good will exists on both sides. Efforts at bridging this divide would surely be

welcomed if they genuinely made it easier to develop software. There has been



Introduction xiv

some progress on a reconciliation over the years. For example, both cultures
accept that the traditional waterfall-style approaches are insufficient to account
for software development practice. However, there does exist some skepticism of
the possibility of a complete unification. This leads us to ask the question: why
is it so difficult to bring these perspectives together? One possible explanation
is that the position of theoreticians and practitioners are now firmly entrenched.
Any attempt at explaining their individual perspectives must face the difficulty
that each camp tends to work in very different fields. Traditionally, theoretical
work is based in academic environments whereas practitioners are found in in-
dustry. Theoreticians typically see the problems identified by practitioners as
further evidence of the need for a strong theoretical basis. Some reports take a
pessimistic view explaining that we have “gotten away with more-or-less sloppy
software development for a long time” [You98]. This view is supported by numer-
ous headline-grabbing reports of failing I'T projects. Practitioners, on the other
hand, can be skeptical and usually argue that creating software will always be a
difficult process that must be tackled directly. Of course these positions are far
more subtle than portrayed here, and will require further exploration throughout
this thesis.

The theory and practice division of software engineering culture has its
limitations. It can imply an inability for theory to inform practice, or vice-versa.
The techniques found in modern software engineering are not completely devoid
of a theoretical underpinning nor is practice ignored in software theory. Infact,
many theoretical problems are derived from issues encountered in the course of
practice. Hoare has criticised this view of software engineering practice by ex-
plaining that many theoretical ideas have found their way into software practice,
only that “technology transfer is extremely slow in practice, as it should be in
any branch of safety critical engineering” [Hoa96]. Additionally, Hoare claims
that many of these seemingly informal types of software development are deeply
rooted in formal mathematical techniques and therefore showing theoretical ten-

dencies. Equally so, theory can be informed by practice, especially in scenarios



Introduction XV

where completely unanticipated problems occur — the identification of a potential
problem in the wild can be fed back into the original specification.

For the purposes of this thesis, the author proposes to take different per-
spectives on the development of software. Rather than looking at theoretical and
practical perspectives on software, this thesis will focus on rational and empirical
perspectives. Rationalism is an “appeal to reason as a source of knowledge or
justification” (TODO - reference), whereas in an empirical perspective, experi-
ence and observation are regarded as the authority to which we should appeal.
This thesis will not argue that the rational/empirical divide is necessarily any
better than a theory/practice divide in real terms, nor will it argue for a grand
realignment of the way we view software but only that it seems more natural for
the purposes of this thesis. This thesis will look at two particular sets of tools and
techniques, formal methods and Empirical Modelling, and the way they subscribe
to the rational and empirical viewpoints respectively.

Formal methods (FM) are a set of techniques for specifying, verifying and
developing software and hardware. The techniques rely heavily on mathemati-
cal approaches for the identification and solution of design and implementation
problems. A wide variety of formal methods exist, ranging from specification lan-
guages such as Z to model-checking tools such as SPIN. Due to the high-cost of
use, formal methods have not found widespread use and are usually reserved for
systems where high-levels of safety or security are required. Formal methods are
the subject of on-going research most notably in the form of the current ‘Grand
Challenge in Computer Science’ on dependable systems evolution. The grand
challenge aims to produce general purpose tools for the verification of software
systems.

Empirical Modelling (EM) is a collection of research primarily developed by
Beynon and Russ [EMW] since the early 1980’s. EM is an approach to computer-
based modelling that is concerned with artefact construction for the purpose of
sense-making activities and has been described as “thinking with computers”.

The tools and techniques developed at the University of Warwick have enabled



Introduction xvi

the construction of an extensive number of interactive models — all available for
exploration and refinement.

This thesis will focus on an examination of the relationship between formal
methods and Empirical Modelling. It will examine their individual perspectives
on software development and their particular philosophical stance. Clearly, the
use of formal methods to produce software is not a new topic. This thesis is not
concerned with the technical details of specification languages, proof systems or
refinement techniques. We ask broader questions relating to the role of formal
methods in software development. We do however give attention to the software
used for Empirical Modelling due to its claim of “thinking with computers” and
the integral nature of the software in this claim. This thesis does touch upon
some philosophical ideas but only as a consequence of the connection between
the practical and philosophical ideas. A full exploration of the philosophical

ideas is beyond the scope of this work.

Related Empirical Modelling work

The relationship between Empirical Modelling and Formal Methods was first ex-
plored in a thesis by Rungrattanaubol titled “A treatise on modelling with defini-
tive scripts” [Run02]. In this work Rungrattanaubol explored how a modeller’s
experience is embodied in a modelling artefact. Specifically, Rungrattanaubol in-
cluded a study of the heapsort algorithm consisting of an interactive model. This
model was used to explore the relationship between the experiential and formal
viewpoints of the sorting process.

The special-purpose EM tools, mostly notably EDEN, are discussed in-
depth in a thesis by Ward [War04]. Ward gives an account of the issues to be
considered when designing and implementing a dependency maintenance engine.
The suitability for EM in learning environments has been explored in the theses
of Roe [Roe04] and Harfield [Har08]. Further information on the underlying
philosophy of EM is given by King [Kin07].

Numerous other EM publications, primarily in the form of journal and



Introduction xVvii

conference papers are used throughout this thesis where appropriate. In addition
to the literature referenced, a full list of published material is available from the

Empirical Modelling website [EMW].

Comparisons

Before any comparison of two technologies, we must address the basis for such
a comparison. As the primary focus of this thesis is an examination of the rela-
tionship between formal methods (FM) and Empirical Modelling (EM) we must
briefly note some explanation for their selection.

Formal methods and Empirical Modelling both adopt different philosoph-
ical positions on software development. In simple terms, FM promotes formality,
structure and planned development whereas EM promotes informality, unstruc-
tured and exploratory development. These positions seem representative of two
opposing views of software and each offering radically different development ap-
proaches. Therefore any exploration of these particular technologies must also be
accompanied by an complementary exploration of more general perspectives on
software development. While there are other combinations that could have been
selected, EM and FM seem good representatives of the issues encountered in the
work conducted at the University of Warwick. Together they could be taken as
representations of ‘theory’ and ‘practice’ perspectives described earlier. However,
as we have already briefly noted we will examine how they fit into the ‘rational’
and ‘empirical’ perspectives.

The term ‘formal methods’, as used throughout this thesis, encompasses
a broad range of mathematically-based verification techniques making a direct
comparison more difficult. In general, formal specification languages such as
Alloy, B and Z are used as representative examples in this thesis but many of the
arguments presented could be extended to include other formal approaches.

It may seem unusual that formal methods, well-established in the software
field, should be compared to EM, a relatively unknown set of principles and tools.

Herein lies a problem that we must acknowledge: that the comparison itself is



Introduction xviii

seen as inappropriately elevating EM. The comparison is justified for two reasons.
Firstly, that pre-existing published material has already addressed in-part EM’s
relationship to software development and the formality in modern Computer Sci-
ence. Therefore, a continued exploration of these issues can only serve to clarify
and further expand understanding on this front. Secondly, both formal methods
and EM are taught at the University of Warwick at undergraduate level, so a
fuller understanding of how they are related can only benefit students who are

exposed to both of these topics.

Research Aims and Motivations

The primary aim of this research is an exploration of the relationship between
Formal Methods and Empirical Modelling. Both approaches concerned are repre-
sentative of particular views on software development. This thesis explores each
of these topics in detail and also examines their relationship with some specific

aims:

e to evolve a greater understanding of the perspectives on software develop-

ment afforded by Formal Methods and Empirical Modelling;

e explore the state-of-the-art in formal software development and the per-

spective it adopts; and,

e use example models to explore the tools and techniques associated with

both approaches.

While the thesis focuses primarily on these issues there are some additional
supplementary aims that are pursued which contribute to the understanding of
the EM/FM relationship. A recurring theme is educational impact of the state-
of-the-art in Formal Methods and Empirical Modelling. Educational issues are
intertwined with the main thesis aims due to the pedagogic nature of working

with both approaches.



Introduction Xix

With the aims given above, this thesis has been guided by questions fun-
damental to the nature of computer software. How do programs work? How do
we create programs? How do we establish the correctness of these programs?
Projects such as the GC6 challenge have emphasised the legal and moral respon-
siblity to provide working software that reflects the increasingly pervasive nature
of computers in society. It seems we have an equal responsibility to understand
how developers build and shape these systems if they are expected give us guar-
antees about their reliability. While this thesis is driven by scientific questions
about the nature of programs, it is also concerned with the ultimate impact this
will have on software development practice.

The author’s interest in this topic stems from observations made of the
software development process and from experience gained teaching undergradu-
ate students in modules connected to both Formal Methods and Empirical Mod-
elling. The author is particularly interested in the role and perception of formal
methods in software development. Undoubtedly much of this work has been influ-
enced by interaction with students and guided by their attitudes towards formal
methods and agile software development methods. Many students, while still new
to software engineering, seem far more accepting of the difficulties of developing
software and unconcerned with the questions of chronic problems. These students
are far more accepting of collaborative development efforts and the agile/flexible
approaches that help to manage this process. Experimentation and guided explo-
ration seem to be activities accepted as part of interaction with computers and
software systems. EM was initially conceived in the early 1980’s, with some of
these principles are its core. In the past twenty-five years, the author is interested
to what extent these become more mainstream ideals and how the principles of

EM are related to modern software development.

Research Methodology

TODO



1. Dependable Systems, Program Verifiers and Grand Challenges 1

Chapter 1

Dependable Systems, Program
Verifiers and Grand Challenges

“The general admission of the existence of the software failure in this
group of responsible people is the most refreshing experience I have
had in a number of years, because the admission of shortcoming is the

primary condition for improvement.”

— E. W. Dijkstra at the 1968 NATO Software Conference

This chapter reviews some recent research in the use of formal methods for soft-
ware development. Specifically, it examines the current ‘Grand Challenge for
Computing Research’ project as established by the UK Computing Research
Committee (UKCRC) for the Computer Science research community. The grand
challenges are intended to be ambitious and far-reaching, in both their impact on
the research community and the significance of their results. The sixth challenge,
known as ‘GC6’, is concerned with dependable systems evolution and an exami-
nation of the aims of this challenge can help us reflect upon the state of the art in
developing computer software in a formal context. One aspect of this challenge
proposes the construction of a set of tools for program verification and we discuss
their potential impact on both the construction of new computer programs and

the analysis of existing software. However, this is not, nor is it intended to be, a



1. Dependable Systems, Program Verifiers and Grand Challenges 2

detailed critical analysis of the GC6 agenda but merely an opportunity to discuss
GC6 in broad terms and examine to what extent it is indicative of the wider
trends in addressing the problem of developing reliable and dependable computer

software.

1.1 From Software Crisis to Program
Verification

The problem of writing reliable and dependable computer programs has been a
concern since the early 1960s. Throughout the 1940s and 1950s computer pro-
gramming had evolved from machine code, to macro assemblers and interpreters,
and then onto the first generation of optimising compilers. By the 1960s the first
large-scale software projects, such as IBM’s OS/360, appeared and with them a
growing realisation that producing such large complex software systems was prov-
ing to be an extremely difficult task. Software projects frequently exceeded their
allocated time and budget but were not able to remove all the software defects.
The problems encountered by these projects are well documented, most famously
in Frederick Brooks’ acclaimed “The Mythical Man Month” [Bro95]. Brooks re-
lates his experiences in managing the development of IBM’s OS/360 operating
system, describing how the project was plagued by slippages that resulted in time
and budget overruns. As the extent of the problems became apparent, so did an
appreciation of the difficulty in finding a solution. This period in the history of
software development would become known as the era of the “software crisis”.
The North Atlantic Treaty Organisation (NATO) conferences of the late
1960’s were organised to address the problems of this “software crisis”, with the
first conference taking place in Garmisch, Germany in October 1968. The aim
of the conference: to discuss many of the perceived problems in software and to
seek out the developments that would help work towards their solution. Naur and
Randell’s report of the Garmisch ‘software engineering’ conference explained that

“the phrase ‘software engineering’ was deliberately chosen as being provocative,



1. Dependable Systems, Program Verifiers and Grand Challenges 3

in implying the need for software manufacture to be based on the types of theo-
retical foundations and practical disciplines that are traditional in the established
branches of engineering” [NR69, p. 13].

The Garmisch conference marked the earliest steps in the software engi-
neering discipline and the participants identified many of the issues that we still
face today; rooted in the complex and abstract nature of software, something
that has consistently proved difficult to capture. Specifically, problems identi-
fied included managing algorithmic and structural complexity, the scale of the
project!, the general lack of reliability, the nature of the design process and the
lack of proper testing. Identification of these ‘software engineering’ problems
gave rise to many different methods, processes and technologies aimed at tack-
ling the problems. In the period following the Garmisch conference, ideas such
as “structured design, formal methods and development methods” were devel-
oped [CKAO04, p.181]. In the early 1970’s many candidate solutions appeared to
deal with the software crisis and the discipline of ‘software engineering emerged.
Yet no clear consensus emerged on the approach that should be taken to develop
a solution to the software problem. The lack of unity and level of disagreement
reflected the many different stakeholders involved in the software development
process and the viewpoints of those involved with developing software. Fach of
the stakeholders — including, customers, analysts, programmers, project man-
agers, documenters — had their own issues to be addressed and positions to be
considered. No single approach seemed capable of addressing all of their concerns.

The techniques proposed included structured design [YC79], a top-down
design technique where the system is initially described at a high-level of ab-
straction and then, in a series of increasingly detailed steps, moving towards
the implementation level. Such development models were viewed “as much a
management tool as a technical one” [CKA04, p.182] where the entire software

life-cycle was recognised, considered and managed. Techniques such as structured

1Given as the “number of different, non-identical situations which the software must
fit” [NR69, p.68].



1. Dependable Systems, Program Verifiers and Grand Challenges 4

design were in stark contrast to that of formal verification, the process of check-
ing whether a program matched its specification, another technique that emerged
in the early years of software engineering. Formal verification was designed to
reason formally about a program and its specification in order to produce a proof
of correctness for the specified properties.

The desire to find a solution to the software crisis was strong and new
developments were accompanied with a rhetoric of a software panacea. New
techniques brought the promise of breakthroughs but ultimately failed to pro-
duce dramatic progress. Formal methods seems particularly badly affected by
the sweeping claims and generalisations that have plagued new developments
in software engineering?. This has resulted in a negative view of formal meth-
ods that is widespread and one that is difficult to repair. Unfortunately any
solution to the software crisis would not prove to be as neat as finding one all-
encompassing technique or approach. While the desire to find a single general
solution was strong, balancing the needs of the many stakeholders proved to be
a tricky endeavour. Despite all the solutions explored, as Shapiro in a review of

early software engineering [Sha97], notes:

“No solution aimed at a single area could provide the degree of relief
many were seeking. Moreover, agreeing on singular approaches with
respect to any of these issues also frequently proved difficult in the

face of incommensurable philosophies and inescapable trade-offs”.

This encapsulates the central tenet in Brooks’ “No Silver Bullet” paper, in which
he states that there will be no single achievement that “by itself promises even
one order-of-magnitude improvement in productivity, in reliability, in simplic-
ity” [Bro87]. Unfortunately many of the problems identified at the time of the
software crisis have persisted to the present day and few would claim that any
solutions have been fully realised. While today’s software problems are not of the

scale or frequency of the 1960s, especially relative to the size of modern software

2The criticisms levelled at formal methods are explored in chapter 2.



1. Dependable Systems, Program Verifiers and Grand Challenges 5

projects, they do still exist and the fundamental problem remains. At the time
of the early NATO conferences, computers designed for specific purposes were
being replaced by general purpose computers. Where hardware once dominated,
software was beginning to be recognised as the interchangeable and malleable
component of a computer system. And while the speed of development in com-
puter hardware has been rapid, with transistor density doubling approximately
every two years®, the progress in computer software has been much more trou-
bled. Programmers struggled with issues that did not exist in computer hardware
— they were unable to benefit from the regularity and repeated patterns found in
hardware.

Following the first software-engineering conference in Garmisch, a second
conference titled ‘Software Engineering Techniques’ was organised a year later
in Rome, Italy. This conference was to focus more on the technical details with
far less emphasis on the organisational and management issues that featured at
the first conference. In the conference report* [BR70], the editors Buxton and

Randell noted that:

“The resulting conference bore little resemblance to its predecessor.
The sense of urgency in the face of common problems was not as ap-
parent as at Garmisch. Instead, a lack of communication between
different sections of the participants became, in the editors’ opinion
at least, a dominant feature. Eventually, the seriousness of this com-
munication gap, and the realization that it was but a reflection of the
situation in the real world, caused the gap itself to become a major

topic of discussion”.

In [Sha97], Shapiro discusses the outcome of the 1969 conference and concludes

that this perceived gap was “generally regarded as one between theory and prac-

3This trend in the development of hardware is known as Moore’s law, first observed by Intel
co-founder Gordon Moore [Moo65]

4Brian Randell relates his experiences of this conference and of writing the report in an
Annals of the History of Computing article titled “Memories of the NATO Software Engineering
Conferences” [Ran98]



1. Dependable Systems, Program Verifiers and Grand Challenges 6

tice”. A discussion, from the final day of the conference, on this topic is featured
at the very beginning of the conference report — a sign of how much the topic
troubled many of the attendees. Nowhere was this gap more apparent than in the

use of formal methods, one of the proposed solutions to emerge from the crisis.

1.1.1 Verifying Compilers

One of the ideas in formal methods was that of a verifying compiler, first pro-
posed by Floyd in 1967 [Flo67]. A verifying compiler is a software tool that,
given both the program and a specification for that program, is able to determine
correctness — whether the program does indeed follow the specification — through
a process of formal reasoning. In the following year, Dijkstra proposed that as-
sertions should be written before the program itself. He argued that the program
would be derived from these statements — resulting in a program annotated by
a series of logical assertions. Dijkstra hoped that this would be “a relevant step
in the process of transforming the Art of Programming into the Science of Pro-
gramming” [Dij68]. Unfortunately, given the limitations of theorem provers and
the inaccessible nature of most software code, progress along this path stalled
preventing the development of such a verifying compiler. The mathematical the-
ory of programming was still in its infancy and the capacity of computers was a
fraction of their modern day equivalent. Forty years since Floyd’s paper the prob-
lem of program correctness still remains, as does the attractive idea of building

a verifying compiler.

1.2 Grand Challenges in Computing Research

Grand challenges are designed to be projects aimed at difficult to solve problems
— “directed towards a revolutionary advance, rather than evolutionary improve-
ment” [GCWO08]. These projects typically require a large-scale collaborative effort
because any solution is expected to be beyond the capabilities and resources of

a single person or team. While efforts of this magnitude take place over an ex-



1. Dependable Systems, Program Verifiers and Grand Challenges 7

tended period of time, usually measured in decades, the projects can help to focus
and to organise a research community’s output. The challenges seek to advance
scientific understanding by setting out a common goal, decided by the research
community, towards which many researchers can direct their efforts. Although
the exact steps the research will take are not yet known, the ultimate goal is clear
enough to direct researchers along the initial path. And although the project is
not guaranteed to solve the original problem, it is hoped by the very process of
investigating it that there will be a significant advancement in the theoretical
understanding and many practical applications will result. There are many his-
torical examples where scientific research has produced some quite unexpected
and unrelated discoveries, e.g. Rontgen’s discovery of the X-Ray, Fleming’s bacte-
ria experiments leading to the discovery of Penicillin and Pasteur’s immunisation
methods. None of these discoveries were predicted at the outset and were not the
result of goal-directed research. The results are attributed to the serendipitous
nature of scientific research. The grand challenges hope to spur innovation in pur-
suit of its goal. With specific reference to Computer Science, Hoare notes that
“the primary purpose of the formulation and promulgation of a grand challenge
is the advancement of science or engineering” [Hoa03b]. A grand challenge can
only be developed when it is believed the current research path is sufficiently ma-
ture. Research within a field must have advanced to the point where it allows for
prediction and planning on a long-term scale. There are many notable examples
of ‘grand challenges’ outside the computer science discipline which have resulted
in large-scale advances. Examples include the space race between Russia and the
USA in the 1960s and the human genome project in the 1990s.

The “Grand Challenges In Computing Research”, as established by the
UK Computing Research Committee (UKCRC), hopes to make similarly signifi-
cant contributions to the development of research in the discipline. A programme
of seven computer science grand challenges has been in development, each with a
different research theme [GCWO08]. These challenges are expected to be long-term

research goals for the computer science community requiring significant invest-



1. Dependable Systems, Program Verifiers and Grand Challenges 8

ment and commitment. The success of these challenges is not assured and this is
acknowledged by the UKCRC at the outset. Each of the seven themes represents
a separate grand challenge ranging from the further development of quantum
computing, to distributed computing to dependable systems. Details of each of
the challenges can be found in [HMO04]. This thesis is primarily concerned with
the sixth challenge, titled ‘Dependable Systems Evolution’. Hoare is careful to
establish this Grand Challenge as pure scientific research with the aim of answer-
ing some of fundamental questions concerning the nature of programs [Hoa07b].
The development of any grand challenge shows that a consensus has been reached
within the community on the future research directions. Further, it shows that
the subject matter has reached a level of maturity sufficient to make detailed
judgements on potential developments. While the exact final outcome of this
research is unclear, researchers have agreed that it is a worthwhile investment of
time and effort likely to yield many interesting research opportunities.

Full details of the grand challenge criteria and the dependable systems

project’s suitability for such a challenge are given in [Woo03].

1.3 Dependable Systems Evolution — GC6

The introduction of computers into everyday life continues to expand and we
increasingly depend upon them to perform everyday tasks, sometimes without
us even being directly aware of their existence. Although many of these systems
perform routine functions, there are numerous other systems that we entrust
with safety-critical tasks such as medical radiation therapy, nuclear reactor con-
trol systems, railway signalling systems and air traffic control systems. Yet the
unreliability of computer systems has become an accepted part of daily life, with
many well-documented failures of computer systems ranging from space probes
such as Mars Climate Orbiter [EJC01] to medical systems such as the Therac-25
radiation machine [LLT93]. While most of the computer proglems we encounter

are only an inconvenience, there are an increasing number of these safety-critical



1. Dependable Systems, Program Verifiers and Grand Challenges 9

tasks performed by computer systems upon which lives do depend. Software en-
gineers must therefore be capable of building systems that are able to meet the
highest levels of reliability. The capability and knowledge of how to consistently
build reliable and dependable computer systems remains elusive but the attempt
to address this problem is the cause taken up by the GC6 “Grand Challenge” on
dependable systems.

Developing software is an inherently difficult task due to the complexities
of making sense of the subtle system details. The challenge begins at the earliest
stages of the development process. Software developers frequently note the dif-
ficulties encountered when trying to write requirements specification documents
for a new piece of software. The requirements capture process directly challenges
our knowledge, understanding and ability to make sense of a system, and also
our ability to translate this knowledge precisely and unambiguously into written
form. In the later stages, at specification and design of the system, the possible
modes of interaction, desired features, the mechanics of the system and the na-
ture of interactions with other computer systems must be anticipated. No system
can be regarded as a closed or static entity because it must be able to respond
to requests to add or revise functionality and incorporate these changes into our
original design. As the understanding of the original problem evolves, a developer
must be prepared to alter the software accordingly. Further exploration of the
software can bring new understanding or a realisation of changes that are needed
and a development environment must allow these new ideas to be incorporated.
There are, of course, the inevitable programming errors, for example: mistakes
in syntax, typographical errors and badly constructed solutions. Whatever prob-
lems are encountered, the core of the problem lies in the ability to know what
system to build and then how to build it well.

In response to this agenda, as part of the “Grand Challenges in Comput-
ing Research” initiative, ‘GC6’” was formed, a project primarily concerned with
‘dependable system evolution’. That is, to learn how to build systems that can

be developed to be reliable as possible with as few defects as can possibly be



1. Dependable Systems, Program Verifiers and Grand Challenges 10

achieved. As described earlier, the grand challenges are designed to help focus
attention on a long-term research goal. As part of these challenges, GC6 is ex-
pected to be a long-term project® which will be forced to address many different
kinds of problems but ultimately addressing the growing need for reliable comput-
ing systems. Guaranteed software reliability, one of the stated aims, would allow
reliable predictions to be made about the dependability of the software and how
it will perform under given set of conditions. Woodcock [Woo06] asks whether
software will be issued with warranties that make guarantees about their reliabil-
ity® and he believes that the application of formal methods is the cheapest way
to achieve this, noting that “the use of formal methods will become widespread,
transforming the practice of software engineering”. As explained in one of the

original GC6 proposals [Woo03], defining the nature of a dependable system:

“A computing system is dependable if reliance can justifiably be placed
on the service that it delivers, characterised in terms such as function-
ality, availability, safety and security. Evidence is needed in advance
to back up any manufacturer’s promises about a product’s future ser-

vice, and this evidence must be scientifically rigorous.”

To make this level of guarantee about the reliability of the system, evidence must
be gathered to support the claims and in a form convincing enough to justify
the guarantees. As the system evolves through development, changes will occur
that could affect the basis of any reliability claims. Rapidly evolving systems
are increasingly commonplace in Internet and e-business environments and any
work on dependable systems must be able to cope accordingly. The ability to
verify a system at all stages of development is highly desirable. We need to be
capable of generating this evidence. There are two possible means of generating

this evidence: software testing, and formal mathematical proofs.

1. Software testing. Testing is the form of evidence gathering most fre-

5 According to [Hoa07a), approximately a billion dollars across 10 years.
6Woodcock is, in part, relating the story of Tony Scott, the General Motors’ chief technology
officer, who asked these questions in an interview with e Week [Dig04].



1. Dependable Systems, Program Verifiers and Grand Challenges 11

quently used in modern software engineering. Software is subjected to a
battery of experiments designed to uncover faults in the functionality, re-
liability, safety or security properties. Discovering defects relies upon a
certain degree of happenstance: that the chosen input data and sequence of
actions reveal the flaws in a readily apparent way. We cannot be guaranteed
to find the defects that exist. However diligent our testing procedures they
are not exhaustive — there is always the possibility of a sequence of inputs
or a scenario for the system that we have not conceived, which will subvert
the expected behaviour of the system. Development methodologies such as
XP [BAO4] have seen the proliferation of techniques such as unit testing,
where individual components of the system are tested automatically and

repeatedly by a software tool.

2. Formal verification. Formal proofs, the method advocated by GC6, is
the second option and is the process of developing a formal mathematical
proof for the correctness of the system. In this instance, a formal proof
might take the form of a series of mathematical derivations that logically
show how and why a program meets a specification of the system. The
specification would take the form of a higher-level abstract description of
the system behaviour. The formal verification step could take the form of
either theorem proving or some form of model checking. Unlike testing, a
formal proof could be exhaustive and it would be possible to, with respect to
a specification, prove that a program is correct. The advantage of primarily
automatic testing is that it could be rerun many times without significant

human intervention.

Both of these methods provide means for the discovery of faults within a system,
with the aim of improving the reliability of the system. Unfortunately the cost
of producing such evidence can be prohibitively high. Unit testing, for example,
increases the initial cost of development dramatically because of the time and

money required to specify and code the tests. The business perspective perceives



1. Dependable Systems, Program Verifiers and Grand Challenges 12

development time to be ‘wasted’ on writing unit tests for code that already works.
While writing unit testing requires no particular skill set beyond those required
to develop the software itself, formal specification does require a specialised skill
level and a higher degree of proficiency in mathematical reasoning. It takes many
hours to devise and execute tests on a software system, and mathematical proofs
about the properties of a system are produced at even greater expense and take
longer yet. A workforce with the required skill set inevitably costs more money,
further increasing costs of the development. The GC6 project aims to reduce
the cost of these mathematical proofs so they are a more accessible and practical

option to test a computer system. Hoare notes that:

“Critical applications will always be specified completely, and their
total correctness will be checked by machine. In many specialised
applications, large parts of a program will be generated automatically

from the specification.” [HMO05]

Any process of complete formal checking of software requires several components.
There must be a sufficiently descriptive formal specification language. That is,
either one single notation, or several notations in a valid combination, capable
of fully describing the system we wish to build. There must also be a language
which describes the implementation of the system. And, we must have some
kind of transparent” mechanism which is capable of comparing the specification
and the implementation. Currently, formal methods only allow us to examine
the specification and do not yet have sufficient scope to encompass program code
checking (the aim of GC6). The process of discovering and correcting faults
improves the correctness of the system with respect to a specification. As noted
earlier, the dependability of a software is described in terms of its reliability,
safety, availability and security. We can incorporate checks for various safety
(e.g. deadlock) and security properties into our formal proofs. It is sometimes

difficult to act with foresight in these matters.

"Tools and techniques that do not allow examination of the mechanism (e.g. proof rules)
would not seem appropriate.



1. Dependable Systems, Program Verifiers and Grand Challenges 13

It can be difficult to envisage the types of problems our system might
encounter before we can even attempt to express these properties and check their
validity. The correctness of a system is concerned with the adherence of the
program to the specification. Any measure of dependability is reliant upon the
ability to perform the appropriate tests on the program and specification. Unless
the right type of properties are discovered, we cannot be sure our system is
dependable. And even then, we cannot know if there is still some safety or security
property we have not considered or for which our tools are unable to check.
There is a measure of happenstance required to provide evidence in this situation.
Properties such as availability are difficult to quantify, and there is definite scope
outside the correctness of the software. Any measure of reliability must take
into account the underlying operating system (if any), situational aspects of the
system, and the hardware on which the software is executing. Safety and security
are the easier properties to quantify as it can be checked if there is any possible
input to the system that will lead to an unsafe or insecure state respectively. So
a careful distinction must be made between correctness and dependability, and
that a correct program with respect to its specification does not necessarily imply

that it will be dependable.

1.4 Verifying Software Systems

1.4.1 Tools for Program Verification

One of the barriers to the adoption of formal methods within the software en-
gineering community has been the lack of tool support. The proponents of the
GC6 project identified this problem early and noted that the “realisation of our
vision will depend on the development of a powerful set of tools for strong soft-
ware engineering” [Woo03]. It is clear that widespread adoption of the research
will be difficult otherwise but what remains unclear is exactly what form the tool
should take. Early suggestions were numerous and wide-ranging. The choice of

tool would have a considerable impact on the success of the project. While some



1. Dependable Systems, Program Verifiers and Grand Challenges 14

formal methods tools already existed®, the vision for the GC6 endeavour would
require a tool that would support the revolutionary, rather than evolutionary,
advancements.

Tools suggested in one of the early GC6 proposals [Woo03] included tools to
construct specifications from various system properties, tools to generate systems
from pre-existing components, verifying compilers, invariant generators to extract
specifications from existing code, refinement calculus support tools and tools to
perform automated testing in various forms. Ultimately, the project coalesced
around a set of tools for program verification (or program verifiers®) and these
are now a major component of the response to the dependable systems grand
challenge [Hoa03b, HMO05]. A program verifier accepts two inputs, a specification
and a program, and attempts to show that the program correctly meets the
specification. This allows guarantees to be made for the behaviour of a program
— to prove the correctness of a program with respect to its specification.

There are examples where formal methods have been successfully applied
to a specific problem domain. For example, Microsoft Research’s SLAM pro ject!0
has applied static verification techniques to the problem of checking for errors in
device drivers. It is claimed that unreliable device drivers cause “85% of recently
reported failures” in Microsoft’s Windows XP operating system [SBLO03]. Bill
Gates, in a 2002 keynote address at Windows Hardware Engineering Conference,

said:

“Things like even software verification, this has been the Holy Grail
of computer science for many decades but now in some very key areas,
for example, driver verification we’re building tools that can do actual
proof about the software and how it works in order to guarantee the

reliability.”

8 An exploration of existing formal methods tools appears in chapter 2.

97t should be noted that the term “verifying compiler’ is the original name for what was then
relabelled the ‘program verifier’, which is now in turn referred to as the ‘tools for program ver-
ification’. Consequently the terms ‘verifying compiler’ and ‘program verifier’ appear frequently
in much of the literature surrounding the grand challenge.

Onttp://research.microsoft.com/slam/



1. Dependable Systems, Program Verifiers and Grand Challenges 15

The SLAM project has developed a toolset that can be used to verify the temporal
safety properties of C programs [BR01]. By reducing C programs to boolean
programs (where all variables have the boolean type), various safety properties
can be automatically checked. The project has applied this technique to driver
verification with the Static Driver Verifier (SDV) tool [BBC*06]. The SDV tool
models the kernel environment and is able to check how the driver will behave
according to a set of API rules. These rules describe the expected behaviour,
e.g. correctly acquiring and subsequently releasing a lock, interacting with the
plug-and-play mechanism, and dealing with power management correctly. For
example in one particular test “running SDV on 126 WDM ! drivers with over
60 rules” found “multiple errors in almost every driver” [BBCt06]. Clearly, this
tool has been successful in identifying potential problems and may be used by
many device driver developers not just those with detailed knowledge of formal
verification methods. Herein lies the success to this tool — it is not necessary
for the user to be exposed to the underlying formal techniques. Device driver
developers have not been required to perform the specification step - this is
already preprogrammed into the SDV tool — nor do they need to annotate their
driver code — the toolset does this automatically [BR02]. The tool itself embodies
the knowledge of the experienced kernel developers, of what problems might occur
and how to identify them. This set of knowledge has been built up over many
years of study of the operating system kernel and problematic device drivers, and
is something we could not expect from any individual developer simply from ad-
hoc testing of their driver. The success of the tool is closely bound to the domain

knowledge of the SDV developers.

1.4.2 Establishing a frame of reference

The GC6 projects aim to produce a far more general purpose tool, where the spec-

ifications would need to be provided and automatic invariant extraction might

11Windows Driver Model — the driver model used in Microsoft’s Windows 98, 2000, XP and
Vista operating systems.



1. Dependable Systems, Program Verifiers and Grand Challenges 16

not always be possible or appropriate. As we shall explore in Chapter 2, there are
several general purpose formal development tools that are available, for example,
the B-Toolkit which allows abstract specifications to be incrementally refined to
an implementation level before translation into a high-level language such as C.
While formal languages such as B have proven useful in some problem domains,
the limitations quickly become apparent when compared to high-level languages
commonly used for software engineering projects. Programmers who work with
unfamiliar formal specification languages can find it a highly discouraging expe-
rience. Lack of familiarity with formal approaches and inadequate mathematical
skills sets the barrier to entry much higher than with programming languages such
as Java. The specification languages that are supported by this class of formal
methods tools are quite different from the programming languages a developer
might expect to use. Program verifiers aim to expand the scope to include a
high-level language that mainstream software developers would find more com-
fortable. In fact, it is hoped that the corpus of open source software, written in
languages such as C, C++ and Java, would be used as a means of testing the
program verifier.

The correctness of a program cannot be verified without an appropriate
frame of reference. This would take the form of a specification describing the
expected behaviour of a program. These specifications could appear as anno-
tated program code, where assertions about the program are attached to various
sections of the program code. Annotated program code is a style of programming
similar to Knuth’s literal programming [Knu92] but differs in that the description
takes a purely mathematical form to allow them to be read by an automated ver-
ification program. Assertions within the program code itself will be disregarded
by a traditional compiler and would not interfere with compilation. A verification
tool, however, would be able to make use of these assertions, which make definite
statements about the properties of the program. The assertions would be eval-
uated with respect to the program code and allow a determination to be made

about the correctness of the program. We cannot hope for absolute correctness



1. Dependable Systems, Program Verifiers and Grand Challenges 17

but the aim is to make the program as correct as reasonably possible.

Hoare suggests that upon completion of the verifying compiler it will be
possible to perform post facto verification on some of the plethora of open-
source code available and ready to be used as a test-bed for the verification
tools [Hoa03b]. It is expected that this existing open-source code will be exam-
ined and then annotated with assertions. This software would then be allowed to
enter a library of verified software components. Whether this code is built with
formal tools or verified through a post-facto checking process, the components
in this library would have been proved as correct with respect to its specifica-
tion. Raising our confidence in a library of reusable components could lead to a
shorter development cycle — specifically between implementation and delivery. If
achieved, extensive testing would not be obligatory before deployment reducing
the cost and easing the release schedule. Advancing the tools to a level that could
achieve this is expected to require a considerable effort and will take the project

at least fifteen years [Woo03].

1.4.3 Developing formal tools

Formal verification tools are considered one of the major components of the de-
pendable systems “grand challenge”. The high-degree of automation provided
by these formal methods tools is necessary in order to manage the larger spec-
ifications and proofs. This automation is one of the biggest advantages over
pencil-and-paper efforts. Of course it would still be possible to manually perform
any of these verification efforts but the resources required would likely make this
impractical. So the benefits of a tool capable of automatic checking on a large
scale should not be underestimated. The use of these tools a degree of trust in
their integrity. The verification results given to a developer by a tool will have a
large impact on the extent to which they will trust their specification. Therefore,
a developer should always accept the results given by the verification tools with
a healthy degree of skepticism. So it seems wise to consider the method by which

the verification tool itself will be constructed.



1. Dependable Systems, Program Verifiers and Grand Challenges 18

A developer would wish any program verifier to have the same properties
as the programs we are aiming to construct - reliable, dependable and bug-free.
Yet, clearly the program verifier cannot be checked with the very tool under
construction and nor would it increase the accuracy of the tool. The original
GC6 proposals acknowledge this problem. In [Woo03] it is noted that the program

verifier!? does not have to be verified:

“Note that the verifying compiler itself does not have to be verified. It
is adequate to rely on the normal engineering judgement that errors
in a user program are unlikely to be compensated by errors in the
compiler. Verification of a verifying compiler is a specialized task,

forming a suitable topic for a separate grand challenge.”

The research community has resolved to build the verification tool by the
usual software engineering methodology, and relying upon competitive testing
against competing verification tools. In “The Verifying Compiler: A Grand Chal-
lenge for Computing Research” [Hoa03b], Hoare whilst discussing grand challenge
criterial®, says that the verifying compiler will have been tested with “millions of
lines of open source software” and that the “proofs themselves will be subject to
confirmation or refutation by rival proof tools”. In a talk at the Grand Challenges
of Informatics Symposium in Budapest [Hoa06], Hoare further explained that “as
engineers we can trust checkers because they give an independent assessment of
the correctness which is backed up by testing and experience; another tool in the
armory”. Without resolving the problem completely this represents a pragmatic
solution to the problem but does start to expose some of the difficulties when
developing such a tool.

There is a potential solution to the ‘verifying the tool’ problem that at-
tempts to minimise the potential risk - develop a bootstrapping program verifi-

cation tool. That is, to construct as simple a verification tool as possible, and

1214 is still referred to as the ‘verifying compiler’ is this paper.
13These are the criteria, identified by James Gray in [Gra03], to use when deciding if a project

is a “grand challenge”.



1. Dependable Systems, Program Verifiers and Grand Challenges 19

then use this to verify another more fully-featured verification tool. In a series of
increasingly elaborate development steps a tool with the required functionality is
developed. What remains an open question is exactly what level of functionality
is required at the initial step to develop a successful end product. We still have
to construct the initial step by hand, employing careful manual checking of the
first version of the tool. There will always remain some level of uncertainty with
lingering questions.

Does the compiler produce correct machine code? Does the hardware
execute this machine code as expected? Will there be any unexpected change
in conditions which might affect the system?!* There is no easy solution to
this problem, and careful management of effort is needed to address potential
problems.

A different approach would be to forget automatic verification with a pro-
gram verifier and resort to a human manually performing the necessary calcula-
tions to check the correctness of the program. Over a large proof, the speed and
accuracy of a human is unlikely to match an automatic verifier. A manual verifier
would also be prone to mistakes, especially as the size of the program requiring
verification increased. Clearly, producing a workable tool has some distinct ad-
vantages. The tool can be tested on a variety of programs, helping to identify any
potential problems. Also, modifications can be accounted for quickly and easily

- something that is difficult with a manual process.

1.4.4 Correctness, assertions and specifications

A method for ascertaining the correctness of a program and whether it exhibits
appropriate behaviour is required. A prerequisite for this assessment is some
basis for comparison — a statement of intent for the program. A specification for a
program, written at a higher level of abstraction, is exactly that. The specification

is a description of what must be true in a program but does not specify exactly

14For example, consider processors which must work in space satellites and other environ-
ments where high levels of ionising radiation are present. To guard against errors, such as
random bit-flips, processors must be specially built on insulating substrates such as sapphire.



1. Dependable Systems, Program Verifiers and Grand Challenges 20

how it should be achieved. Any evaluation of program correctness must be given
with respect to the program’s specification — any other determination failing this
requirement should be treated with suspicion and a degree of incredulity. When
such importance is placed on a specification it necessitates one that is of good
quality and fit for purpose.

One technique for the specification of a program is the use of assertions.
Logical assertions are boolean statements - predicates used to state a premise.
We consider these premises as factual statements about a program and they can
serve as annotations of the existing program code. Therefore, assertions added to
program code are able to serve as a kind of post-hoc specification for a program.
At the critical points in the program code we we assert the state of the program
at that point in its execution, allowing a clear demonstration of correctness.
If the assertion fails, a problem has been identified with respect to the stated
specification and the correctness of the program is in question. There are no
limits to the scope of assertions and they may range from simple properties (e.g.
that an addition is performed correctly) through to complicated and wide-ranging
functional and non-functional properties.

Many programming languages have support for assertions, yet the level of
this support varies quite notably. Run-time assertion checking (RAC) allows as-
sertion statements to be checked during the execution of a program by including
boolean statements within the original program code. The Eiffel programming
language has “built-in” support for the design-by-contract method [Mey92a].
Languages such as C and C++ have the assert macro, used at run time to
provide some degree of type checking [RK88]. This macro simply expands into
an in-line if statement that is capable of aborting the program in the false
branch. A similar assert construct is available in Sun’s Java programming lan-
guage [GJSB05] but does not work by macro expansion to an in-line statement.
The Eiffel language has far richer support, including several assertion possibil-
ities such as check, require, ensure and invariant [Mey92b]. Tools exist to

augment the assertion functionality of existing languages, such as the Annotation



1. Dependable Systems, Program Verifiers and Grand Challenges 21

PreProcessor (APP) described by Rosenblum. In relating the experiences with
the APP, Rosenblum also makes efforts to characterise the kinds of assertions
that were most useful in discovering faults in program code [Ros95].

Despite the usefulness of assertions in evaluating the correctness of a pro-
gram, the difficulty still remains writing these assertions. Constructing assertions
that are succinct, accurate and meaningful can be tricky. Adding them to code
can be costly in terms of time and effort. In [Hoa03a/, while reflecting on his own

involvement in the use of assertions, Hoare addresses this problem:

“A common objection to Floyd’s method of program proving was the
need to supply additional assertions at intermediate points in the pro-
gram. It is difficult to look at an existing program and guess what
these assertions should be. I thought this was an entirely mistaken
objection. It wasn’t sensible to try to prove the correctness of exist-
ing programs, partly because they were mostly going to be incorrect
anyway. 1 followed Dijkstra’s constructive approach to the task of

programming.”

Here, Hoare warns against the verification of existing programs because, due
to their construction through informal means, they are likely to be incorrect.
It is, however, still hoped that this approach will be used to test the program
verifying tools. Hoare explains that the tools will “have been tested in verification
of structural integrity and security and other desirable properties of millions of
lines of open source software, and in more substantial verification of critical parts
of it” [Hoa03b]. Clearly, there is the desire to perform some kind of post-hoc
verification on existing software but the difficulties may deter many software

testers. Dijkstra was also critical of this approach [NR69, p.31], explaining that:

“I am convinced that the quality of the product can never be estab-
lished afterwards. Whether the correctness of a piece of software can
be guaranteed or not depends greatly on the structure of the thing

made. This means that the ability to convince users, or yourself, that



1. Dependable Systems, Program Verifiers and Grand Challenges 22

the product is good, is closely intertwined with the design process

itself.”

Nevertheless, some software companies such as Microsoft have found success
with this approach where “assertions figure strongly [and a] recent count dis-
covered more than a quarter million of them in the code of its Office product
suite” [Hoa03a]. Regardless of whether a correctness by construction approach
is favoured or not, it may simply not be possible to adopt this approach because
of financial or time constraints. Developers rarely have the resources required to
start afresh on development, so a post-hoc verification may be the only viable
option in many cases.

Any kind of post-hoc verification relies on the ability of a developer to
extract meaning from code and synthesise this into a formal model. Jones,

in [JJJ*07], relates his difficulties with this approach, noting that:

“I have several times been invited to use formalism to construct a
post-factum verification of an extant program. I confess that I have
always had to abandon the undertaking and design a new program
from what I understood to be its specification. Only in this way can

one find the abstractions which make verification tenable.”

There are two problems that exist here. The first is the difficulty associated
with writing assertions and the second is a developer’s ability to understand
a program sufficiently in order to produce a formal model from which it can
be verified. Even if we have access to documentation, the problem of program
compréhension is a difficult one. Programs that consist of thousands of lines of
code can be very difficult to understand. Without detailed knowledge of the code
to be analysed and verified, it is difficult to find valid abstractions and make
decisions on how a specification should be structured.

In any case, the reality is that supporting documentation is likely to be
inaccurate, incomplete or simply non-existent. Even with access to the original

system developers, it may be difficult to expose subtle details of the system -



1. Dependable Systems, Program Verifiers and Grand Challenges 23

long forgotten in a myriad of other projects and design decisions. The develop-
ment history of systems are littered with small changes and tweaks made to elicit
the correct behaviour. These changes further skew the ability to understand a
system as differences from the documentation confuse, or worse, make it appear
something works in a particular way when in fact it does not due to some sub-
tle change. It becomes clear that understanding cannot come simply from an
examination of the program code but must come from experiment of both the
specific program and the behavioural properties of the programming language
constructs. Another possibility for examining the behaviour of a system is a
targeted testing of the code. Program tests, or ‘unit tests’, are a common com-
ponent of the iterative programming software development methodologies such
as ‘Extreme Programming’®® [BA04]. These tests are an alternative approach to
assertions and take the form of small test cases that are frequently tested against
the system. The experimental nature of these tests helps perform the verifica-
tion (but not in a formal sense) for software written in the XP style. Tests are
commonly created upon the discovery of a defect to ensure that if the error is
ever accidentally reintroduced into the code it will be possible to discover it. The
reason for the success of tests over assertions is due to a combination of factors,
some technical and some practical.

Any work on a program verifier must be accompanied by a equivalent
amount of effort understanding the processes of comprehending program with

the aim of writing assertions to annotate existing program code.

1.5 Rationality and GC6

The GC6 grand challenge is clearly an ambitious project requiring many signifi-
cant contributions in terms of research output. Undoubtedly, such ambition can
serve the project well and help further the state of the art in formal software spec-

ification and development. To what extent this agenda serves the wider problem

15This is frequently abbreviated to just ‘XP’.



1. Dependable Systems, Program Verifiers and Grand Challenges 24

of thinking and developing with computers is, as yet, unaddresed. The purpose
of this discussion, and indeed this chapter, is to be skeptical but not pessimistic
about the future role of formal methods in software development. If we take a
closer look at formal methods, it is possible to ask some probing questions of its
past record and possibilities for its future. One such question is why have formal
methods not succeeded in the wider software development community? Possible
explanations include the unfamiliar notations, developers’ lack of mathematical
background or the lack of good tools. Any answer is connected to all of these
issues but the details seem to lie in the underlying approach formal methods
takes to software development. This section introduces the concepts and rational
and empirical views of software development and explores to what extent formal
methods endorses the former.

With a similar focus on answering fundamental scientific questions, some
have questioned the impact of FM on software engineering research, e.g. the
responses of Jackson, Holcombe and Tully to Hoare in [JJJ*07]. This underscores
one of the difficulties of such a grand challenge - we can not foresee the long-term
impact, beyond the pure scientific research itself. Hoare has previously addressed
this concern, stating that “modern software engineering practice owes a great
deal to the theoretical concepts and ideals of early research in the subject” but
accepts that it can take a long time to realise these results [Hoa96]. The project
envisions that, in 20 to 50 years, programmers will make “no more mistakes
than professionals in other disciplines” and that “their remaining mistakes will
be detected immediately and automatically” [HMO05].

Developing software is, however, not just concerned with producing code,
it is a complicated activity which must also involve designers, users and domain
experts. Software systems cannot exist only in a formal world, they must exist
‘in the wild’ where phenomena are unreliable, interactions with users are unpre-
dictable and the ability of other systems to respond appropriately is uncertain.
Software is also increasingly subject to changing requirements and must be able

to change and evolve appropriately. Programming techniques that do not account



1. Dependable Systems, Program Verifiers and Grand Challenges 25

Specification

Abstraction Satisfaction

Satisfaction Abstraction

Application Progam

Figure 1.1: Relations between specification, program and application (recreated
from [TM87, p.11])

for this style of software development seem to be at an inherent disadvantage.
Aside from the technical aspects of software development there are also many so-
cial and organisational difficulties. Holcombe notes that “high profile IT failures
are caused — not by inadequate technical design — but by political, organizational
and human failures” [JJJ*07]. Large software projects seem particularly trou-
blesome with Yourdon in 1998 claiming that “approximately 25 percent of large,
complex projects are cancelled before completion” [You98]. In 2005, Charette,
citing several large project failures, claimed that of “the IT projects that are
initiated, from 5 to 15 percent will be abandoned before or shortly after delivery
as hopelessly inadequate” [Cha05].

It is important to consider the potential sources of error and how the differ-
ent techniques can be applied to these problems. Figure 1.1 shows a diagram, from
Turski and Maibaum [TM87, p.11], that illustrates the relationships between ap-
plication, specification and program. The diagram shows the satisfaction relation
— the relation indicating whether a program satisfies the specification. They also
consider an ‘abstraction’ relation between application and specification — whether
a specification is a valid abstraction of the application. Both these relations are a

potential source of error and, as shown, the success of the specification/program



1. Dependable Systems, Program Verifiers and Grand Challenges 26

relationship is dependent on the success of the specification/application relation-
ship. Yet the relations are separate, one is concerned with the program satisfying
its specification, and the other is concerned with a specification accurately de-
scribing the problem. Jackson terms the specification a “logical firewall” as it
divides the concerns of “ ‘building the program right’ and ‘building the right
program’ ” [Jac06b]. Consequently, it is possible for the specification/program
relationship to be satisfied but fail to produce the desired effects due to an in-
accurate model of the world. All of the formality (and the optimisation) exists
between the program and specification and it is this relationship which can be
formally reasoned about. With such great risk at the early stages of the de-
velopment process, care must be taken to ensure the requirements are gathered
accurately and that the initial specification is correct. The impact of a mistake
introduced at an early stage can be magnified greatly at a later implementation
stage. Finding these mistakes can require an intensive effort but is necessary to
reduce the likelihood of them occurring. Hoare acknowledges the importance of
these early stages, noting that “the discovery at this stage of only a single error
and a single simplification would fully replay all the effort expended” [Hoa96].
Another area of consideration is how a specification is written. How is
the initial specification produced? The relationship between the problem and
the specification cannot be formalised, is not calculable and so we cannot apply
verification techniques. Checking the specification must rely on a process of
validation to check whether the specification is an accurate representation of the
problem. There is no more authoritative document against which the specification
can be judged — it is the point at which the formal and informal worlds meet. The
informality of the problem domain must be constrained sufficiently, yet accurately,
in order to capture the correct details in the specification. Hoare, relating his
experience with assertions in [Hoa03a], expressed his views on the character and

form a specification should take:

“There is no conceivable way to prove a specification correct — against

what specification would that be? Such a higher-level specification if



1. Dependable Systems, Program Verifiers and Grand Challenges 27

it existed, should have been chosen originally as the starting place for
the design. So the only hope is for developers to make the original
specification so clear and so easily understandable that it obviously
describes what is wanted, and not some other thing. That’s why it
would be dangerous to recommend for specification anything less than
the full language of mathematics. Even if this view is impractical,
it represents the kind of extreme in expressive power that makes it
an appropriate topic for academic research. Certainly, if the basic
mathematical concepts turn out to be inadequate to describe what
is wanted, there is little hope for help from mathematics in making

correct programs”

It seems clear that more research is needed in this area. Jackson subscribes to
this view, calling for further developments in the way software is described and

attention paid to the education of new software developers:

“In our pursuit of well-engineered descriptions of the real world we
should recognize — and every student of software engineering should
be taught — that formalization can show the presence of description

errors, but not their absence.” [Jac98]

Cliff Jones, in [JJJ*07], takes a similar view, reflecting that the problems occur
when the specification is not always developed with a true sense of the environ-

ment in which it will be expected to operate:

“The most common cause of failure in a system is not that the program
fails to match its specification but the fact that the specification of
the technical component makes no sense when combined with the
expectations, professional notions of responsibility and confidentiality

of the human components of the system.”

The discovery of these errors still relies on our ability to conceive of ap-

propriate error scenarios and the potential consequences for our software. The



1. Dependable Systems, Program Verifiers and Grand Challenges 28

problem of unknown and unexpected external forces is well-documented in en-
gineering and construction. Henry Petroski’s idea that was not the result of a
failure to check the design but that “the possibility of failure of the Tacoma Nar-
rows Bridge in a crosswind of forty or so miles per hour was completely unforeseen
by its designers, and therefore that situation was not analyzed.” [Pet92, p.165].
Nevertheless, writing the initial specification is a difficult problem and one
that may be expected to remain so. Achieving a fault-free system is not an easily
achievable goal and the problems might not be solely down to problem with the
specification. There is also the question of to what extent we need correctness
and whether other attributes are more important. Turski sees a softening of
attitudes with correctness being replaced by dependability resulting in “a deep
shift in the perception of quality” [Tur03]. Turksi emphasises that building a
system to catch all the error cases is not viable and that sometimes recovery is a
better option. Effort spent on an appropriate recovery mechanism can be more
beneficial. “Crash-only” software embraces this view of software development
— that software should be able to crash safely and then recover quickly [CF03].
Turski uses an analogy that nobody complains that the tyre goes flat, just that
it happens at an inopportune moment. Accepting that flat tyres will happen, he
argues the best policy is to make it easy to recover or cope with the failure.
Frederick Brooks is clear that the main difficulties in building software
have nothing to do with the programming languages, development tools or other

miscellaneous implementation details [Bro87]:

“I believe the hard part of building software to be the specification,
design, and testing of this conceptual construct, not the labor of rep-

resenting it and testing the fidelity of the representation.”

This early stage is concerned with developing an appropriate specification for
our problem. The issues are of an empirical nature and concerned with Brooks’
“essential complexity”. As Brooks explains in his 1987 article “No Silver Bul-

let” [Bro87], this is the fundamental nature of the problem to be solved:



1. Dependable Systems, Program Verifiers and Grand Challenges 29

“The essence of a software entity is a construct of interlocking con-
cepts: data sets, relationships among data items, algorithms, and
invocations of functions. This essence is abstract, in that the concep-
tual construct is the same under many different representations. It is

nonetheless highly precise and richly detailed.”

Complexity in this form cannot be avoided, nor can it be abstracted away
as it is an irreducible complexity. Beyond the essential complexity, computer pro-
grammers have struggled with issues that were not part of the original problem,
issues that seemed to be introduced as part of the process of writing software.
The decisions made at this stage are not intuitive or a priori reasoning but are
based on solid experimental evidence and testing. Unless these decisions and ex-
periments are based on familiar knowledge Vincenti terms this a “radical” design
process [Vin93]. If we engage with a “normal” design mode, where the problem
and environment may be familiar or regular, then it is possible for decisions to
be made based on past experiences. With reference to the work of Naur [Nau85],
the role of intuition in software development is considered in chapter 6. In this
process of testing the conceptual idea of the software, it has not yet reached a
deductive rational stage of reasoning.

The GC6 project is primarily concerned with the specification/program re-
lationship. Specifically, it is focused on developing tools and techniques that allow
a working implementation to be produced from a formal specification. Turksi and
Maibaum label this a ‘calculable’ relation as it is possible to determine in finite
time if the relation holds [TM87, p. 10]. The tools and techniques developed
under the GC6 project aim to exploit the mathematically deductive nature of
_the relation to produce an implementation. In deductive reasoning, a sequence of
statements are derived from the initial premise to reach a final goal. In this case,
the initial statement is the specification and the final goal is the justification for a
correct implementation. It is expected that, at this stage of the software develop-
ment process, all conceptual decisions and experimentation has been completed.

While some level of experimentation may still occur, this can only be in terms of



1. Dependable Systems, Program Verifiers and Grand Challenges 30

implementation technique.

While the GC6 project is concerned with program/specification relation,
it is not primarily concerned with the problem/specification relation. As has
been discussed, the problem/specification relation is not calculable and so is not
amenable to formal deductive reasoning. The process of constructing a specifi-
cation is primarily concerned with empirical observations and experimentation,
and does not take place within a deductive rational framework. Where “radical”
design occurs an environment is required to support exploration of conceptual
ideas and empirical observations. This is difficult to achieve in the later stages
of software development, where the deductive, rational part of the development
process is emphasised. Formal methods, as used by GC6, are limited in this
regard to an inherently rational view of software constrained to the calculable

relationships.

1.6 Summary

This chapter examined the aims of the Grand Challenge on dependable systems
evolution. It began by briefly reviewing the origins of the software crisis before
moving on to an examination of the proposed verifying compiler. The potential
benefits and implications of the use of these verification tools for software devel-
opment were then considered. Finally, it questioned to what extent the challenge

endorsed a rational view of software development.



2. Formal Methods: Specification and Analysis 31

Chapter 2

Formal Methods: Specification

and Analysis

“There are two ways of constructing a software design: One way is
to make it so simple that there are obviously no deficiencies, and the
other way is to make it so complicated that there are no obvious de-

ficiencies. The first method is far more difficult.”

— C. A. R. Hoare

“It’s hard enough to find an error in your code when you're looking
for it; it’s even harder when you’ve assumed your code is error-free.”

— Steve McConnell [from Code Complete]

This chapter provides an introduction to the formal methods used to develop
software. A brief historical background to formal methods is given, followed by
an overview of some common formalisms that will be referenced in this thesis.
Tools available to support these formal notations are also identified and discussed.
Furthermore, this chapter will discuss how these notations and tools can be used

in the process of software specification. The final sections of the chapter discuss



2. Formal Methods: Specification and Analysis 32

some of the common criticisms of formal methods.

The purpose of this chapter is to identify some of the common formal tools
and techniques to allow for further discussion throughout this thesis. The chap-
ter is not intended to be an exhaustive review of formal approaches to software
development. Instead, the chapter examines the changing approaches to soft-
ware development with formal methods and uses some examples to illustrate the
discussion.

This chapter does not provide a detailed historical account of the de-
velopment of formal methods. Background information on the circumstances
of the software crisis and the history of the software industry can be found

in [CK03] and [CKA04].

2.1 The changing role of Formal Methods

As chapter 1 explored, the software crisis of the 1960’s manifested itself through
software that did not meet its requirements, was not fit for purpose, and was not
completed on schedule or within budget. Solving the problems identified dur-
ing the software crisis remained a prominent goal for many years, occupying the
efforts of many software researchers. Proposed solutions to the crisis included
the development of a wide variety of software tools, development processes and
methodologies. Yet none of these developments were completely successful. By
1987, Fred Brooks’ “No Silver Bullet” [Bro87] article argued strongly that no
individual technology would ever make a ten-fold improvement in productivity
within 10 years. There would be no single technology capable of providing an
all-encompassing solution to the challenges presented by software development.
Software was a difficult problem and destined to remain so. Since the software cri-
sis, the academic and industrial communities seem to have accepted the inherent
difficulties in developing software — unable to rely on any one tool or technique.
This thesis is primarily concerned with the first two manifestations — not meeting

requirements and not being fit for purpose — of the software crisis and not with



