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Abstract. TRACE observations from April 15th, 2001 of transverse oscillations
in coronal loops of a post-flare loop arcade are investigated. They are considered
to be standing fast kink oscillations. Oscillation signatures such as displacement
amplitude, period, phase and damping time are deduced from 9 loops as a function
of distance along the loop length. Multiple oscillation modes are found with dif-
ferent amplitude profile along the loop length, suggesting the presence of a second
harmonic. The damping times are consistent with the hypothesis of phase mixing
and resonant absorption, although there is a clear bias towards longer damping times
compared with previous studies. The coronal magnetic field strength and coronal
shear viscosity in the loop arcade are derived.

1. Introduction

In the last decade the advent of the fleet of space-born solar observato-
ries such as Yohkoh, Solar and Heliospheric Observatory (SoHO) and
the Transition Region And Coronale Explorer (TRACE) has turned
continuous monitoring of the activity in the solar atmosphere into a
reality. The resolutions of the onboard instruments have proven to
be sufficient to detect simultaneously clear temporal and spatial sig-
natures of magnetohydrodynamic waves in various coronal structures:
propagating slow magnetoacoustic waves in polar plumes (Deforest and
Gurman, 1998) and in coronal loops (Berghmans and Clette, 1999),
standing slow magnetoacoustic waves in coronal loops (Kliem et al.,
2002), global fast magnetoacoustic waves best known as EIT waves
(Thompson et al., 1998), and fast magnetoacoustic kink oscillations in
coronal loops (Aschwanden et al., 1999; Nakariakov et al., 1999).

Aschwanden et al. (1999), Nakariakov et al. (1999), Schrijver and
Brown (2000), Schrijver, Aschwanden and Title (2002) and Aschwan-
den et al. (2002) analysed EUV TRACE observations that show trans-
verse oscillatory displacements of coronal loops after the occurence of a
violent event such as a flare in its vicinity. Aschwanden et al. (1999) and
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Nakariakov et al. (1999) have interpreted these oscillations as standing
fast magnetoacoustic kink waves, triggered by a passing disturbance
that originated from the flare site.

The comparison between such wave observations and MHD wave
theory allows for the determination of coronal physical parameters of
the medium that supports the wave from the wave signatures. This
approach is known as MHD coronal seismology (e.g. Uchida, 1970;
Roberts, Edwin and Benz, 1984; Nakariakov et al., 1999). Especially
parameters whose values are not well-established or not open to direct
measurements are of interest (e.g. coronal magnetic field strength and
dissipation coefficients). Using the dispersion relation of fast kink waves
(Edwin and Roberts, 1983), Nakariakov and Ofman (2001) determined
the coronal loop magnetic field strength to be in the range 4-30 G.

Nakariakov et al. (1999) pointed out that the oscillations experience
a quick decay, with a typical e-folding damping time of 870 s. Aschwan-
den et al. (2002) derived from a set of ten loop oscillations an average
damping time of 580 ± 385 s. However, it is often difficult to measure
the decay time because of the low signal-to-noise ratio.

The damping times of these oscillations is too quick to be explained
by the theoretical values of coronal viscosity or resisitivity. Therefore,
various hypothesis have been put forward to explain the oscillation
damping. Nakariakov et al. (1999) proposed that the shear viscosity or
resistivity is anomalously high, by nine orders of magnitude in compar-
ison with values from Braginskii (1965) and actually of the same order
as the bulk viscosity coefficient. Schrijver and Brown (2000) proposed
that the transverse oscillation is caused by the response of the loca-
tion of the photospheric loop footpoints to near-surface solar flares. In
their hypothesis the damping rate is fully determined by photospheric
conditions. The fact that most observed transverse loop oscillations
have a preference to oscillate in a direction parallel to the solar surface
as compared to perpendicular cannot be explained by this hypothesis
and instead favours a hypothesis where the oscillation is excited by
a coronal disturbance from the side. Roberts (2000) compared several
possible damping mechanisms. He eliminates optically thin radiation,
thermal conduction, wave leakage from curvature and loop footpoints
as realistic explanations (see also Cally, 2003). However, De Pontieu,
Martens and Hudson (2001) argued by considering more advanced at-
mospheric models that chromospheric wave leakage may account for the
damping after all. But Ofman (2002), using a 1.5D MHD simulation,
showed that the oscillation damping due to chromospheric wave leakage
exceeds in most cases the observed damping times by a factor five.
Roberts (2000) furthermore proposed that the damping rate may be
enhanced by the presence of small-scale, transverse inhomogeneities
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through a mechanism such as resonant absorption. He illustrated this
idea with the mechanism of Alfvén wave phase-mixing. Ruderman and
Roberts (2002) considered resonant absorption of the global oscillation
in which the wave energy is transfered to local, torsional oscillations.
Notably, in this model the wave decay does not depend on dissipation.

Ofman and Aschwanden (2002) used the gathered collection of ob-
servations of Aschwanden et al. (2002) to test the hypothesis of phase
mixing (Roberts, 2000) and ideal kink wave damping (Ruderman and
Roberts, 2002). They concluded from scaling relations involving the
oscillation parameters and loop structure, that the observations match
best the hypothesis of phase mixing, although the hypothesis of res-
onant absorption could not be ruled out. In the phase mixing model,
the observationally deduced shear viscosity coefficient is at least five
orders of magnitudes larger than theory predicts (Braginskii, 1965),
in agreement with the earlier findings of Nakariakov et al. (1999).
Ofman and Aschwanden (2002) argued that the viscosity is enhanced
by small-scale turbulence or kinetic processes.

Goossens, Andries and Aschwanden (2002) argued that the quick
decay of the kink oscillations could still be explained in terms of reso-
nant absorption, provided the ratio of the inhomogeneity length scale
to the radius of the loop is allowed to vary from loop to loop. However,
the exact reproduction of the observationally determined decay times
would require the loop cross-section to be sufficiently smooth, which
is not consistent with the assumption of a thin boundary layer used
to obtain this analytical result. Aschwanden et al. (2003) develop that
study further, attempting to test observationally the analytical expres-
sions for the period and damping time due to resonant absorption,
derived for loop models with thin nonuniform boundaries. Thickness
of the nonuniform layer in oscillating loops is estimated for 11 events
analysed by Ofman and Aschwanden (2002). It is found that the density
ratio predicted by the damping time, is a factor of ∼1.2-3.5 higher
than the observationally estimated density ratio. This discrepancy is
suggested to be connected with the narrowness of TRACE bandpasses.

De Moortel, Hood and Ireland (2002) re-analysed the event discussed
by Aschwanden et al. (1999) and Nakariakov et al. (1999) and two addi-
tional event, checking whether the exponential decay law gives the best
fit of the observational data. It is suggested that the best approximation
may be given by the exp(−tn)-law with a constant parameter n.

Certainly, the results obtained with the use of only 11 or less oscillat-
ing loops cannot be considered as statistically significant, especially tak-
ing into account the low signal-to-noise ratio. The further development
of this study requires a serious improvement of the statistics.
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The contribution of this paper to the understanding of the trans-
verse oscillations, is a detailed observational study of the oscillatory
behaviour of an ensemble of several loops forming an arcade. The event
analysed contains about 9 distinct oscillating loops, allowing for the
determination of the oscillation parameters such as oscillation periods,
phases, amplitudes and damping times with reasonable accuracy. The
observational data set used in this paper has originally briefly been
analysed by Reeves et al. (2001). Schrijver, Aschwanden and Title
(2002) and Aschwanden et al. (2002) later reanalysed this data set,
but the result has not been considered in the context of the scaling
laws discussed above.

There have been just a few theoretical studies of the interaction of
MHD waves with coronal arcades and the main attention was paid to
the evolution of vertically propagating waves and to normal modes.
In particular, propagation of impulsively generated waves in coronal
arcades were simulated numerically by (Oliver, Murawski and Ballester,
1998). Modes of oscillation of potential and nonpotential magnetic
arcades have been studied by (Terradas, Oliver and Ballester, 1999).
Developing this study, (Arregui, Oliver and Ballester, 2001) modelled
normal modes of arcades with a shear, considering coupling of com-
pressible and incompressible modes.

The paper is structured as follows. In Section 2 the details and con-
text of the TRACE observation is given. In Section 3 the procedure for
the determination of the oscillation signatures is set out. Furthermore
the determined wave parameters are discussed. In the final section these
results are compared with previous studies. Also the coronal magnetic
field strength and viscosity coefficient are determined from the wave
parameters.

2. Description of the observation

The present study focuses on the 171 Å wavelength observations from
the TRACE instrument (Handy et al., 1999) on the 15th of April 2001
between 22:00:43 and 22:27:50 UT. The temporal cadence of the se-
quence in the first 20 minutes is equal to 26 seconds, but in the last 10
minutes increases to one minute. The spatial resolution of the TRACE
instrument is one arcsecond.

The instrument was pointing to the active region NOAA 9415, then
on the southwestern limb. This active region was at the time active and
produced at 13:48 UT an GOES X-ray class X14.4 flare and following
smaller flares. The flare activity resulted in a postflare loop arcade,
that was first seen by TRACE at 14:40 UT. Because the active region
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Figure 1. Left: Subfield of an 195 Å EIT/SoHO full-disk image on 15 April 2001
at 20:24 UT with NOAA active regions and field of view of the TRACE subfield.
Right: Subfield of TRACE observation of the same day at 22:11 UT with paths used
in the analysis.

is close to the solar limb and the arcade axis lies quasi-meridionally,
the spacecraft looks along the plane of the arcade loops. The two
loop legs are in the same line of sight. This arcade is disturbed by
a prominence eruption nearby to the north, which presumably is the
cause of the transverse oscillations in the arcade loops. The transverse
loop oscillations appear as a back and forth motion of the loop plane.
At first glance, the oscillation period is of the order of five minutes
and 2-2.5 oscillation cycles can be clearly distinguished. Furthermore,
the oscillation amplitude decays with time. However, it is difficult to
identify individual oscillating loops due to the superposition of shifting
loops and/or the two legs of the same loop. For example the loop in
path G seems at times double, where the two parts oscillate with the
same amplitude, period and phase. This suggests that the two parts
are the two legs of the same loop that are seen almost along the same
line of sight.

3. Analysis of oscillation signatures

Nine paths are constructed using a polynomial, fourth-order fit of each
coordinate of a series of points that are selected by eye to follow a
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Figure 2. Path G with location of image sets IG,x overlaid on data at 22:11 UT.

loop in one particular image (at 22:11 UT). As can be seen in Figure
1, the paths are essentially straight lines. From each path a uniform
grid is build that is fixed in time and has a width of 25 pixels, which is
sufficienty wide to include neighbouring loops and to capture the trans-
verse motions of the loop. On each grid point the intensity Ip(t, x, y)
is interpolated, where x and y are the longitudinal and transversal
projected coordinates in the plane of the sky respectively. The longitu-
dinal coordinate x is measured from the path top, near the loop top,
downwards.

Table I shows the spatial path and loop details for each path. The
loop length, L, is calculated by assuming that the height of the loop top
above the solar limb, H, is the radius of a circular loop. The analysed
x-interval is the path segment, measured from the loop top, that has
been included in the further analysis. At greater distances down the
loop, the loop intensity signal becomes uncertain as it is superimposed
on lower lying loops. The analysed loop fraction is the corresponding
fraction of the length of a circular loop that the x-interval represents.
Since the two loop legs are in the same line of sight, the observed loop
fraction is in reality twice as long.

For fixed positions x, at two pixel intervals (corresponding to a
distance of 0.7 Mm), the sets of segment images Ip,x(t, y) are examined.
Figure 2 shows as an example path G with the location of the segments
IG,x(t, y) overlaid. These segment images show the transverse position
of the loop width as a function of time and are therefore ideal for
detecting transverse loop oscillations.

The position of the centre of the loop width is captured in segment
images Ip,x(t, y) interactively by selecting by eye sets of coordinate pairs
(ti,yi) that follow the loop profile. Figure 3 shows as an illustration four
segment images at different positions along the loops D and G. The

SolPhys_article.tex; 17/06/2004; 18:13; p.6



TRANSVERSE OSCILLATIONS IN CORONAL LOOP ARCADE 7

Table I. Path parameters

Path ∆x H L ∆s/L

(Mm) (Mm) (Mm)

A 9 65 203 0.17

B 5 68 214 0.12

C 12 70 218 0.19

D 18 73 228 0.23

E 10 74 233 0.17

F 7 74 233 0.14

G 15 76 237 0.20

H 7 75 235 0.14

I 12 75 236 0.18

∆x is the analysed x-interval, H is the loop height defined
as the projected distance between the loop top and the so-
lar limb and L is the length of a circular loop with radius
H. The analysed loop fraction, ∆s/L, is the fraction of
the circular loop that is covered by ∆x, and is calculated
as arccos((H − ∆x)/H)/π. If the superposition of the
loop legs is taken into account, this fraction needs to be
doubled.

measurement error takes into account the interactive selection (set at
spatial resolution) and the temporal cadence. An automatic method
(e.g. finding the spatial maximum at fixed times) would be preferable
if it was not for the frequent loop superpositions that lead the method
astray. For example in path C the examined loop overlaps in the last
ten minutes with another loop. The resulting superposition gives the
false impression that the loop oscillation amplitude is growing. The
human eye is in such cases superior in disentangling the scene, but
this subjectivity may also cause systematic errors. For a clear example,
without superposition, the interactive approach has been compared to
an automated method based on finding for each time t the position
of the centre of the loop profile by fitting a superposition of a linear
and Gaussian profile to the intensity. In this case, the two methods
produced similar results.

Besides the loop oscillation, the loop position also shifts slowly in
time. This is estimated with a linear fit ylin,i(ti). The position ξi =
yi - ylin,i is considered as the displacement of the loop centre from the
equilibrium position at fixed position x along the loop. Two approaches
for examining the displacement coordinates (ti,ξi) have been chosen.
Firstly, a wavelet analysis is performed, using the software provided
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Figure 3. Left: Set of four images ID,x(y, t) of the segments c,h,m and t, correspond-
ing to x = 0.7, 3.6, 6.4 and 10.0 Mm from the loop top respectively, along the loop
in path D. The displacement coordinates are shown as crosses. The solid curve is
a fitted function of the form (1) with n=1. Right: Same as before, but for path G.
The segments c,h,m and t correspond to x = -0.1, 3.5, 7.1 and 10.6 Mm from the
loop top respectively.

by Torrence and Compo (1998). The coordinates are resampled to a
regular time step of 26 seconds and used as input for a 1d wavelet
transform with the Morlet mother wavelet. The Morlet wavelet is apt
for detecting quasi-periodic signals. The resulting wavelet transform
is a convolution that is a function of time and period. Statistically
significant signals are extracted and the period, amplitude and phase of
the quasi-periodic oscillation determined. Figure 4 shows an example of
a wavelet transform. The dashed line denotes the cone of influence of the
edges of the time series. Only results outside of the cone are considered.
The full black line is a contour of the 95 % confidence level. The two
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Figure 4. Magnitude of the one-dimensional wavelet transform with the Morlet
wavelet of the displacement coordinates (ti,ξi) from image IG,c(y, t) of path G, as a
function of time and period. The segment c corresponds to a distance x=-0.1 Mm
from the looptop. The solid line is the 95% confidence level. The black, dashed line
shows the cone of influence of the edges of the time series. The white lines show the
location of the detected wave signal from which the wave parameters A = 750 km,
P = 338 s and φ = 140◦are deduced.

white lines bracket as a function of time the position of a maximum in
period of the wavelet power, which is statistically significant and which
lies outside of the cone of influence of the edges. It is also possible to
determine information about the damping of the signal (De Moortel
and Hood, 2000; De Moortel, Hood and Ireland, 2002). The temporal
evolution of the amplitude extracted from the wavelet transform is in
essence a convolution of the real amplitude profile with a gaussian with
a width equal to the oscillation period. Because the damping time is
not much longer than the oscillation period, the amplitude evolution
is blurred. Therefore the damping time is not determined from the
wavelet analysis.

Secondly, the displacement coordinates (ti,ξi) are fitted, using non-
linear least-squares, with a single, damped oscillation mode of the
form

ξn(t) = Ae−γntn cos(ωt + φ) , (1)
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where P = 2π/ω and τn = γ−1/n are the period and e-folding damping
time respectively. The values for n of 1,2 and 3 have been applied. The
parameters determined from the wavelet transform are used as first
estimates in the curve fitting. The solid curves in Figure 3 are curves
of the form (1) for n=1.

Overall the results from the wavelet analysis and the curve fitting
are consistent. It is clear though, that the wavelet transform has the
advantage over the curve fitting method in that it can detect multiple
periods and period modulations. When this occurs the parameters of
the curve fitting may be a mix from multiple contributions, especially
when the amplitudes are comparable. The results from this method are
then unreliable.

For each segment in the x-direction along the examined loop of
each path, the oscillation parameters, i.e. P , A, φ and τn, are deter-
mined. For the former three parameters a weighted average is calculated
from the measurements for different n. Furthermore a weighted average
across x is taken. If a clear trend as a function of x is observed or
is expected, then alternatively a weighted linear least-squares fit is
calculated. The results are presented in Tables II and III.

For the loops in paths A,B and F it has not been possible to track
their position reliably the whole time due to superpositions with neigh-
bouring, brighter loops. Also, for the same reason, the displacement
measurements are noisier than for other loops. The determined param-
eters from the curve fitting are therefore less reliable. Especially for
the damping time, which is more sensitive to noise than the period as
it varies slower than the oscillation with time, the error is large. Fur-
thermore the value of the damping time varies too much from segment
to segment along each of these loops. Therefore the damping times for
these loops have not been included in Table II. The wavelet analysis
could not pick up any significant peaks in period for loops B and F.

For periods and damping times no x-dependency is seen. In other
words, different segments of the analysed loop are observed to oscillate
in phase and each loop segment damps at the same rate. The oscillation
periods are in the range 200-450 s, which is typical for transverse
loop oscillations (Aschwanden et al., 2002). Furthermore the periods
obtained from the wavelet analysis and from the curve fitting method
are mutually consistent.

All the measured loop oscillations are damped, with damping times
in the range of 800-1800 s. The range of oscillation periods and damping
times are consistent with the results of Reeves et al. (2001). A clear
distinction between the different damping profiles used in the curve
fitting (n=1,2 or 3) cannot be made.
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If the observed oscillation is a standing wave, then it is expected
that the displacement amplitude should vary with distance while the
phase remains constant. For a circular, homogeneous loop with its loop
plane in the line-of-sight, the amplitude of the fundamental mode is
expected to be of the form

A(x) = A(xtop) − (A(xtop)/H)x , (2)

where H is the loop height. Using the previous formula and considering
that A(xtop) and H ly in the ranges 100-600 km and 65-76 Mm respec-
tively, the amplitude in the observed loops is expected to decrease as a
function of x by a value of the order of -5 km Mm−1. On the other hand
if the oscillation is a second harmonic standing mode, the displacement
has a node at the loop top. The spatial dependency of the amplitude
is then of the form

A(x) = Amax sin(2 arccos((H − x + xtop)/H)) . (3)

Near the loop top the amplitude is therefore expected to increase as a
function of x.

In most cases the sign of the slope of the amplitude is negative,
implying that the amplitude decreases with distance from the loop
top. The value of the slope is though often of low statistical confidence.
Furthermore in almost all cases the phase does not show any trends as
a function of x. These results are in agreement with a fundamental fast
kink mode oscillation. The loops in paths C and D are different from
the other loops as they show multiple modes of oscillation. These two
cases will be discussed in more details below.

The first 12 Mm from the loop top of the loop in path C are exam-
ined. For most positions along the path an oscillation with a period of
250 s is found. But at several positions, especially away from the loop
top, the wavelet analysis reveals two significant periods. Besides the
250 s period oscillation, there is also an oscillation mode with a period
around 450 s. The 450 s period falls within 1 standard deviation of the
double of the 250 s period, i.e. | P450 − 2P250 | /

√
2 σ250 ≈ 1, where

σ250 is the error (standard deviation) of the 240 s period measurement.
The curve fitting method picks up the 250 s period oscillation mode,
except at two positions (at x equal to 5.5 and 11 Mm) where the other
mode is found.

In the presence of two oscillation modes, the fitting of the measure-
ments with a curve consisting of a single oscillating frequency may yield
inaccurate results, especially if the oscillation amplitudes are similar.
Therefore in this case the period, amplitude and phase from the wavelet
analysis are preferred. The displacement amplitude of the 450 s period
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Table II. Periodicity and damping of transverse loop oscillations

Path wavelet P fit P τ1 τ2 τ3

(s) (s) (s) (s) (s)

A 301 ± 50 326 ± 107 - - -

B - 393 ± 77 - - -

C 247 ± 33 315 ± 144 (980)(a) 920 ± 290 860 ± 300

448 ± 18 (405 ± 35) - (1550 ± 640) (1400 ± 320)

D 242 ± 31 - - - -

396 ± 20 392 ± 31 1180 ± 1050 1780 ± 560 1840 ±580

E 379 ± 54 382 ± 12 1320 ± 570 1350 ± 480 1180 ± 340

F - 243 ± 103 - - -

G 346 ± 78 358 ± 30 1030 ± 680 1060 ± 420 920 ± 260

H 317 ± 80 326 ± 45 960 ± 420 1010 ± 380 930 ± 310

I 325 ± 107 357 ± 89 (960 ± 760) 1400 ± 580 1360 ± 650

Values between brackets are uncertain measurements.
(a) Based upon one measurement.

Table III. Displacement amplitude and phase of transverse loop oscilla-
tions

Path A(x) φ(x)

(km) (deg)

A 453 ± 140 - (34 ± 27) x 231 ± 38

B (156 ± 188 + (30 ± 52) x) 184 ± 94

C 342 ± 66 + ( 1 ± 12) x (a) 102 ± 112 (a)

430 ± 109 - (25 ± 14) x (a) 7 ± 188 (a)

D (135 ± 66 + (14 ± 7) x)(a) -

487 ± 77 - (13 ± 9) x 183 ± 9 - (6.6 ± 1.7) x (b)

E 424 ± 69 - (10 ± 12) x (c) 191 ± 18

F - 176 ± 143

G 557 ± 68 - (12 ± 14) x 171 ± 65

H (218 ± 50 - ( 8 ± 9) x) (a) 172 ± 92

I 238 ± 86 - ( 6 ± 12) x 143 ± 76

Values between brackets are uncertain measurements.
(a) Based upon estimates from wavelet analysis.
(b) Linear trend in phase observed for x < 10 Mm.
(c) Based upon measurements for x < 7 Mm.
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oscillation decreases with distance from the loop top at a rate of 25 ±
14 km Mm−1. This is actually confirmed by the curve fitting method.
On the other hand the amplitude of the 250 s period oscillation does
not change statistically over the analysed distance. The damping times
are taken from those measurements where the curve fitting method
clearly picks up one of the two oscillation modes. This is the least
succesfull for the case n=1. For the 250 s and 450 s period oscillation
modes a typical damping times of around 900 s and 1450 s are found
respectively. This corresponds to a damping by a factor e−1 in about
3.2 and 3.6 oscillation periods respectively.

The loop central in path D is analysed along a distance of 18 Mm
measured from the loop top. The left hand side of Figure (3) shows the
displacement as a function of time at four segments along the loop. The
main results of the measured periods and amplitudes as a function of
distance are shown in Figure 5. The curve fitting method confidently
finds, as shown in plot (b) of Figure 5, for distances within 15 Mm from
the loop top an oscillation mode with a period of 400 s. This period
is also found by the wavelet analysis. At distances beyond 15 Mm the
measured periods have a growing spread. This is probably because of a
growing error in the selection of the displacement coordinates at larger
distances where the loop’s visibility decreases, although it may also
be affected by the presence of a second oscillation mode. Namely, from
distances of 5 Mm onwards from the loop top the wavelet analysis finds
a second significant oscillation mode with a period of about 240 s. Plot
(a) of Figure 5 shows an example of the wavelet transform at a distance
of x = 11 Mm from the loop top. Two periods are detected. The value
of the 400 s period oscillation is within two standard deviations from
double the 240 s period oscillation, i.e. | P400 − 2P240 | /

√
2σ240 ≈

2, where σ240 is the error (standard deviation) of the 240 s period
measurement.

The displacement amplitude of the 400 s period oscillation mode
clearly diminishes with distance with a linear slope of 13 ± 6 km
Mm−1 (see plot (c) in Figure 5). On the other hand, using the wavelet
measurements of the 240 s oscillation for x < 8 Mm, the amplitude of
this mode shows an increase, with a linear slope of 17 ± 7 km Mm−1

(see plot (d) of Figure 5). The solid lines in plot (d) of Figure 5 are the
displacement curves of a second harmonic with the appropriate loop
height, for several values of the amplitude Amax. A value of Amax =
350 km seems the most realistic. Though, in order to obtain this result,
two measurements at x > 8 Mm have been neglected that did not follow
this trend. This is justified by the previously mentioned argument that
with distance along the loop the errors in the detection of the loop
displacement are expected to grow.
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Figure 5. Overview of the period and amplitude of the loop oscillations in path D.
(a): magnitude of the wavelet transform of the displacement coordinates of ID,x at
x = 11 Mm from the loop top. The white lines bracket the two detected periodic
signatures at 240 and 400 s respectively. (b): measured oscillation periods as a
function of distance x. The solid circles are the periods found with the wavelet
analysis. The crosses, stars and diamonds are the periods derived by the curve fitting
method with n=1,2 and 3 respectively. (c): Displacement amplitude A for the 400
s oscillation as a function of distance x. The crosses, stars and diamonds are the
amplitudes derived by the curve fitting with n=1,2 and 3 respectively. The circles are
the amplitudes found with the wavelet analysis. Each dataset is fitted by a straight
line (solid: wavelet fit, dashed: n=1, dot-dashed: n=2, triple dot-dashed: n=3). (d):
Displacement amplitude A for the 240 s oscillation. Only wavelet measurements are
available and are shown as circles. The dashed line is a linear fit. The solid curves
represent the profile of a second harmonic standing mode for several amplitude
values. The dotted line in plots (b),(c) and (d) shows the position xtop of the loop
top.

The phase of the 400 s period oscillation mode is interesting. It
decreases linearly for distances within 10 Mm of the loop top. It is
observed that the phase decreases by -6.6 degrees Mm−1. This could
be interpreted as a travelling wave solution with a wavelength of 55
Mm and which propagates down the loop.
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Table IV. Derived physical parameters

Path Ck VA B ν R

(km s−1) (km s−1) (G) (m2 s−1)

A 1250 ± 410 880 - 1000 13 - 36 - -

B 1090 ± 210 770 - 880 11 - 31 - -

C 880 ± 120(a) 620 - 700 9 - 25 0.9 - 1.4 × 108 (a) 1.0 - 1.7 × 106

970 ± 40 690 - 790 10 - 28 0.6 - 1.0 × 108 1.4 - 2.9 × 106

D 940 ± 120(a) 670 - 760 10 - 27 - -

1160 ± 90 820 - 940 12 - 33 0.3 - 0.4 × 108 4.4 - 7.6 × 106

E 1220 ± 40 860 - 980 13 - 35 0.8 - 1.5 × 108 1.4 - 3.0 × 106

F 1920 ± 810 1360 - 1550 20 - 55 - -

G 1320 ± 110 940 - 1070 14 - 38 1.4 - 2.8 × 108 0.8 - 1.8 × 106

H 1440 ± 200 1020 - 1160 15 - 41 1.3 - 2.2 × 108 1.1 - 2.0 × 106

I 1320 ± 330 940 - 1070 14 - 38 0.6 - 0.9 × 108 2.6 - 4.1 × 106

(a) Oscillation is assumed to be a second harmonic.

4. Discussion

For the above observations of paths C and D the following hypothesis
is proposed. The long period oscillation is the fundamental mode, with
a maximum amplitude at the loop top. The short period oscillation
is its second harmonic. It has a node at the loop top and assuming
the loop is circular and homogeneous, the position of the maximum
amplitude, xmax, by taking A(xmax) = Amax in Expression (3), is equal
to xmax −xtop = (2−

√
2)H/2. For both loops C and D the value of H

is in the range 70-73 Mm. Therefore xmax = 20.5-21.4 Mm, roughly 20
Mm from the loop top.

The phase shift observed in the loop in path D, though, may indicate
transient behaviour.

From the measured oscillation parameters, physical quantities can
be derived. The transverse oscillation is considered to be a standing fast
magnetoacoustic kink oscillation (Aschwanden et al., 1999; Nakariakov
and Ofman, 2001). In the limit of the loop width much smaller than
the oscillation wavelength, the phase speed of such type of waves, is
approximately equal to the kink speed, Ck, i.e.

Vphase =
2L

jP
≈ Ck =

√

2

1 + ρe/ρ0

VA , (4)

where j is the wave mode. ρ0/ρe is ratio of the mass density of the
loop and its external surroundings. It is assumed (see Nakariakov and
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Ofman, 2001 for discussion) that this ratio realistically lies in the range
0-0.3. In general the fundamental mode, i.e. j=1, is taken, except for
the two 240 s oscillations in paths C and D for which the second
harmonic, i.e. j=2, is taken. VA is the Alfvén speed. Thus, by utilizing
the determined oscillation period P and wavelength 2L/j, the local
Alfvén speed is determined from Equation (4). It lies in the range 700-
1300 km s−1. The obtained kink and Alfvén speeds are listed in Table
IV. Note that the uncertainty of the value of L has not been taken
into account in this calculation. The uncertainty in the kink speed is
therefore soley due to the uncertainty in the period. Since we expect the
relative uncertainty in the loop length to be approximately the same
for all loops, the uncertainty in the kink speed is an indicator of the
relative quality of the measurements.

From the Alfvén speed, by considering a realistic number density
of 1-6 × 1015 m−3, the magnetic field strength in the coronal loop,
B, is estimated. The result lies for all the loops in the range of 9-46
Gauss. This is in general agreement with the result from Nakariakov
and Ofman (2001).

Ofman and Aschwanden (2002) compared the predictions of the var-
ious hypothesis explaining the oscillation damping with the collected
database of transverse oscillations of Aschwanden et al. (2002). They
concluded that of the examined hypothesis the phase-mixing hypothesis
proposed by Roberts (2000) fits the observations best. The damping
time in this case is equal to (Roberts, 2000):

τ =

(

6L2

νπ2V ′

A
2j2

)1/3

, (5)

where ν is the coronal, kinematic, shear viscosity coefficient. V ′

A is the
spatial gradient of the Alfvén speed in the direction both perpendicular
to the loop-axis and the oscillation displacement. As an approximation
it is assumed that V ′

A is equal to VA/`, where the ratio `/L � 1.
Here the constant value of 0.01 is chosen for this ratio. Of course,
as Goossens, Andries and Aschwanden (2002) and Aschwanden et al.

(2003) argued, this ratio may in fact vary from loop to loop. If we
assume that the oscillation is damped by the process of phase mixing,
then from Equation (5) with V ′

A ≈ VA L / 0.01, the shear viscosity
coefficient can be derived. We found the kinematic shear viscoity to be
in the range 0.3-2.8 × 108 m2 s−1. The corresponding shear Reynolds
number, R = LVA/ν, is in the range 0.8-7.6 × 106. These values are con-
sistent with those found by previous authors Ofman and Aschwanden
(2002). If the loop temperature is assumed to be that of the instrument
bandpass, i.e. 1 MK, and the previously mentioned number density is
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Figure 6. Plot of the measured decay times τ with respect to the oscillation period P
as solid circles for the cases n=1,2,3. The diamond symbols show the measurements
from (Nakariakov et al., 1999) and (Aschwanden et al., 2002) that were used by
(Ofman, 2002) to deduce the powerlaw relationship τ ∼ P 1.17±0.35, here shown as a
dashed line. The solid line is a best powerlaw fit of the measurements of this loop
arcade. The value of the power index of each powerlaw fit is shown. The powerlaw
fit for n=1 includes two outlying measurements from (Ofman, 2002). Without these
no reasonable fit is possible for n=1.

considered, then from Braginskii (1965) the theoretical shear Reynolds
number is calculated as

Rth =
10LVAτiω

2
cimi

3kBTi
, (6)

where kB is the Boltzmann constant and Ti, τi, ωci and mi are the tem-
perature, collision time, cyclotron frequency and mass for ions respec-
tively. For typical coronal conditions, the theoretical shear Reynolds
number is of the order of 1014. There is a discrepancy of eight or-
ders of magnitude between the observational and theoretical values
of the Reynolds number. On the other hand, the observationally de-
rived Reynolds number is of similar order as the theoretically expected
compressive Reynolds number.

By combining Equation (4) with the approximated version of Equa-
tion (5) with a constant ratio L/`, Ofman and Aschwanden (2002)
deduced that the damping time is related to the oscillation period as τ
∼ P 4/3. On the other hand, the mechanism of resonant absorption pre-
dicts that τ ∼ P . The 11 compiled oscillation observations considered
by Ofman and Aschwanden (2002) show a dependency of τ ∼ P 1.17±0.35.
The predictions of both hypothesis fall within one standard deviation
from the observational result. By removing two apparently outlying
measurements, though, they found a dependency of τ ∼ P 1.30±0.12,
which clearly favoured the hypothesis of phase mixing. Figure 6 shows
as filled circles the damping times of the measured loop oscillations
as a function of their period of oscillation. The diamond symbols in-
dicate the compiled oscillation observations considered by Ofman and
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Aschwanden (2002). The solid line represents a best powerlaw fit. For
n=1 a reliable powerlaw fit is not possible from the measurements of
this loop arcade because the data points cover only a narrow range of
periods. The two measurements Ofman and Aschwanden (2002) con-
sidered to be outliers actually fall into the same range. Although no
clear justification can be made beyond this observation, if these two
measurements are added to our measurements, a powerlaw relation
τ ∼ P 1.18±0.31 is found. The power index is in agreement with the
one derived by Ofman and Aschwanden (2002). For n=2 and n=3 the
powerlaw relations τ ∼ P 1.10±0.34 and τ ∼ P 1.03±0.47 respectively are
found. They do not differ significantly from the case n=1 and the result
of Ofman and Aschwanden (2002). These results also do not allow to
distinguish between the two oscillation damping hypothesis. The first
thing that is immediately clear from the figure is that the damping
times found in this study have a systematic bias towards longer decay
times compared with most of those found previously. There are sev-
eral possible explanations for this bias. Firstly, this study considered
an oscillating arcade of post-flare loops. The other cases are all more
isolated oscillating active region loops. We may not be comparing the
same type of structures. Besides that the structure of post-flare loops
may be different from active region loops, the damping times of the
loop oscillations may also be influenced by the interactions between
the different oscillating loops in the arcade. Secondly, the coronal loop
arcade oscillation is driven by a prominence eruption in its vicinity,
that excites the arcade at several occasions. In fact at a time between
22:00 and 22:10 UT the prominence is seen to be shifting southwards
towards the arcade. This event may have fed fresh impulse to the loop
oscillations. If a time of 5-10 minutes is subtracted from all the damping
times from this study, then they fall in the range of the decay times of
the earlier studies. The relationship between damping time and period,
though, would then be much steeper.

5. Summary

TRACE observations of transverse oscillations of nine loops in a coronal
post flare arcade have been examined in order to improve the statistics
of measurements of transverse oscillations and to further the develop-
ment of mechanisms that explain the rapid damping rate. The period,
decay times, phase and amplitude have been determined as a function
of position along the loop. The periods for all the loops lie within the
range of 240-450 s. The phase remains in all but one case constant and
the displacement amplitude is in most cases observed to decrease from
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the loop top. These results are consistent with fundamental standing
fast magnetoacoustic kink oscillations. From the phase speed of the
oscillation the magnetic field strength has been derived to be in the
range 9-46 Gauss, which is consistent with previous measurements.

In two loops two oscillation modes have been observed simultane-
ously. The long period oscillation is marginally double the short period.
Also, the amplitude of the short period oscillation decreases with dis-
tance from the loop top. This suggests that the short period oscillation
may be the second harmonic kink mode.

The range of damping times is 860-1800 s, which is in the order of
5 to 10 minutes longer than expected from previous observations of
transverse oscillations within the same period range. We suggest this is
due to the different nature of post flare loops compared to active region
loops and/or the different manner the oscillations are excited here. The
observations show a scaling relationship between damping time and
period that is consistent with previous measurements. The uncertainty
on the scaling law and the lack of preference for a decay profile, i.e.

n=1, 2 or 3, do not allow us to distinguish between the mechanisms
of resonant absorption and phase mixing put forward to explain the
rapid decay. If we assume that the phase mixing mechanism correctly
describes the oscillation damping, then the coronal shear kinematic
viscosity can be derived. We find values of the shear Reynold number in
the range of 0.8-7.6 × 106, which differ with the theoretically expected
value by eight orders of magnitude.
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