A definitive programming approach to the implementation of CAD software
(extended abstract)
Meurig Beynon
Department of Computer Science,
University of Warwick, Coventry CV4 7TAL
Tel: (0203) 523089
E-mail: ...lukc!warwick!wmb
Keywords: computer-aided design, human-computer interaction, user-interface management, geometric
modelling

This paper - a sequel to [2] - outlines an approach to the implementation of CAD systems that makes
use of a programming paradigm based upon definitions ("definitive programming”). It includes
interpretations for "design” and "intelligent CAD". Since the primary emphasis is upon a methodology that
can be applied to developing CAD software, these interpretations are at a much lower level of abstraction
than those that can be described from an Al perspective (cf [10]). They are nonetheless consistent with the
view of "dialogue over a definilive notation” as an appropriate intermediate code for user-computer
interaction.

The concept of using definitions as a basis for interactive software was advocated in [1], and is
illustrated in the design of the ARCA and DoNaLD graphics systems [3,4]. The merits of using definitive
principles as a basis for software for interactive graphics are described in detail in [2]. In particular, the
advantages in respect of data representation and abstraction over traditional procedural or purely
declarative programming paradigms are explained.

The framework described in [2] is limited in several respects however. A key idea behind definitive
notations is that the current status of a user-computer interaction ("the state of dialogue”) is effectively
represented by a system of definitions resembling in essence the system of functional relationships between
scalar quantities underlying a naive spreadsheet. Such a view of interaction is oriented towards a passive
use of the computer in which the responsibility for changing the state of dialogue rests upon the user. In
practice, there are many important issues in the design and implementation of CAD systems that demand a
more general framework. Valuable though the passive use of sophisticated data description is in the early
stages of the design process [12], there is also a very significant role for interaction in which the computer
plays an active part. Traditional user-interface management issues come to mind in this context {7,8]: the
animation of a dialogue through appropriate use of windows, menus, graphical displays, and the use of
analogue rather than textual input. Of equal importance are issues such as the monitoring and maintenance
of constraints [11,13]; an activity in which the computer must itself participate in changing the state of
dialogue.

The purpose of this paper is to argue that the essential concept of definitive programming (viz the
representation of a state of dialogue by means of a set of definitions that is transparent to the user) can be
developed to support the broader concerns raised by the implementation of sophisticated CAD systems.
Some justification for regarding CAD systems based upon definitive principles as well-suited for the
implementation of "intelligent" CAD software is also given. Indeed, the thesis that computer-aided design
systems can be very effectively implemented using definitive principles in such a way that the user has a
powerful abstract view of the stages of the interactive design process itself suggests a possible
interpretation of "intelligent" computer aided "design”.

The paper is divided into 5 sections.

In section 1, some of the principal ideas discussed in [2] are briefly reviewed. A brief outline of a
definitive notation suitable for geometric modelling - combining some of the characteristics of both the
ARCA and DoNaLD notations - is described. The aim is to illustrate explicitly how the ideas in [2] can be
applied to the description of geometric objects in many semantically different ways: as abstract complexes
of simplices, as frames comprising finite configurations of "points”, "lines” and "planes”, and as
realisations of such frames as sets of points in space (cf [6,14]). In effect, the state of dialogue over such a
notation is regarded as a formal representation of the user’s current model of a geometric object, and the
design process is viewed as a process of refinement of this model associated with a sequence of transitions
through different dialogue states.

Hon

Section 2 focusses on some limitations of this "pure definitive notation paradigm” for design as a
basis for developing CAD system software. Two principal issues are considered

1) the need in general for a framework of constraints within which the design dialogue must operate,

2) the nature of the relationship between the semantics of the geometric design dialogue and the
mechanics of the interaction between the user and the computer.

(These are respectively considered in detail in Sections 3 and 4.)

Where 2) is concerned, it may be seen that no provision is made within the pure definitive notation
design paradigm for representation of the current state of the device supporting the user-computer
interaction. This is in some sense appropriate, in that the abstract design process has meaning independent
of the ephemeral state of the screen during some specific design transaction; on the other hand, there is in
general a complex interrelationship between the underlying semantics and the current state of the display
interface. It is proposed to deal with this problem by introducing an auxiliary definitive notation within
which to specify the screen display at any stage. In effect, the form of the user interface can then be
specified as a set of definitions, either by the system or by the user, and subsequently driven by dialogue
actions initiated by the computer.

An underlying principle of definitive programming, relevant to both 1) and 2), is that the way in
which a transition between dialogue states is effected is not of primary significance; what is crucially
important is that the current state of dialogue can be subtly represented, and is at all times transparent to the
user. To exploit this principle fully, a richer programming paradigm is required, in which - in the
conceptually simplest framework - several processes may participate in the design dialogue (see [5], and
compare [9]). To this end, an extended form of definitive programming is described, incorporating
definitions and user-defined functions (as in a pure definitive notation) together with actions that - in an
appropriate dialogue state - are invoked to change this state. Sections 3 and 4 are concerned with the way
in which such a computational framework may be used to handle constraints and aspects of the user-
interface management in a unified manner, and include some illustrative examples based on a rudimentary
prototype implementation.

The final section of the paper discusses the potential advantages of a definitive programming
approach to the development of an "intelligent” CAD system. As a useful focal point for future research
and experiment in this area, it is suggested that the functional relationships that are explicit in a definition
based model can profitably be regarded as constituting intelligent knowledge, and the inference of such
functional relationships as a characteristic feature of intelligent CAD systems. As a footnote, it might be
added that the interesting inferences would appear to involve more than simply logical extrapolation from
functional relationships specified by the user, and presumably entail some monitoring of the user’s models
to support inductive inference.

Acknowledgements

The author is indebted to Alan Cartwright and Edward Yung for helpful ideas and programming
Support.

References

1: W M Beynon, Definitive notations for interaction, Proc hci’85, CUP 85

2: W M Beynon, Definitive principles for interactive graphics, Proc NATO ASI: Theoretical Foundations
of Computer Graphics and CAD, 1l Ciocco, July 1987

3: W M Beynon, ARCA: a notation for displaying an manipulating combinatorial diagrams, University of
Warwick RR#78, 1986

4: W M Beynon, D Angier, T Bissell, S Hunt, DoNaLD: a line drawing system based on definitive
principles, University of Warwick RR#86, 1986

5: W M Beynon, The LSD notation for communicating systems, University of Warwick RR#87, 1986

6: U Cugini, The role of different levels of modelling in CAD systems, Proc NATO ASI: Theoretical

-3-

Foundations of Computer Graphics and CAD, 1l Ciocco, July 1987

7: P ten Hagen, R van Liere, A model for graphical interaction, Proc NATO ASI: Theoretical Foundations
of Computer Graphics and CAD, Il Ciocco, July 1987

8: J Foley, C Gibbs, W C Kim, S Kovacevic, Formal specification and transformation of user computer
interfaces, Report GWU-IIST-87-10, Dept of Electrical Engineering and Computer Science, George
Washington University, 1987

9: M L Kersten, F H Schippers, Towards an object-centered database language, Report CS-R8630, CWI
Amsterdam 1986

10: J Lansdown, Graphics, Design and Artificial Intelligence, Proc NATO ASI: Theoretical Foundations of
Computer Graphics and CAD, 1l Ciocco, July 1987

11: G Nelson, Juno, a constraint-based graphics system, SIGGRAPH ’85, p235-243

12: R F Riesenfeld et al, Computer aided design, UUCS-84-003, Computer Science Dept, Univ of Utah
1984

13: T Takala, C D Woodward, Industrial design based on geometric intentions, Proc NATO ASI:
Theoretical Foundations of Computer Graphics and CAD, II Ciocco, July 1987

14: K Weiler, Edge-based data structures for solid modelling in curved surface environments, IEEE
Computer Graphics and Applications, 1986, p21-40

