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Background and Context
the main questions



   >   Exponential-Time Hypothesis (ETH):
There exist ε>0 and c>1 such that 3-SAT on n vars and 
c⋅n clauses can’t be decided in time 2ε⋅n [IP’01, IPZ’01]
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   >   Randomized Exponential-Time Hypothesis (rETH): 
There exist ε>0 and c>1 such that 3-SAT on n vars and 
c⋅n clauses can’t be decided in randomized time 2ε⋅n 

[DHMTM’14]

Randomized ETH
>   rETH: “Exponential” NP ⊄ BPP



Non-Deterministic ETH
>   NETH: “Exponential” coNP ⊄ NP

   >   Non-Deterministic Exponential-Time Hypothesis (NETH): 
There exist ε>0 and c>1 such that co-3-SAT on n vars and 
c⋅n clauses can’t be decided by non-deterministic
machines that run in time 2ε⋅n [CGIMPS’18]



Exponential-Time Hypotheses
>   ETHs: “Exponential” versions of classical conjectures

   >   ETH: “Exponential” P ≠ NP [IP’01, IPZ’01]

   >   rETH: “Exponential” NP ⊄ BPP [DHMTM’14]

   >   NETH: “Exponential” coNP ⊄ NP [CGIMPS’18]

   >   AMETH: “Exponential” coNP ⊄ AM [Wil’16]

   >   #ETH: “Exponential” #P ⊄ P [DHMTM’14]

   >   ...

1    as far as we know all ETHs above might be true (only Strong MAETH refuted [Wil’16])
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Derandomization
>   randomness in computation

1    throughout the talk, complexity classes always refer to promise-problems

   >   Randomness crucial for crypto, learning, sublinear-time... 

   >   Can randomness help solve decision problems?

   >   Conj 1 [Gill’77]: BPP = P

   >   randomness can save at most a poly runtime factor

   >   might still allow simpler & mildly faster algs



Circuit lower bounds
>   uniform vs non-uniform computational models

   >   Can we solve problems more efficiently using a different 
algorithm for each input length?

   >   Conj 2: ∀s,   DTIME[sO(1)] ⊄ io-SIZE[s]

   >   some problems can’t be solved faster using non-uniformity 

   >   might still allow mildly faster algs (and other speedups)



Derandomization vs ckt lbs
>   uniform vs non-uniform computational models

   >   Thm [IW’99]: Conj 2 ⇒ Conj 1 

   >   “hardness to randomness”

   >   Thms: Conj 1 ⇒ weak versions of Conj 2

   >   “derandomization implies circuit lower bounds”

   >   array of bidirectional connections between weak versions

1   e.g., [BFT’98,IKW’02,KI’04,...,Wil’13,MW’18,T’19,Che’19,CR’20,...]



Important reminder
>   ETHs are uniform

   >   ETHs refer to lower bounds for uniform algorithms

   >   … rather than for non-uniform circuits

   >   The question is how uniform lower bounds affect

   1.   derandomization

   2.   circuit lower bounds



Key takeaways

>   Even relatively-mild variants of ETHs have far-reaching 

implications to derandomization & ckt lbs

>   Results of independent interest for long-standing qs



Key takeaways

>   Even relatively-mild variants of ETHs have far-reaching 

implications to derandomization & ckt lbs

>   Results of independent interest for long-standing qs

>   An exponentially-hard (uniform) world encompasses

strong answers to the central qs in derand & ckts lbs 



Main Contributions
and their meaning



A technicality
>   ETHs refer to “almost-exp” hardness

   >   A 3-SAT instance with v vars and O(v) clauses is 

represented by n = O(v ⋅ log(v)) bits

   >   ETHs: Solving 3-SAT requires 2ε⋅v = 2ε‘⋅(n/log(n)) time
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>   ascending strength (morally)
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   >   rETH: “Exponential” NP ⊄ BPP

   >   NETH: “Exponential” coNP ⊄ NP
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Assuming MAETH

1    for these specific statements we actually need to assume E ⊄ i.o.-MA[2ε⋅n], but MAETH implies similar ones

   >   Essentially optimal derand & ckt lbs

   >   Thm 1: Assuming MAETH,1

   >   ∀s,  SIZE[sO(1)] ⊄ io-DTIME[s]

   >   BPP = P

   >   Follows easily from known Karp-Lipton thms [BFNW’93]
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rETH ⇒ derandomization of BPP

   >   Thm 2: 

   rETH ⇒ BPP ⊆ “almost P” in average-case

   >   Very fast “effective” derandomization of BPP

   >   Technically: Significant strengthening of state-of-the-art 
uniform hardness-to-randomness results

>   informal



Background

ℓ(n) nPRG

>   pseudorandom generators (PRGs)

>   output “looks random” to class of distinguishers

>   simulate random algorithm with ℓ(n) ≪ n coins

>   enumerate over 2ℓ(n) possibilities to eliminate randomness

>   large “stretch” ⇒ fast derandomization



Background

>   Standard hardness-to-randomness (non-uniform):

Lower bounds for non-uniform circuits

⇒ PRGs for non-uniform distinguishers

⇒ worst-case derandomization of BPP

>   e.g., [Yao’82, BM’84, Nis’91, NW’94, IW’99, SU’01, Uma’03]

>   standard (non-uniform) hardness-to-randomness



Background
>   standard (non-uniform) hardness-to-randomness

>   Essentially optimal results [IW’99, Uma’03]   

>  E ⊄ SIZE[T] ⇒ stretch ≈ T

>  E ⊄ io-SIZE[2ε⋅n] ⇒ BPP=P

>   Better lower bounds ⇒ faster derandomization

>   Required hardness is against E



Background
>   uniform hardness-to-randomness

>   Analogous uniform hardness-to-randomness:

Lower bounds for uniform probabilistic algs

⇒ PRGs for uniform distinguishers

⇒ average-case derandomization of BPP

>   e.g., [IW’98,CNS’99,Kab’01,GST’03,TV’07,SU’07,GV’08,Gol’11,CIS’18]



Background

>   Ideally: 

>   E ⊄ BPTIME[T] ⇒ stretch ≈ T

>   E ⊄ BPTIME[2ε⋅n] ⇒ BPP = P in average case

>   What we know:

>   Better lower bounds ⇏ faster derandomization

>   Need hardness is against PSPACE

>   uniform hardness-to-randomness



Background

hypothesis PRG stretch

IW’98 E ⊄ BPTIME[T] half-T    (i.e., T ≈ S ○ S)

CNS’98 #P ⊄ BPTIME[T] T(nΩ(1))Ω(1)

Kab’01 E ⊄ ZPTIME[T] half-T (HSG)

TV’07 PSPACE ⊄ BPTIME[T] T(nΩ(1))Ω(1)

GV’07 PSPACE ⊄ io-BPTIME[T] T(nΩ(1))Ω(1) (HSG, aa)

CIS’18 k-OV ⊄ io-BPTIME[n(½+ε)⋅k] BPP ⊆ uni-P (not PRG)

>   uniform hardness-to-randomness



>   Previous ways to bypass the challenge:

>   stronger hypotheses (prBPP=prP [Gol’11]; OV/SETH [CIS’18])

>   non-deterministic settings (AM [GST’03] or MA [this work])

>   We want to start “only” from a lower bound of 2n/polylog(n) 

for probabilistic algorithms...

Background
>   “high-end” uniform hardness-to-randomness



rETH ⇒ derandomization of BPP

   >   Thm 2.1: Assume that TQBF ∉ BPTIME[2n/polylog(n)]. Then,
there exists a PRG with stretch 2n/polylog(n) that “fools”
ppt distinguishers (infinitely-often). 

1    recall: 3-SAT reducible to TQBF in linear time

L ∈ BPP
deterministic
algorithm AL

time npolyloglog(n)

∀ distribution X
(polytime samplable)
Prx~X[AL(x)=L(x)]>1-1/|x|

(for infinitely-many |x| ∈ N)



   >   “High-end” uniform hardness-to-randomness

>   Near-exp hardness ⇒ near-exp stretch

>   Significant technical strengthening of state-of-the-art

   >   Remaining gap to optimal result: 

>   Stretch isn’t purely exponential

>   Need hardness against a PSPACE problem

rETH ⇒ derandomization of BPP



rETH ⇒ derandomization of BPP

1    overcoming an “infinitely-often” vs ”almost-always” barrier

   >   Thm 2.2: Assume TQBF ∉ io-BPTIME[2n/polylog(n)]. Then,

1. There exists a PRG with stretch 2n/polylog(n) that “fools”
ppt distinguishers on almost all input lengths using 
logloglog(n) advice bits. 

2. There exists a HSG with stretch 2n/polylog(n) that “hits”
ppt distinguishers on almost all input lengths.



   >   Classical proof approach:

   >   base PRG on “hard” function f:{0,1}*→{0,1}*

   >   distinguisher for PRG ⇒ efficient alg/ckt that computes f

   >   no efficient alg/ckt for f ⇒ PRG fools distinguisher class

   >   Essentially optimal non-uniform transformations known

   >   distinguisher of size T ⇒ non-uniform ckt of size ≈ T

   >   crucially relies on non-uniformity

A taste of the proof



   >   In the uniform setting:

   >   uniform distinguisher ⇒ efficient alg that computes f

   >   Idea: Require more structure from f [IW’98]

   >   e.g., downward self-reducible & random self-reducible

   >   allows for not-too-costly transformation

   >   function with such structure must be in PSPACE

A taste of the proof



A taste of the proof

   >   Key issue: Transformation overhead

   >   large overhead ⇒ limited stretch of PRG

   >   Pivots for progress: 

   1.   show a well-structured candidate “hard” function

   2.   prove that it supports an efficient transformation



A taste of the proof

   >   State-of-the-art idea [TV’07]: 

   >   construct an artificial well-structured func

   >   show a reduction from a natural problem (3-SAT, TQBF…)

   >   use its properties to show an efficient transformation

   >   Our approach: Design artificial func with more structure, 
show very efficient reduction & transformation



   >   Func of [TV’07] based on IP=PSPACE proof
   >   PSPACE-complete
   >   low-degree polynomials
   >   downward self-reducible

   >   Our func: Based on highly optimized IP=PSPACE proof
   >   round reduction
   >   optimized arithmetization
   >   suitable for very efficient reduction from TQBF

A taste of the proof



   >   That’s it

   >   No technicalities in the talk

A taste of the proof



Landscape of ETHs

   >   ETH: “Exponential” P ≠ NP

   >   rETH: “Exponential” NP ⊄ BPP

   >   NETH: “Exponential” coNP ⊄ NP

   >   MAETH: “Exponential” coNP ⊄ MA

   >   AMETH: “Exponential” coNP ⊄ AM

   >   ...

>   area of focus: beneath MAETH



Switching gears...



Switching gears...



   >   Context switch

   >   Our conclusions will lie in the non-uniform setting:

   >   worst-case derandomization of BPP

   >   circuit lower bounds

Switching gears...



Background
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Background

circuit lower 
bounds

derandomization

weaker circuit 
lower bounds

[NW’94,IW’99,
..., Uma’03]

[BFT’98,IKW’02,
Wil’13,MW’18,...]

E ⊄ SIZE[2εn]

BPP=P

NTIME[s] ⊄ 
SIZE[s○s]

E ⊄ P/poly

BPP ⊆ 
SUBEXP

NP ⊄ 
SIZE[n100]



The equivalence conjecture

>   Conj: Derandomization of BPP is equivalent to 
specific corresponding circuit lower bounds 

>   Impl: Canonical “black-box“   
   derandomization (via PRG)

>   Mentioned “in passing” in the 
   past [IKW’02, TV’07]; seems 
   more realistic now [MW’18];
   explicitly raised in [T’19]

E ⊄ P/poly

BPP ⊆ 
SUBEXP

E ⊄ SIZE[2εn]

BPP=P



Very weak NETH ⇒ equivalence conj
>   informal

   >   Thm 3: 

   >    very weak variant of NETH ⇒ conj is true

   >    add’l implication in converse direction



Very weak NETH ⇒ equivalence conj
>   informal

   >   Thm 3: 

   >    very weak variant of NETH ⇒ conj is true

   >    add’l implication in converse direction

   >   Evidence that conj is true, suitable pathway



Background
>   NTIME-uniform circuits

   >   Def: L⊆{0,1}* has NTIME[T]-uniform circuits if exists
non-deterministic machine M that gets input 1n,
runs in time T(n), and for some guesses outputs a 
circuit C:{0,1}n→{0,1} that computes Ln (otherwise: ⊥)

   >   Def: L⊆{0,1}* has NTIME[T]-uniform circuits of size S(n)

⇒ the output ckt is of size S(n) ≪ T(n)



   >   Notion refers to uniform complexity

   >   Subclass of NTIME[T] ∩ SIZE[S] (seems strict)

   >   Single proof per input length

   >   Can efficiently verify the (per-input-length) circuit 

   >   Known lower bounds [SW’13]

Background
>   NTIME-uniform circuits



Background
>   NTIME-uniform circuits

   >   NETH means “co-3-SAT ∉ NTIME[2ε⋅n/log(n)]”

   >   Our hypotheses will be of the form: 

“co-3-SAT can’t be solved by NTIME[2ε⋅n/log(n)]-uniform ckts” 

   >   seem weaker than classical “NP ≠ coNP” conjs

   >   we’ll even replace co-3-SAT with potentially harder probs



Very weak NETH ⇒ equivalence conj
>   ”low-end”: subexp derandomization and weak lower bounds

   >   Thm 3.1: If E does not have NTIME[2n^δ]-uniform circuits

of polynomial size (for some δ>0), then 

BPP ⊆ i.o.-SUBEXP ⟺  E ⊄ P/poly

where SUBEXP = ∩ε>0TIME[2n^ε].



Very weak NETH ⇒ equivalence conj
>   ”low-end”: subexp derandomization and weak lower bounds

   >   Thm 3.1: If E does not have NTIME[2n^δ]-uniform circuits

of polynomial size (for some δ>0), then 

BPP ⊆ i.o.-SUBEXP ⟺  E ⊄ P/poly

where SUBEXP = ∩ε>0TIME[2n^ε].

   >   Moreover, can replace “SUBEXP” by “NSUBEXP”



Very weak NETH ⇒ equivalence conj

   >   Thm 3.2: If E does not have NTIME[2δ⋅n]-uniform circuits

even infinitely-often (for some δ>0), then 

BPP = P ⟺  ∃ε>0 : E ⊄ i.o. SIZE[2ε⋅n]

>   ”high-end”: polytime derandomization and strong lower bounds



Very weak NETH ⇒ equivalence conj

   >   Thm 3.2: If E does not have NTIME[2δ⋅n]-uniform circuits

even infinitely-often (for some δ>0), then 

BPP = P ⟺  ∃ε>0 : E ⊄ i.o. SIZE[2ε⋅n]

   >   (scaling is non-trivial & non-smooth, requires diff techs)

>   ”high-end”: polytime derandomization and strong lower bounds



Very weak NETH ⇐ equivalence conj
>   the converse direction, informal

   >   Thm 3.3: Assume that the “moreover” conclusion of 

Thm 3.1 holds. Then, E doesn’t have NP-uniform circuits.

1  can improve the conclusion from NP-uniform to NTIME[T]-uniform, for T(n)=2n^o(1)



A taste of the proof
>   of Thm 3.1

   >   Obs: Classical KL result [BFNW’93] implies

NETH ⇒ (   BPP ⊆ SUBEXP ⇔ EXP ⊄ P/poly   )

   >   follows as logical consequence (albeit not transparent)



A taste of the proof
>   of Thm 3.1

   >   Obs: Classical KL result [BFNW’93] implies

NETH ⇒ (   BPP ⊆ SUBEXP ⇔ EXP ⊄ P/poly   )

   >   Pf (“ ⇒ direction”): Assume tac EXP ⊆ P/poly. Then,

1. EXP = MA (by EXP ⊆ P/poly & [BFNW’93])

2. EXP ⊆ NSUBEXP (BPP ⊆ SUBEXP )

3. Contradicts NETH (3SAT should be hard for time 2ε‘⋅n/log(n))



A taste of the proof
>   of Thm 3.1

   >   Obs: Classical KL result [BFNW’93] implies

NETH ⇒ (   BPP ⊆ SUBEXP ⇔ EXP ⊄ P/poly   )

   >   Our tech contribution: Weaken the hypothesis to refer 
to lower bds for NTIME[T]-uniform ckts of bounded size

   >   same logical structure of pf

   >   pivotal step: strengthen the KL result



   >   Prop: If EXP ⊆ P/poly and BPP=NSUBEXP then 
EXP has NSUBEXP-uniform ckts of poly size

   >   Clm 1: EXP has MA-uniform randomized ckts of poly size

   >   Idea: Refine original construction using modern tools

   >   Clm 2: Verifier and ckt can be derandomized

   >   Idea: Apply to original KL thm to find fixed random string

A taste of the proof
>   of Thm 3.1



Our main results

(weak)
rETH BPP ⊆ “almost P” in avg-caseThm 2: 

very weak 
NETHThm 3: equivalence conjecture

MAETHThm 1: derand & ckt lower bds



Some additional results in the paper

>   Refuting a weak version of rETH requires new ckt lbs

>   probabilistic circuit-analysis alg ⇒ ckt lbs

>   Additional new Karp-Lipton thms

>   collapse of BPE to quasilin-ckts ⇒ BPP ⊆ “almost P” in avg-case

>   Based on techs developed on the way to main results



Key takeaways

>   Even relatively-mild variants of ETHs have far-reaching 

implications to derandomization & ckt lbs

>   Results of independent interest for long-standing qs

>   An exponentially-hard (uniform) world encompasses

strong answers to the central qs in derand & ckts lbs 



Thank you!

⇒ rETH implies BPP ⊆ “almost P” in avg-case
⇒ very weak NETH closely-related to equivalence conj


