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Background and Context
the main questions



Exponential-Time Hypothesis

»y ETH: “Exponential” P # NP

» Exponential-Time Hypothesis (ETH):
There exist €0 and c¢c>1 such that 3-SAT on n vars and
c-n clauses can't be decided in time 28 " [IP'01, IPZ'01]
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» Exponential-Time Hypothesis (ETH):
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» Strong Exponential-Time Hypothesis (SETH):
There exist ¢ ~0 and ¢, ~»o0 such that k-SAT on n vars and
c,-n clauses can't be decided in time 2K [|P'01]



Exponential-Time Hypothesis

»y ETH: “Exponential” P # NP

» Exponential-Time Hypothesis (ETH):
There exist €0 and c>1such that 3-SAT on n vars and
c-n clauses can't be decided in time 28 " [IP'01, IPZ'01]



Randomized ETH

» rETH: “Exponential” NP ¢ BPP

> Randomized Exponential-Time Hypothesis (rETH):
There exist €0 and c>1such that 3-SAT on n vars and
c-n clauses can't be decided in randomized time 28"
[DHMTM14]



Non-Deterministic ETH

» NETH: “Exponential” coNP ¢ NP

> Non-Deterministic Exponential-Time Hypothesis (NETH):
There exist €0 and c¢c>1 such that co-3-SAT on n vars and
c-n clauses can't be decided by non-deterministic
machines that run in time 28 " [CGIMPS'18]



Exponential-Time Hypotheses

y ETHSs: “Exponential” versions of classical conjectures

y ETH: “Exponential” P # NP
» TETH: “Exponential” NP ¢ BPP
» NETH: “Exponential” coNP ¢ NP

» AMETH: “‘Exponential” coNP ¢ AM
y HETH: ‘Exponential” #P ¢ P

> ..

1 asfar as we know all ETHs above might be true (only Strong MAETH refuted [Wil'16])

1P'01, IPZ'01]
DHMTM"14]
CGIMPS'18]
Wil'16]

DHMTM"14]
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Derandomization

» randomness in computation

» Randomness crucial for crypto, learning, sublinear-time...
» Can randomness help solve decision problems?

» Conj 1[Gill'77]: BPP =P

» randomness can save at most a poly runtime factor

» might still allow simpler & mildly faster algs

1 throughout the talk, complexity classes always refer to promise-problems



Circult lower bounds

y uniform vs non-uniform computational models

» Can we solve problems more efficiently using a different
algorithm for each input length?

y Conj2: Vs, DTIME[s®"] ¢ io-SIZE[s]
» some problems can't be solved faster using non-uniformity

» might still allow mildly faster algs (and other speedups)



Derandomization vs ckt lbs

y uniform vs non-uniform computational models

» Thm [IW'99]: Conj 2 = Conj 1

» “hardness to randomness”
» Thms: Conj 1= weak versions of Conj 2

y “derandomization implies circuit lower bounds”

y array of bidirectional connections between weak versions

1 eg., [BFT98,IKW’'02,KI'04,. Wil"l3,MW'18,T'19,Che'19,CR'20,..]



Important reminder

> ETHs are uniform

» ETHSs refer to lower bounds for uniform algorithms
» ...rather than for non-uniform circuits

» The question is how uniform lower bounds affect
1. derandomization

.. circuit lower bounds



Key takeaways

» Even relatively-mild variants of ETHs have far-reaching

iImplications to derandomization & ckt lbs

» Results of independent interest for long-standing gs



Key takeaways

» Even relatively-mild variants of ETHs have far-reaching

iImplications to derandomization & ckt lbs
» Results of independent interest for long-standing gs

» An exponentially-hard (uniform) world encompasses

strong answers to the central gs in derand & ckts Ibs



Main Contributions
and their meaning



A technicality

y ETHSs refer to “almost-exp” hardness

» A 3-SAT instance with v vars and O(v) clauses is

represented by n = O(v - log(v)) bits

» ETHs: Solving 3-SAT requires 2¢ "V = 2¢"(n/log(n)) tjme



Landscape of ETHSs

» ascending strength (morally)
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Assuming MAETH

» Essentially optimal derand & ckt lbs
» Thm 1: Assuming MAETH,]
y Vs, SIZE[s®V] ¢ io-DTIME[s]
» BPP=P
» Follows easily from known Karp-Lipton thms [BFNW'93]

1 for these specific statements we actually need to assume E ¢ i.0.-MA[28 "], but MAETH implies similar ones



Landscape of ETHSs

> area of focus: beneath MAETH

y ETH: “Exponential” P # NP
» TETH: “Exponential” NP ¢ BPP
» NETH: “Exponential” coNP ¢ NP
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y ETH: “Exponential” P # NP
> rETH: “Exponential” NP ¢ BPP
» NETH: “Exponential” coNP ¢ NP




rETH = derandomization of BPP

y informal

> Thm 2:

rETH = BPP < “almost P" in average-case



rETH = derandomization of BPP

y informal

> Thm 2:

rETH = BPP < “almost P" in average-case

» Very fast “effective” derandomization of BPP

» Technically: Significant strengthening of state-of-the-art
uniform hardness-to-randommness results



Background

y pseudorandom generators (PRGS)

2(n) PRG n

y output “looks random” to class of distinguishers
» simulate random algorithm with £(n) € n coins

» enumerate over 24" possibilities to eliminate randomness

» large “stretch” = fast derandomization



Background

y standard (non-uniform) hardness-to-randomness

> Standard hardness-to-randomness (non-uniform):

Lower bounds for non-uniform circuits
= PRGs for non-uniform distinguishers

= worst-case derandomization of BPP

» e.g., [Yao'82, BM'84, Nis'91, NW'94, IW'99, SU'01, Uma'03]



Background

y standard (non-uniform) hardness-to-randomness

» Essentially optimal results [IW'99, Uma’'03]
y E ¢ SIZE[T] = stretch =T
» Edio-SIZE[2*"] = BPP=P

y Better lower bounds = faster derandomization

» Required hardness is against E



Background

Yy uniform hardness-to-randomness

> Analogous uniform hardness-to-randomness:

Lower bounds for uniform probabilistic algs
= PRGs for uniform distinguishers

= average-case derandomization of BPP

» e.g., [IW'98,CNS'99,Kab’01,GST'03,TV'07,SU'07,GV'08,Gol'11,CIS18]



Background

Yy uniform hardness-to-randomness

y |deally:
» Ed BPTIME[T] = stretch =T
y EdBPTIME[28 "] = BPP = P in average case

> What we know:
y Better lower bounds # faster derandomization
> Need hardness is against PSPACE



Background

Yy uniform hardness-to-randomness

IW'98
CNS'98
Kab'OT
TV'07
GV'07
CIS'18

hypothesis
E ¢ BPTIME[T]
#P ¢ BPTIME[T]
E ¢ ZPTIME[T]
PSPACE ¢ BPTIME][T]
PSPACE ¢ io-BPTIME[T]

k-OV ¢ io-BPTIME[n2*) K]

PRG stretch
half-T
T(nMQ
half-T (HSQ)
T(nQM)Q0)
T(nMQM (HSG, aa)
BPP < uni-P (not PRG)



Background

y “high-end” uniform hardness-to-randomness

» Previous ways to bypass the challenge:

» stronger hypotheses (prBPP=prP [Gol'11]; OV/SETH [CIS'18])

» hon-deterministic settings (AM [GST'03] or MA [this work])

» We want to start “only” from a lower bound of 2n/eolylog(n)

for probabilistic algorithms...



rETH = derandomization of BPP

» Thm 2.1: Assume that TQBF ¢ BPTIME[2"/Polylog(n)] Then,

there exists a PRG with stretch 2n/Polvleg(n) that “fools”
ppt distinguishers

L € BPP

=

deterministic

algorithm A,
time n polyloglog(n)

1 recall: 3-SAT reducible to TQBF in linear time

=

Vv distribution X
(polytime samplable)
Pr A (X)=L(x)]> 1/1X|




rETH = derandomization of BPP

y “High-end” uniform hardness-to-randomness
» Near-exp hardness = near-exp stretch

» Significant technical strengthening of state-of-the-art

» Remaining gap to optimal result:
y Stretch isn’t purely exponential

» Need hardness against a PSPACE problem



rETH = derandomization of BPP

» Thm 2.2: Assume TQBF & io-BPTIME[2n/Polylog(n)] Then,

1. There exists a PRG with stretch 2n/Poleg(n) that “fools”

ppt distinguishers on almost all input lengths using
logloglog(n) advice bits.

2. There exists a HSG with stretch 2/Pevios(n) that “hits”
ppt distinguishers on almost all input lengths.

1 overcoming an “infinitely-often” vs "almost-always” barrier



A taste of the proof

» Classical proof approach:
y base PRG on “hard” function f:{0,1} -{0,1}’
y distinguisher for PRG = efficient alg/ckt that computes f
» no efficient alg/ckt for f = PRG fools distinguisher class
» Essentially optimal non-uniform transformations known
» distinguisher of size T = non-uniform ckt of size * T

» crucially relies on non-uniformity



A taste of the proof

» 1IN the uniform setting:
» uniform distinguisher = efficient alg that computes f
» |dea: Require more structure from f [IW'98]
y e.g., downward self-reducible & random self-reducible
» allows for not-too-costly transformation

» function with such structure must be in PSPACE



A taste of the proof

» Key issue: Transformation overhead
» large overhead = limited stretch of PRG
» Pivots for progress:
1. show a well-structured candidate “hard” function

.. prove that it supports an efficient transformation



A taste of the proof

» State-of-the-art idea [TV'O7]:
y construct an artificial well-structured func
» show a reduction from a natural problem (3-SAT, TQBF...)

» use its properties to show an efficient transformation

» Our approach: Design artificial func with more structure,
show very efficient reduction & transformation



A taste of the proof

» Func of [TV'07] based on IP=PSPACE proof

»y PSPACE-complete
» low-degree polynomials
» downward self-reducible

» Our func: Based on highly optimized IP=PSPACE proof
» round reduction

» optimized arithmetization
» suitable for very efficient reduction from TQBF



A taste of the proof

y That's it

> No technicalities in the talk



Landscape of ETHSs

» area of focus: beneath MAETH

y ETH: “Exponential” P # NP
» TETH: “Exponential” NP ¢ BPP
> NETH: “Exponential” coNP ¢ NP




Switching gears...




Switching gears...
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Switching gears...

y Context switch
» Our conclusions will lie in the non-uniform setting:
y worst-case derandomization of BPP

> circuit lower bounds



Background

circuit lower

bounds
INW'94,IW'99,
... Uma’'03]
derandomization

[BFT'98,IKW'02,
Wil'13,MW'18,..]
weaker circuit
lower bounds




Background

circuit lower
bounds

[INW'94,IW'99,
... Uma’'03]

derandomization

[BFT'98,IKW'02,
Wil'13,MW'18,...]

weaker circuit
lower bounds

E ¢ P/poly E ¢ SIZE[25"]
BPP < _
SUBEXP BPP=P
NP @ NTIME[s] ¢
SIZE[N'99] SIZE[sos]




The equivalence conjecture

> Conj: Derandomization of BPP is equivalent to
specific corresponding circuit lower bounds

» Impl: Canonical “black-box”
derandomization (via PRG)

E ¢ P/poly E ¢ SIZE[25"]

» Mentioned “in passing” in the
past [IKW'02, TV'07]; seems

$

$

more realistic now [MW'18]; BPP C

explicitly raised in [T'19] SUBEXP BPP=P




Very weak NETH = equivalence conj

y informal

» Thm 3:
» very weak variant of NETH = conj is true

y add’'l implication in converse direction



Very weak NETH = equivalence conj

y informal

» Thm 3:
» very weak variant of NETH = conj is true

y add’'l implication in converse direction

» Evidence that conj is true, suitable pathway



Background

> NTIME-uniform circuits

y Def: LS{0,1} has NTIME[T]-uniform circuits if exists
non-deterministic machine M that gets input 1,
runs in time T(n), and for some guesses outputs a
circuit C:{O,1}"+{0,1} that computes L  (otherwise: 1)

y Def: LS{0,1} has NTIME[T]-uniform circuits of size S(n)
= the output ckt is of size S(n) K T(N)



Background

> NTIME-uniform circuits

» Notion refers to uniform complexity
» Subclass of NTIME[T] N SIZE[S] (seems strict)
» Single proof per input length
» Can efficiently verify the (per-input-length) circuit

» Known lower bounds [SW'13]



Background

> NTIME-uniform circuits

» NETH means “co-3-SAT ¢ NTIME[2¢ ™lea(n)]”
» Our hypotheses will be of the form:

“co-3-SAT can't be solved by NTIME[2¢ Me9(M]-yniform ckts”

» seem weaker than classical “NP # coNP” conjs

» we'll even replace co-3-SAT with potentially harder probs



Very weak NETH = equivalence conj

» "low-end”: subexp derandomization and weak lower bounds

» Thm 3.1: If E does not have NTIME[2""°]-uniform circuits

of polynomial size (for some &>0), then
BPP C i.0.-SUBEXP < E ¢ P/poly

where SUBEXP = N_ TIME[2™].



Very weak NETH = equivalence conj

» "low-end”: subexp derandomization and weak lower bounds

» Thm 3.1: If E does not have NTIME[2""°]-uniform circuits

of polynomial size (for some &>0), then
BPP C i.0.-SUBEXP < E ¢ P/poly
where SUBEXP = N__ TIME[2"].

» Moreover, can replace “SUBEXP" by “NSUBEXP”



Very weak NETH = equivalence conj

» "high-end”: polytime derandomization and strong lower bounds

» Thm 3.2: If E does not have NTIME[2® "]-uniform circuits

even infinitely-often (for some 6>0), then

BPP=P< Fe>0:Edio. SIZE[28 "]



Very weak NETH = equivalence conj

» "high-end”: polytime derandomization and strong lower bounds

» Thm 3.2: If E does not have NTIME[2® "]-uniform circuits

even infinitely-often (for some 6>0), then

BPP=P< Fe>0:Edio. SIZE[28 "]

» (scaling is non-trivial & non-smooth, requires diff techs)



Very weak NETH < equivalence conj

» the converse direction, informal

> Thm 3.3: Assume that the “moreover” conclusion of

Thm 3.1 holds. Then, E doesn’'t have NP-uniform circuits.

1 can improve the conclusion from NP-uniform to NTIME[T]-uniform, for T(n)=2""°(



A taste of the proof

> of Thm 3.1

» Obs: Classical KL result [BFNW'93] implies
NETH = ( BPP S SUBEXP & EXP ¢ P/poly )

» follows as logical consequence (albeit not transparent)



A taste of the proof

> of Thm 3.1

» Obs: Classical KL result [BFNW'93] implies
NETH = ( BPP S SUBEXP & EXP ¢ P/poly )
» Pf(* = direction”): Assume tac EXP € P/poly. Then,
1. EXP = MA (by EXP S P/poly & [BFNW'93])
.. EXP € NSUBEXP (BPP < SUBEXP )
j. Contradicts NETH (3SAT should be hard for time 2¢& n/leg(n))




A taste of the proof

> of Thm 3.1

» Obs: Classical KL result [BFNW'93] implies
NETH = ( BPP S SUBEXP ¢ EXP ¢ P/poly )

» Our tech contribution: Weaken the hypothesis to refer
to lower bds for NTIME[T]-uniform ckts of bounded size

» same logical structure of pf

» pivotal step: strengthen the KL result



A taste of the proof

> of Thm 3.1

» Prop: If EXP € P/poly and BPP=NSUBEXP then
EXP has NSUBEXP-uniform ckts of poly size

» Clm 1: EXP has MA-uniform randomized ckts of poly size
» ldea: Refine original construction using modern tools
» Clm 2: Verifier and ckt can be derandomized

» ldea: Apply to original KL thm to find fixed random string



Our main results

Thm 2:

(weak)

rETH

very weak

NETH

MAETH

U

BPP < “almost P” in avg-case

equivalence conjecture

derand & ckt lower bds




Some additional results in the paper

» Refuting a weak version of rETH requires new ckt lbs

y probabilistic circuit-analysis alg = ckt lbs

y Additional new Karp-Lipton thms

» collapse of BPE to quasilin-ckts = BPP € “almost P" in avg-case

» Based on techs developed on the way to main results



Key takeaways

» Even relatively-mild variants of ETHs have far-reaching

iImplications to derandomization & ckt lbs
» Results of independent interest for long-standing gs

» An exponentially-hard (uniform) world encompasses

strong answers to the central gs in derand & ckts Ibs



Thank you!

= rETH implies BPP € “almost P" in avg-case
= very weak NETH closely-related to equivalence conj



