On Exponential-Time Hypotheses, Derandomization, and Circuit Lower Bounds

Lijie Chen, Ron Rothblum, Roei Tell, and Eylon Yogev Theory Seminar @ TAU, December 2019

Background and Context

the main questions

Exponential-Time Hypothesis

> ETH: "Exponential" P ≠ NP

Exponential-Time Hypothesis (ETH):

There exist ε >0 and c>1 such that 3-SAT on n vars and c n clauses can't be decided in time $2^{\varepsilon \cdot n}$ [IP'01, IPZ'01]

Exponential-Time Hypothesis

> ETH: "Exponential" P ≠ NP

> Exponential-Time Hypothesis (ETH):

There exist ε >0 and c>1 such that 3-SAT on n vars and c n clauses can't be decided in time $2^{\varepsilon \cdot n}$ [IP'01, IPZ'01]

> Strong Exponential-Time Hypothesis (SETH):

There exist $\epsilon_k \to 0$ and $c_k \to \infty$ such that k-SAT on n vars and $c_k \cdot n$ clauses can't be decided in time $2^{(1-\epsilon_- k) \cdot n}$ [IP'01]

Exponential-Time Hypothesis

> ETH: "Exponential" P ≠ NP

> Exponential-Time Hypothesis (ETH):

There exist ε >0 and c>1 such that 3-SAT on n vars and c n clauses can't be decided in time $2^{\varepsilon \cdot n}$ [IP'01, IPZ'01]

> Strong Exponential-Time Hypothesis (SETH):

There exist $\epsilon_k \to 0$ and $c_k \to \infty$ such that k-SAT on n vars and $c_k \cdot n$ clauses can't be decided in time $2^{(1-\epsilon_k) \cdot n}$ [IP'01]

Randomized ETH

> rETH: "Exponential" NP ⊄ BPP

> Randomized Exponential-Time Hypothesis (rETH):

There exist $\varepsilon>0$ and c>1 such that 3-SAT on n vars and $c\cdot n$ clauses can't be decided in randomized time $2^{\varepsilon\cdot n}$ [DHMTM'14]

Non-Deterministic ETH

› NETH: "Exponential" coNP ⊄ NP

> Non-Deterministic Exponential-Time Hypothesis (NETH):

There exist $\varepsilon>0$ and c>1 such that co-3-SAT on n vars and $c\cdot n$ clauses can't be decided by non-deterministic machines that run in time $2^{\varepsilon\cdot n}$ [CGIMPS'18]

Exponential-Time Hypotheses

> ETHs: "Exponential" versions of classical conjectures

> ETH: "Exponential" P ≠ NP [IP'01, IPZ'01]

> rETH: "Exponential" NP ⊄ BPP [DHMTM'14]

NETH: "Exponential" coNP ⊄ NP [CGIMPS'18]

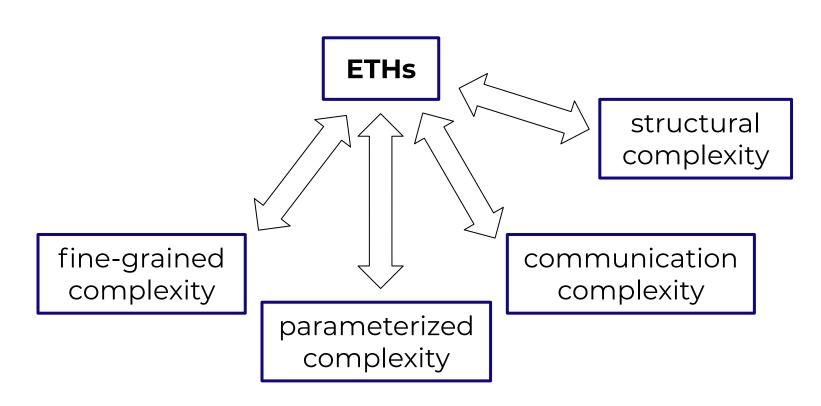
> AMETH: "Exponential" coNP ⊄ AM [Wil'16]

> #ETH: "Exponential" #P ⊄ P [DHMTM'14]

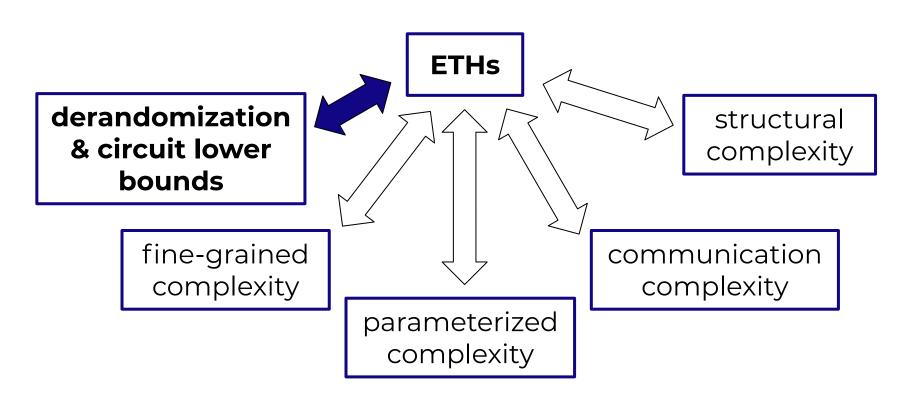
> ...

¹ as far as we know all ETHs above might be true (only Strong MAETH refuted [Wil'16])

Broad influence of ETHs in complexity



Broad influence of ETHs in complexity



Derandomization

- > randomness in computation
 - > Randomness crucial for crypto, learning, sublinear-time...
 - Can randomness help solve decision problems?
 - > Conj 1 [Gill'77]: BPP = P
 - > randomness can save at most a poly runtime factor
 - > might still allow simpler & mildly faster algs

Circuit lower bounds

- > uniform vs non-uniform computational models
 - Can we solve problems more efficiently using a different algorithm for each input length?
 - > Conj 2: ∀s, DTIME[s^{O(1)}] ⊄ io-SIZE[s]
 - > some problems can't be solved faster using non-uniformity
 - > might still allow mildly faster algs (and other speedups)

Derandomization vs ckt lbs

- > uniform vs non-uniform computational models
 - > Thm [IW'99]: Conj 2 ⇒ Conj 1
 - > "hardness to randomness"
 - > **Thms:** Conj 1 ⇒ weak versions of Conj 2
 - > "derandomization implies circuit lower bounds"
 - > array of bidirectional connections between weak versions

Important reminder

- > ETHs are uniform
 - > ETHs refer to lower bounds for uniform algorithms
 - > ... rather than for non-uniform circuits
 - > The question is how uniform lower bounds affect
 - 1. derandomization
 - 2. circuit lower bounds

Key takeaways

- > Even relatively-mild variants of ETHs have far-reaching implications to derandomization & ckt lbs
- > Results of independent interest for long-standing qs

Key takeaways

- > Even relatively-mild variants of ETHs have far-reaching implications to derandomization & ckt lbs
- > Results of independent interest for long-standing qs
- An exponentially-hard (uniform) world encompasses strong answers to the central qs in derand & ckts lbs

Main Contributions

and their meaning

A technicality

- > ETHs refer to "almost-exp" hardness
 - A 3-SAT instance with v vars and O(v) clauses is represented by $n = O(v \cdot log(v))$ bits
 - > ETHs: Solving 3-SAT requires $2^{\epsilon \cdot \vee} = 2^{\epsilon' \cdot (n/\log(n))}$ time

Landscape of ETHs

> ascending strength (morally)

```
> ETH: "Exponential" P ≠ NP
```

- > rETH: "Exponential" NP ⊄ BPP
- > NETH: "Exponential" coNP ⊄ NP
- → MAETH: "Exponential" coNP ⊄ MA
- → AMETH: "Exponential" coNP ⊄ AM
- **)** ...

Landscape of ETHs

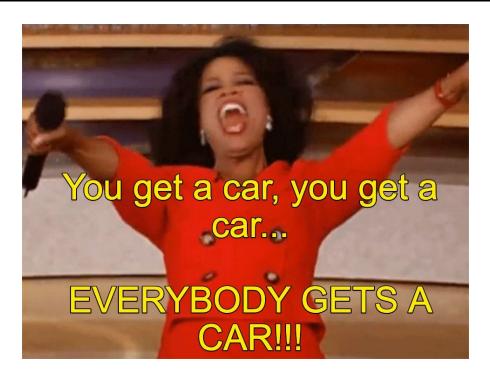
ascending strength (morally)

```
> ETH: "Exponential" P ≠ NP
```

- > rETH: "Exponential" NP ⊄ BPP
- > NETH: "Exponential" coNP ⊄ NP
- › MAETH: "Exponential" coNP ⊄ MA
- → AMETH: "Exponential" coNP ⊄ AM
- **)** ...

Assuming MAETH

Assuming MAETH



Assuming MAETH

- > Essentially optimal derand & ckt lbs
- > Thm 1: Assuming MAETH,1

 - \rightarrow BPP = P
- > Follows easily from known Karp-Lipton thms [BFNW'93]

Landscape of ETHs

> area of focus: beneath MAETH

```
> ETH: "Exponential" P ≠ NP
```

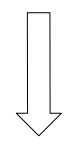
> rETH: "Exponential" NP ⊄ BPP

> NETH: "Exponential" coNP ⊄ NP

→ MAETH: "Exponential" coNP ⊄ MA

> AMETH: "Exponential" coNP ⊄ AM

) ...



Landscape of ETHs

> area of focus: beneath MAETH

> ETH: "Exponential" P ≠ NP

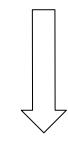
> rETH: "Exponential" NP ⊄ BPP

> NETH: "Exponential" coNP ⊄ NP

› MAETH: "Exponential" coNP ⊄ MA

> AMETH: "Exponential" coNP ⊄ AM

) ...



rETH ⇒ derandomization of BPP

> informal

> **Thm 2:**

rETH ⇒ BPP ⊆ "almost P" in average-case

rETH ⇒ derandomization of BPP

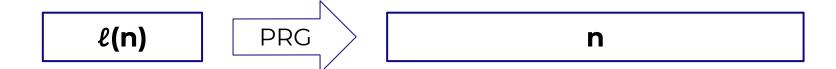
> informal

> **Thm 2:**

rETH ⇒ BPP ⊆ "almost P" in average-case

- > Very fast "effective" derandomization of BPP
- > Technically: Significant strengthening of state-of-the-art uniform hardness-to-randomness results

> pseudorandom generators (PRGs)



- > output "looks random" to class of distinguishers
- > simulate random algorithm with $\ell(n) \ll n$ coins
- > enumerate over $2^{\ell(n)}$ possibilities to eliminate randomness
 - > large "stretch" ⇒ fast derandomization

> standard (non-uniform) hardness-to-randomness

> Standard hardness-to-randomness (non-uniform):

Lower bounds for non-uniform circuits

- ⇒ PRGs for non-uniform distinguishers
- ⇒ worst-case derandomization of BPP
- > e.g., [Yao'82, BM'84, Nis'91, NW'94, IW'99, SU'01, Uma'03]

- > standard (non-uniform) hardness-to-randomness
- > Essentially optimal results [IW'99, Uma'03]
 - > E ⊄ SIZE[T] \Rightarrow stretch ≈ T
 - > E ⊄ io-SIZE[2^{ε·n}] ⇒ BPP=P
- > Better lower bounds ⇒ faster derandomization
- > Required hardness is against E

> uniform hardness-to-randomness

> Analogous uniform hardness-to-randomness:

Lower bounds for uniform probabilistic algs

- ⇒ PRGs for uniform distinguishers
- ⇒ average-case derandomization of BPP
- > e.g., [IW'98,CNS'99,Kab'01,GST'03,TV'07,SU'07,GV'08,Gol'11,CIS'18]

- > uniform hardness-to-randomness
- Ideally:
 - > $E ⊄ BPTIME[T] \Rightarrow stretch ≈ T$
 - > E ⊄ BPTIME[2^{ε·n}] ⇒ BPP = P in average case
- > What we know:
 - > Better lower bounds # faster derandomization
 - > Need hardness is against PSPACE

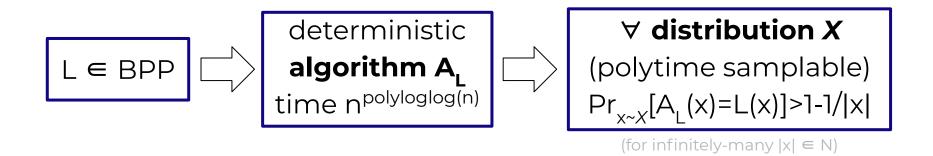
> uniform hardness-to-randomness

	hypothesis	PRG stretch
IW'98	E ⊄ BPTIME[T]	half-T (i.e., T≈S∘S)
CNS'98	#P ⊄ BPTIME[T]	$T(n^{\Omega^{(1)}})^{\Omega^{(1)}}$
Kab'01	E ⊄ ZPTIME[T]	half-T (HSG)
TV'07	PSPACE ⊄ BPTIME[T]	$T(n^{\Omega^{(1)}})^{\Omega^{(1)}}$
GV'07	PSPACE ⊄ io-BPTIME[T]	$T(n^{\Omega^{(1)}})^{\Omega^{(1)}}$ (HSG, aa)
CIS'18	k-OV ⊄ io-BPTIME[n ^{(½+ε)·k}]	BPP ⊆ uni-P (not PRG)

- "high-end" uniform hardness-to-randomness
- > Previous ways to bypass the challenge:
 - > stronger hypotheses (prBPP=prP [Gol'11]; OV/SETH [CIS'18])
 - > non-deterministic settings (AM [GST'03] or MA [this work])
- We want to start "only" from a lower bound of 2^{n/polylog(n)} for probabilistic algorithms...

rETH ⇒ derandomization of BPP

> Thm 2.1: Assume that TQBF & BPTIME[2^{n/polylog(n)}]. Then, there exists a PRG with stretch 2^{n/polylog(n)} that "fools" ppt distinguishers (infinitely-often).



rETH ⇒ derandomization of BPP

- "High-end" uniform hardness-to-randomness
 - > Near-exp hardness ⇒ near-exp stretch
 - > Significant technical strengthening of state-of-the-art
- > Remaining gap to optimal result:
 - > Stretch isn't purely exponential
 - › Need hardness against a PSPACE problem

rETH ⇒ derandomization of BPP

- > Thm 2.2: Assume TQBF ∉ io-BPTIME[2^{n/polylog(n)}]. Then,
 - There exists a PRG with stretch 2^{n/polylog(n)} that "fools" ppt distinguishers on almost all input lengths using loglog(n) advice bits.
 - 2. There exists a HSG with stretch 2^{n/polylog(n)} that "hits" ppt distinguishers on almost all input lengths.

- Classical proof approach:
 - > base PRG on "hard" function f:{0,1}* → {0,1}*
 - → distinguisher for PRG ⇒ efficient alg/ckt that computes f
 - \rightarrow no efficient alg/ckt for f \Rightarrow PRG fools distinguisher class
- > Essentially optimal non-uniform transformations known
 - > distinguisher of size T ⇒ non-uniform ckt of size ≈ T
 - > crucially relies on non-uniformity

- > In the uniform setting:
 - → uniform distinguisher ⇒ efficient alg that computes f
- › Idea: Require more structure from f [IW'98]
 - > e.g., downward self-reducible & random self-reducible
 - > allows for not-too-costly transformation
 - > function with such structure must be in PSPACE

- › Key issue: Transformation overhead
 - → large overhead ⇒ limited stretch of PRG
- > Pivots for progress:
 - 1. show a well-structured candidate "hard" function
 - 2. prove that it supports an efficient transformation

- > State-of-the-art idea [TV'07]:
 - > construct an artificial well-structured func
 - > show a reduction from a natural problem (3-SAT, TQBF...)
 - > use its properties to show an efficient transformation
- Our approach: Design artificial func with more structure, show very efficient reduction & transformation

- > Func of [TV'07] based on IP=PSPACE proof
 - > PSPACE-complete
 - > low-degree polynomials
 - > downward self-reducible
- › Our func: Based on highly optimized IP=PSPACE proof
 - > round reduction
 - > optimized arithmetization
 - > suitable for very efficient reduction from TQBF

- > That's it
- > No technicalities in the talk

Landscape of ETHs

> area of focus: beneath MAETH

> ETH: "Exponential" P ≠ NP

> rETH: "Exponential" NP ⊄ BPP

> NETH: "Exponential" coNP ⊄ NP

› MAETH: "Exponential" coNP ⊄ MA

> AMETH: "Exponential" coNP ⊄ AM

) ...

Switching gears...

Switching gears...

Switching gears...

- Context switch
- > Our conclusions will lie in the non-uniform setting:
 - > worst-case derandomization of BPP
 - > circuit lower bounds

circuit lower bounds

[NW'94,IW'99, ..., Uma'03]

derandomization

[BFT'98,IKW'02, Wil'13,MW'18,...]

weaker circuit lower bounds

circuit lower bounds

[NW'94,IW'99, ..., Uma'03]

derandomization

[BFT'98,IKW'02, Wil'13,MW'18,...]

weaker circuit lower bounds

E ⊄ P/poly

BPP ⊆ SUBEXP

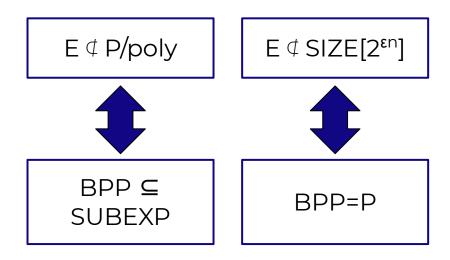
NP ⊄ SIZE[n¹⁰⁰] E ⊄ SIZE[2^{εn}]

BPP=P

NTIME[s] ⊄ SIZE[s∘s]

The equivalence conjecture

- Conj: Derandomization of BPP is equivalent to specific corresponding circuit lower bounds
- Impl: Canonical "black-box" derandomization (via PRG)
- Mentioned "in passing" in the past [IKW'02, TV'07]; seems more realistic now [MW'18]; explicitly raised in [T'19]



> informal

> **Thm 3:**

- > very weak variant of NETH ⇒ conj is true
- > add'l implication in converse direction

> informal

> **Thm 3:**

- > very weak variant of NETH ⇒ conj is true
- > add'l implication in converse direction

> Evidence that conj is true, suitable pathway

- > NTIME-uniform circuits
 - Def: L⊆{0,1}* has NTIME[T]-uniform circuits if exists non-deterministic machine M that gets input 1^n , runs in time T(n), and for some guesses outputs a circuit C:{0,1}**0,1} that computes L_n (otherwise: \bot)
 - Def: L⊆{0,1}* has NTIME[T]-uniform circuits of size S(n)
 - \Rightarrow the output ckt is of size S(n) \ll T(n)

- > NTIME-uniform circuits
 - > Notion refers to uniform complexity
 - > Subclass of NTIME[T] \(\Omega\) SIZE[S] (seems strict)
 - Single proof per input length
 - > Can efficiently verify the (per-input-length) circuit
 - > Known lower bounds [SW'13]

- > NTIME-uniform circuits
 - > NETH means "co-3-SAT € NTIME[2^{ε·n/log(n)}]"
 - > Our hypotheses will be of the form:
 - "co-3-SAT can't be solved by NTIME[2^{ε·n/log(n)}]-uniform ckts"
 - > seem weaker than classical "NP ≠ coNP" conjs
 - > we'll even replace co-3-SAT with potentially harder probs

- "low-end": subexp derandomization and weak lower bounds
 - > Thm 3.1: If E does not have NTIME[$2^{n \wedge \delta}$]-uniform circuits of polynomial size (for some δ >0), then

$$BPP \subseteq i.o.-SUBEXP \Leftrightarrow E \not\subset P/poly$$

where SUBEXP =
$$\bigcap_{\epsilon>0}$$
TIME[$2^{n \wedge \epsilon}$].

- "low-end": subexp derandomization and weak lower bounds
 - > Thm 3.1: If E does not have NTIME[$2^{n \wedge \delta}$]-uniform circuits of polynomial size (for some δ >0), then

$$BPP \subseteq i.o.-SUBEXP \Leftrightarrow E \not\subset P/poly$$

where SUBEXP =
$$\bigcap_{\epsilon>0}$$
TIME[$2^{n \wedge \epsilon}$].

Moreover, can replace "SUBEXP" by "NSUBEXP"

- > "high-end": polytime derandomization and strong lower bounds
 - > Thm 3.2: If E does not have NTIME[$2^{\delta \cdot n}$]-uniform circuits even infinitely-often (for some δ >0), then

BPP = P \Leftrightarrow $\exists \epsilon > 0 : E \notin i.o. SIZE[2^{\epsilon \cdot n}]$

- > "high-end": polytime derandomization and strong lower bounds
 - > Thm 3.2: If E does not have NTIME[$2^{\delta \cdot n}$]-uniform circuits even infinitely-often (for some δ >0), then

BPP = P
$$\Leftrightarrow$$
 $\exists \epsilon > 0 : E \notin i.o. SIZE[2^{\epsilon \cdot n}]$

> (scaling is non-trivial & non-smooth, requires diff techs)

- the converse direction, informal
 - Thm 3.3: Assume that the "moreover" conclusion of Thm 3.1 holds. Then, E doesn't have NP-uniform circuits.

> of Thm 3.1

> Obs: Classical KL result [BFNW'93] implies

NETH
$$\Rightarrow$$
 (BPP \subseteq SUBEXP \Leftrightarrow EXP \notin P/poly)

> follows as logical consequence (albeit not transparent)

- > of Thm 3.1
 - > Obs: Classical KL result [BFNW'93] implies

NETH
$$\Rightarrow$$
 (BPP \subseteq SUBEXP \Leftrightarrow EXP \notin P/poly)

- \rightarrow **Pf** (" ⇒ direction"): Assume tac EXP \subseteq P/poly. Then,
 - 1. EXP = MA (by EXP \subseteq P/poly & [BFNW'93])
 - 2. EXP ⊆ NSUBEXP (BPP ⊆ SUBEXP)
 - 3. Contradicts NETH (3SAT should be hard for time $2^{\epsilon' \cdot n/\log(n)}$)

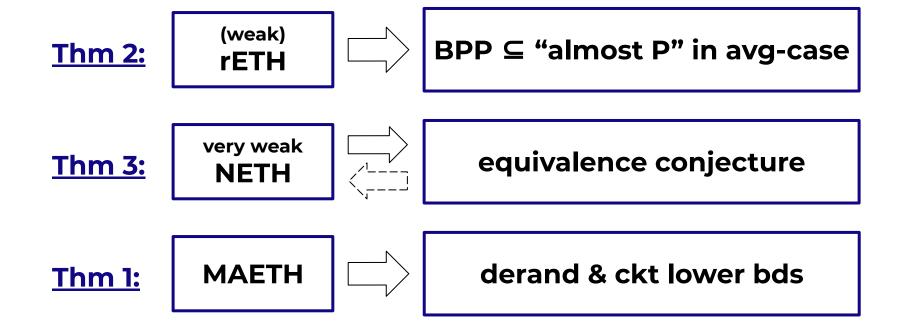
- > of Thm 3.1
 - > Obs: Classical KL result [BFNW'93] implies

NETH
$$\Rightarrow$$
 (BPP \subseteq SUBEXP \Leftrightarrow EXP \notin P/poly)

- Our tech contribution: Weaken the hypothesis to refer to lower bds for NTIME[T]-uniform ckts of bounded size
 - > same logical structure of pf
 - > pivotal step: strengthen the KL result

- > of Thm 3.1
 - > Prop: If EXP ⊆ P/poly and BPP=NSUBEXP then EXP has NSUBEXP-uniform ckts of poly size
 - > Clm 1: EXP has MA-uniform randomized ckts of poly size
 - > Idea: Refine original construction using modern tools
 - > Clm 2: Verifier and ckt can be derandomized
 - › Idea: Apply to original KL thm to find fixed random string

Our main results



Some additional results in the paper

- > Refuting a weak version of rETH requires new ckt lbs
 - → probabilistic circuit-analysis alg ⇒ ckt lbs
- > Additional new Karp-Lipton thms
 - > collapse of BPE to quasilin-ckts ⇒ BPP ⊆ "almost P" in avg-case
- > Based on techs developed on the way to main results

Key takeaways

- Even relatively-mild variants of ETHs have far-reaching implications to derandomization & ckt lbs
- > Results of independent interest for long-standing qs
- An exponentially-hard (uniform) world encompasses strong answers to the central qs in derand & ckts lbs

Thank you!

⇒ rETH implies BPP ⊆ "almost P" in avg-case⇒ very weak NETH closely-related to equivalence conj