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(Idealized) Past

Single machine directly accessing the entire data set
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The Cloud

Setting: Data sets distributed across several machines

Why: full access by a small number of machines not feasible

Develop algorithms that leverage the platform’s parallelism!

Massive data processing systems: MapReduce, Spark, Hadoop, Dryad,
IBM Streams, Pregel, . . .
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Talk Plan

• The Massively Parallel Computation model

• Our Results

• Algorithms for Undirected Graphs
+ Lower Bounds
+ Applications to Property Testing

• Algorithms for Directed Graphs via Series of Transformations
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Massively Parallel Computation
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Model: Massively Parallel Computation (MPC)

M machines S space per machine

Input: m edges from a graph on n vertices

Machine

Machine

Machine Machine

Machine

Machine Machine

Machine

Machine

• Initially: each machine receives ∼m/M edges
• Single round:

1. Each machine performs computation
2. Each machine sends and receives at most O(S) data
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Model: Massively Parallel Computation (MPC)

(from Dean, Ghemawat “MapReduce: Simplified Data Processing on Large Clusters”)

• Introduced by Karloff, Suri, Vassilvitskii (2010)
to model MapReduce due to Dean, Ghemawat (2004)

• Essential: space per machine S = mΩ(1) (e.g., S = Ω(
√

m))

• Total space considerations:
[Beame 2009: Problem 27 at sublinear.info]
[Beame, Koutris, Suciu 2013]
[Andoni, Nikolov, Onak, Yaroslavtsev 2014]
• Karloff et al. allow for m1−ε machines with m1−ε space

⇒ near quadratic total space m2−2ε

• A refined version asks for near-linear total space: M × S = m1+o(1)
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Three Main Memory Regimes
• Superlinear: S = n1+Ω(1)

• Many early papers [Karloff, Suri, Vassilvitskii 2010]
[Lattanzi, Moseley, Suri, Vassilvitskii 2011] . . .

• Round complexity: usually O(1)

• Near-linear: S = Θ̃(n)
• Not much was happening until 2017
• Matchings, Vertex Cover, MIS in O(log log n) rounds
• Connectivity in O(1) rounds
• Very similar to the CONGESTED CLIQUE model

• Sublinear: S = O(nα) for α ∈ (0,1)
• Most interesting for large sparse graphs
• Results in this talk
• Beating O(log n) becomes a challenge
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Main goal: minimize the number of rounds

• PRAM:
• can usually be simulated in the same number of rounds
• often Ω(log n) rounds

Processor Processor Processor Processor

1 1 0 1 1 0 0 1 1 0 1 0 1 1 00 1 1 0

• Fewer parallel rounds than best PRAM algorithms?

O(1) or O(poly(log log N)) rounds of MPC?
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Our Results
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Random Walks

Random walk on a graph:

At every step select a random
outgoing edge

In general, the set of options could be
weighted

Why study random walks?
Useful primitive! Sample applications:

• PageRank and rating web pages

• optimal PRAM algorithms for
connectivity

• partitioning graphs

• minimizing query complexity in property
testing

• graph matchings in regular graphs

• generating random spanning trees

• volume estimation

• counting problems
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Our Results

Setting: strongly sublinear space per machine, i.e., O(nα) for α ∈ (0,1)

Generate a small number of length-L random walks from every vertex
• undirected graphs: O(log L) rounds
• directed graphs: O((log log n)2 + log2 L) rounds

PageRank: O((log log n)2 + log2(1/ε)) rounds
• multiplicative approximation for all vertices
• ε = teleportation probability
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Undirected Graphs
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Basic Challenges

Trivial: compute random walk of length L in O(L) rounds

Idea for more efficient algorithm:
• Random walks are memoryless
• Compute different sections and stitch them together?
• For L-step random walk, compute independently the first and second

half of length L/2 via recursion?

Obstacles:
• We don’t know where the second L/2 steps start
• Compute many possible continuations?
• With many random walks, they could collide
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Undirected Graphs

What we achieve: many random walks from each vertex

How:
• Start from the stationary distribution: deg(v)

2m for vertex v
• After any number of steps, the distribution will be the same

• Sample slightly more edges for consecutive steps to ensure that
number of continuations is sufficient
• Roughly O(deg(v) · log n) random walks from vertex v
• Use O(log L) rounds to combine edges into random walks
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Is O(log L) Rounds Optimal?
• Space per machine: S = nα for α ∈ (0,1)

• Problem: One or two cycles?

vs.

Best known algorithm: O(log n) rounds

Good starting point for reductions:
• We show: if we can compute O(log4 n)–length random walks in

o(log log n) rounds, then this problem can be solved in o(log n) rounds
• Ω(log n) conditional lower bound for exact bipartiteness
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Applications to Property Testing

Bipartiteness testing (similar to [Censor-Hillel, Fischer, Schwartzman, Vasudev 2016]):
• [Goldreich Ron 1999]: sampling O(

√
n) random walks from a random

vertex is likely to detect an odd length cycle
• Can as well sample O(1) random walks from all vertices

Testing if a graph is an expander:
• Classic property testing: [Goldrech, Ron 2000] [Czumaj, Sohler 2007] . . .
• Expander: two random walks collide with probability close to 1/n
• Far from expander: higher probability for a random starting vertex
• Tweak the proof of Czumaj and Sohler (2007) to distribute starting

points of random walks over all vertices
Open question: Can this be done for testing clusterability?
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How About Directed Graphs?

Difficulties:

• No explicit stationary distribution

• Values can be as low as n−Ω(n)
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PageRank for Undirected Graphs
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Definition of PageRank

PageRank: measure of importance of nodes in a graph

• Stationary distribution

• Random walk:
• with probability 1− ε, follow a random outgoing edge
• with probability ε, teleport to uniformly selected vertex in the entire graph

• ε = teleportation probability
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Alternate Definition

This process gives the same distribution [Breyer 2002]

• Select a vertex v uniformly at random

• Walk on the Markov chain until teleportation from some vertex u

• u distributed according to PageRank
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Algorithm for Undirected PageRank

Algorithm:
• Know how to generate random walks on the underlying undirected

graph, starting point selected uniformly

• Toss a biased coin at every step to decide if teleportation occurs
• Distribution of vertices right before teleportation is PageRank

• Need at most O(ε−1 log n) random walks from every vertex
• All random walks will teleport whp. after O(ε−1 log n) steps

Important note: This works for directed graphs as long as someone gives
us a collection of random walks with uniformly selected starting points
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PageRank
for Balanced Directed Graphs
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c-Balanced Directed Graph

• Constant c ∈ (0,1)

• For every vertex vertex v ,

outdeg(v) ≥ c · indeg(b)

• Random incident edge is directed in the correct direction with
non-trivial probability
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Transformation

G is c-balanced graph

PG = PageRank transition
probability matrix for G

Ḡ = undirected version of G

PḠ = PageRank transition
probability matrix for Ḡ

Sequence: 0 = δ0 < δ1 < . . . < δk−1 < δk = 1.

Intermediate PageRank transition probability matrices:

Pi = δiPG + (1− δi)PḠ

How:
• Know how to compute stationary distribution for P0

• Want to compute stationary distribution for Pk

• We show how to move from Pi to Pi+1 for δi+1 − δi ≈ 1
log log n
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Transition from Pi to Pi+1

1. Use stationary distribution for Pi to generate random walks for Pi

2. Use rejection sampling to adjust probabilities of random walks:
• Every time we take a step in the “wrong” direction, reject the walk with

small probability, so they come from Pi+1

3. Use the surviving random walks to compute PageRank for Pi+1
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PageRank
for General Directed Graphs
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Replacing Vertices with Paths

• Previous approach does not work for general graphs: would need a lot
of samples at a vertex with few outgoing edges but lots of coming in

• Replace vertices v with directed O(log n)-paths
• i-th edge: max n/2i , indeg(v) copies

• Correspondingly lower the teleportation probability

• Transition from ε = 1/2 to ε/ log n
(again via series of transitions)
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Generating Random Walks
in Directed Graphs
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Generating Random Walks in Directed Graphs

• L = length of desired random walks

• Leverage the fact that we know the associated PageRank

• Set the teleportation probability to 1/L

• Generate random walks from the PageRank Markov Chain

• Throw away those that teleported at least once

• A random walk “survives” with probability Ω(1)
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Open Questions
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Open Questions

1 Are the “squares” needed? O(log L) rounds for directed random walks?

2 Testing clusterability?

3 More general study of property testing guarantees in MPC?

Questions?
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