
Walking Randomly,
Massively, and Efficiently

Krzysztof Onak
IBM Research

Joint work with Jakub Łącki (Google), Slobodan Mitrović (MIT),
and Piotr Sankowski (University of Warsaw)

Krzysztof Onak (IBM Research) Walking Randomly, Massively, and Efficiently 1 / 32



(Idealized) Past

Single machine directly accessing the entire data set

Krzysztof Onak (IBM Research) Walking Randomly, Massively, and Efficiently 2 / 32



The Cloud

Setting: Data sets distributed across several machines

Why: full access by a small number of machines not feasible

Develop algorithms that leverage the platform’s parallelism!

Massive data processing systems: MapReduce, Spark, Hadoop, Dryad,
IBM Streams, Pregel, . . .

Krzysztof Onak (IBM Research) Walking Randomly, Massively, and Efficiently 3 / 32



The Cloud

Setting: Data sets distributed across several machines

Why: full access by a small number of machines not feasible

Develop algorithms that leverage the platform’s parallelism!

Massive data processing systems: MapReduce, Spark, Hadoop, Dryad,
IBM Streams, Pregel, . . .

Krzysztof Onak (IBM Research) Walking Randomly, Massively, and Efficiently 3 / 32



The Cloud

Setting: Data sets distributed across several machines

Why: full access by a small number of machines not feasible

Develop algorithms that leverage the platform’s parallelism!

Massive data processing systems: MapReduce, Spark, Hadoop, Dryad,
IBM Streams, Pregel, . . .

Krzysztof Onak (IBM Research) Walking Randomly, Massively, and Efficiently 3 / 32



Talk Plan

• The Massively Parallel Computation model

• Our Results

• Algorithms for Undirected Graphs
+ Lower Bounds
+ Applications to Property Testing

• Algorithms for Directed Graphs via Series of Transformations

Krzysztof Onak (IBM Research) Walking Randomly, Massively, and Efficiently 4 / 32



Massively Parallel Computation

Krzysztof Onak (IBM Research) Walking Randomly, Massively, and Efficiently 5 / 32



Model: Massively Parallel Computation (MPC)

M machines S space per machine

Input: m edges from a graph on n vertices

Machine

Machine

Machine Machine

Machine

Machine Machine

Machine

Machine

• Initially: each machine receives ∼m/M edges
• Single round:

1. Each machine performs computation
2. Each machine sends and receives at most O(S) data

Krzysztof Onak (IBM Research) Walking Randomly, Massively, and Efficiently 6 / 32



Model: Massively Parallel Computation (MPC)

M machines S space per machine

Input: m edges from a graph on n vertices

Machine

Machine

Machine Machine

Machine

Machine Machine

Machine

Machine

• Initially: each machine receives ∼m/M edges

• Single round:
1. Each machine performs computation
2. Each machine sends and receives at most O(S) data

Krzysztof Onak (IBM Research) Walking Randomly, Massively, and Efficiently 6 / 32



Model: Massively Parallel Computation (MPC)

M machines S space per machine

Input: m edges from a graph on n vertices

Machine

Machine

Machine Machine

Machine

Machine Machine

Machine

Machine

• Initially: each machine receives ∼m/M edges
• Single round:

1. Each machine performs computation
2. Each machine sends and receives at most O(S) data

Krzysztof Onak (IBM Research) Walking Randomly, Massively, and Efficiently 6 / 32



Model: Massively Parallel Computation (MPC)

(from Dean, Ghemawat “MapReduce: Simplified Data Processing on Large Clusters”)

• Introduced by Karloff, Suri, Vassilvitskii (2010)
to model MapReduce due to Dean, Ghemawat (2004)

• Essential: space per machine S = mΩ(1) (e.g., S = Ω(
√

m))

• Total space considerations:
[Beame 2009: Problem 27 at sublinear.info]
[Beame, Koutris, Suciu 2013]
[Andoni, Nikolov, Onak, Yaroslavtsev 2014]
• Karloff et al. allow for m1−ε machines with m1−ε space

⇒ near quadratic total space m2−2ε

• A refined version asks for near-linear total space: M × S = m1+o(1)

Krzysztof Onak (IBM Research) Walking Randomly, Massively, and Efficiently 7 / 32



Model: Massively Parallel Computation (MPC)

(from Dean, Ghemawat “MapReduce: Simplified Data Processing on Large Clusters”)

• Introduced by Karloff, Suri, Vassilvitskii (2010)
to model MapReduce due to Dean, Ghemawat (2004)

• Essential: space per machine S = mΩ(1) (e.g., S = Ω(
√

m))

• Total space considerations:
[Beame 2009: Problem 27 at sublinear.info]
[Beame, Koutris, Suciu 2013]
[Andoni, Nikolov, Onak, Yaroslavtsev 2014]
• Karloff et al. allow for m1−ε machines with m1−ε space

⇒ near quadratic total space m2−2ε

• A refined version asks for near-linear total space: M × S = m1+o(1)

Krzysztof Onak (IBM Research) Walking Randomly, Massively, and Efficiently 7 / 32



Model: Massively Parallel Computation (MPC)

(from Dean, Ghemawat “MapReduce: Simplified Data Processing on Large Clusters”)

• Introduced by Karloff, Suri, Vassilvitskii (2010)
to model MapReduce due to Dean, Ghemawat (2004)

• Essential: space per machine S = mΩ(1) (e.g., S = Ω(
√

m))

• Total space considerations:
[Beame 2009: Problem 27 at sublinear.info]
[Beame, Koutris, Suciu 2013]
[Andoni, Nikolov, Onak, Yaroslavtsev 2014]
• Karloff et al. allow for m1−ε machines with m1−ε space

⇒ near quadratic total space m2−2ε

• A refined version asks for near-linear total space: M × S = m1+o(1)

Krzysztof Onak (IBM Research) Walking Randomly, Massively, and Efficiently 7 / 32



Model: Massively Parallel Computation (MPC)

(from Dean, Ghemawat “MapReduce: Simplified Data Processing on Large Clusters”)

• Introduced by Karloff, Suri, Vassilvitskii (2010)
to model MapReduce due to Dean, Ghemawat (2004)

• Essential: space per machine S = mΩ(1) (e.g., S = Ω(
√

m))

• Total space considerations:
[Beame 2009: Problem 27 at sublinear.info]
[Beame, Koutris, Suciu 2013]
[Andoni, Nikolov, Onak, Yaroslavtsev 2014]
• Karloff et al. allow for m1−ε machines with m1−ε space

⇒ near quadratic total space m2−2ε

• A refined version asks for near-linear total space: M × S = m1+o(1)

Krzysztof Onak (IBM Research) Walking Randomly, Massively, and Efficiently 7 / 32



Three Main Memory Regimes
• Superlinear: S = n1+Ω(1)

• Many early papers [Karloff, Suri, Vassilvitskii 2010]
[Lattanzi, Moseley, Suri, Vassilvitskii 2011] . . .

• Round complexity: usually O(1)

• Near-linear: S = Θ̃(n)
• Not much was happening until 2017
• Matchings, Vertex Cover, MIS in O(log log n) rounds
• Connectivity in O(1) rounds
• Very similar to the CONGESTED CLIQUE model

• Sublinear: S = O(nα) for α ∈ (0,1)
• Most interesting for large sparse graphs
• Results in this talk
• Beating O(log n) becomes a challenge

Krzysztof Onak (IBM Research) Walking Randomly, Massively, and Efficiently 8 / 32



Three Main Memory Regimes
• Superlinear: S = n1+Ω(1)

• Many early papers [Karloff, Suri, Vassilvitskii 2010]
[Lattanzi, Moseley, Suri, Vassilvitskii 2011] . . .

• Round complexity: usually O(1)

• Near-linear: S = Θ̃(n)
• Not much was happening until 2017
• Matchings, Vertex Cover, MIS in O(log log n) rounds
• Connectivity in O(1) rounds
• Very similar to the CONGESTED CLIQUE model

• Sublinear: S = O(nα) for α ∈ (0,1)
• Most interesting for large sparse graphs
• Results in this talk
• Beating O(log n) becomes a challenge

Krzysztof Onak (IBM Research) Walking Randomly, Massively, and Efficiently 8 / 32



Three Main Memory Regimes
• Superlinear: S = n1+Ω(1)

• Many early papers [Karloff, Suri, Vassilvitskii 2010]
[Lattanzi, Moseley, Suri, Vassilvitskii 2011] . . .

• Round complexity: usually O(1)

• Near-linear: S = Θ̃(n)
• Not much was happening until 2017
• Matchings, Vertex Cover, MIS in O(log log n) rounds
• Connectivity in O(1) rounds
• Very similar to the CONGESTED CLIQUE model

• Sublinear: S = O(nα) for α ∈ (0,1)
• Most interesting for large sparse graphs
• Results in this talk
• Beating O(log n) becomes a challenge

Krzysztof Onak (IBM Research) Walking Randomly, Massively, and Efficiently 8 / 32



Main goal: minimize the number of rounds

• PRAM:
• can usually be simulated in the same number of rounds
• often Ω(log n) rounds

Processor Processor Processor Processor

1 1 0 1 1 0 0 1 1 0 1 0 1 1 00 1 1 0

• Fewer parallel rounds than best PRAM algorithms?

O(1) or O(poly(log log N)) rounds of MPC?

Krzysztof Onak (IBM Research) Walking Randomly, Massively, and Efficiently 9 / 32



Main goal: minimize the number of rounds

• PRAM:
• can usually be simulated in the same number of rounds
• often Ω(log n) rounds

Processor Processor Processor Processor

1 1 0 1 1 0 0 1 1 0 1 0 1 1 00 1 1 0

• Fewer parallel rounds than best PRAM algorithms?

O(1) or O(poly(log log N)) rounds of MPC?

Krzysztof Onak (IBM Research) Walking Randomly, Massively, and Efficiently 9 / 32



Our Results

Krzysztof Onak (IBM Research) Walking Randomly, Massively, and Efficiently 10 / 32



Random Walks

Random walk on a graph:

At every step select a random
outgoing edge

In general, the set of options could be
weighted

Why study random walks?
Useful primitive! Sample applications:

• PageRank and rating web pages

• optimal PRAM algorithms for
connectivity

• partitioning graphs

• minimizing query complexity in property
testing

• graph matchings in regular graphs

• generating random spanning trees

• volume estimation

• counting problems

Krzysztof Onak (IBM Research) Walking Randomly, Massively, and Efficiently 11 / 32



Our Results

Setting: strongly sublinear space per machine, i.e., O(nα) for α ∈ (0,1)

Generate a small number of length-L random walks from every vertex
• undirected graphs: O(log L) rounds
• directed graphs: O((log log n)2 + log2 L) rounds

PageRank: O((log log n)2 + log2(1/ε)) rounds
• multiplicative approximation for all vertices
• ε = teleportation probability

Krzysztof Onak (IBM Research) Walking Randomly, Massively, and Efficiently 12 / 32



Undirected Graphs

Krzysztof Onak (IBM Research) Walking Randomly, Massively, and Efficiently 13 / 32



Basic Challenges

Trivial: compute random walk of length L in O(L) rounds

Idea for more efficient algorithm:
• Random walks are memoryless
• Compute different sections and stitch them together?
• For L-step random walk, compute independently the first and second

half of length L/2 via recursion?

Obstacles:
• We don’t know where the second L/2 steps start
• Compute many possible continuations?
• With many random walks, they could collide

Krzysztof Onak (IBM Research) Walking Randomly, Massively, and Efficiently 14 / 32



Basic Challenges

Trivial: compute random walk of length L in O(L) rounds

Idea for more efficient algorithm:
• Random walks are memoryless
• Compute different sections and stitch them together?
• For L-step random walk, compute independently the first and second

half of length L/2 via recursion?

Obstacles:
• We don’t know where the second L/2 steps start
• Compute many possible continuations?
• With many random walks, they could collide

Krzysztof Onak (IBM Research) Walking Randomly, Massively, and Efficiently 14 / 32



Basic Challenges

Trivial: compute random walk of length L in O(L) rounds

Idea for more efficient algorithm:
• Random walks are memoryless
• Compute different sections and stitch them together?
• For L-step random walk, compute independently the first and second

half of length L/2 via recursion?

Obstacles:
• We don’t know where the second L/2 steps start
• Compute many possible continuations?
• With many random walks, they could collide

Krzysztof Onak (IBM Research) Walking Randomly, Massively, and Efficiently 14 / 32



Basic Challenges

Trivial: compute random walk of length L in O(L) rounds

Idea for more efficient algorithm:
• Random walks are memoryless
• Compute different sections and stitch them together?
• For L-step random walk, compute independently the first and second

half of length L/2 via recursion?

Obstacles:
• We don’t know where the second L/2 steps start
• Compute many possible continuations?
• With many random walks, they could collide

Krzysztof Onak (IBM Research) Walking Randomly, Massively, and Efficiently 14 / 32



Basic Challenges

Trivial: compute random walk of length L in O(L) rounds

Idea for more efficient algorithm:
• Random walks are memoryless
• Compute different sections and stitch them together?
• For L-step random walk, compute independently the first and second

half of length L/2 via recursion?

Obstacles:
• We don’t know where the second L/2 steps start
• Compute many possible continuations?
• With many random walks, they could collide

Krzysztof Onak (IBM Research) Walking Randomly, Massively, and Efficiently 14 / 32



Basic Challenges

Trivial: compute random walk of length L in O(L) rounds

Idea for more efficient algorithm:
• Random walks are memoryless
• Compute different sections and stitch them together?
• For L-step random walk, compute independently the first and second

half of length L/2 via recursion?

Obstacles:
• We don’t know where the second L/2 steps start
• Compute many possible continuations?
• With many random walks, they could collide

Krzysztof Onak (IBM Research) Walking Randomly, Massively, and Efficiently 14 / 32



Basic Challenges

Trivial: compute random walk of length L in O(L) rounds

Idea for more efficient algorithm:
• Random walks are memoryless
• Compute different sections and stitch them together?
• For L-step random walk, compute independently the first and second

half of length L/2 via recursion?

Obstacles:
• We don’t know where the second L/2 steps start
• Compute many possible continuations?

• With many random walks, they could collide

Krzysztof Onak (IBM Research) Walking Randomly, Massively, and Efficiently 14 / 32



Basic Challenges

Trivial: compute random walk of length L in O(L) rounds

Idea for more efficient algorithm:
• Random walks are memoryless
• Compute different sections and stitch them together?
• For L-step random walk, compute independently the first and second

half of length L/2 via recursion?

Obstacles:
• We don’t know where the second L/2 steps start
• Compute many possible continuations?
• With many random walks, they could collide

Krzysztof Onak (IBM Research) Walking Randomly, Massively, and Efficiently 14 / 32



Undirected Graphs

What we achieve: many random walks from each vertex

How:
• Start from the stationary distribution: deg(v)

2m for vertex v
• After any number of steps, the distribution will be the same

• Sample slightly more edges for consecutive steps to ensure that
number of continuations is sufficient
• Roughly O(deg(v) · log n) random walks from vertex v
• Use O(log L) rounds to combine edges into random walks

Krzysztof Onak (IBM Research) Walking Randomly, Massively, and Efficiently 15 / 32



Undirected Graphs

What we achieve: many random walks from each vertex

How:
• Start from the stationary distribution: deg(v)

2m for vertex v
• After any number of steps, the distribution will be the same

• Sample slightly more edges for consecutive steps to ensure that
number of continuations is sufficient
• Roughly O(deg(v) · log n) random walks from vertex v
• Use O(log L) rounds to combine edges into random walks

Krzysztof Onak (IBM Research) Walking Randomly, Massively, and Efficiently 15 / 32



Is O(log L) Rounds Optimal?
• Space per machine: S = nα for α ∈ (0,1)

• Problem: One or two cycles?

vs.

Best known algorithm: O(log n) rounds

Good starting point for reductions:
• We show: if we can compute O(log4 n)–length random walks in

o(log log n) rounds, then this problem can be solved in o(log n) rounds
• Ω(log n) conditional lower bound for exact bipartiteness

Krzysztof Onak (IBM Research) Walking Randomly, Massively, and Efficiently 16 / 32



Is O(log L) Rounds Optimal?
• Space per machine: S = nα for α ∈ (0,1)

• Problem: One or two cycles?

vs.

Best known algorithm: O(log n) rounds

Good starting point for reductions:
• We show: if we can compute O(log4 n)–length random walks in

o(log log n) rounds, then this problem can be solved in o(log n) rounds

• Ω(log n) conditional lower bound for exact bipartiteness

Krzysztof Onak (IBM Research) Walking Randomly, Massively, and Efficiently 16 / 32



Is O(log L) Rounds Optimal?
• Space per machine: S = nα for α ∈ (0,1)

• Problem: One or two cycles?

vs.

Best known algorithm: O(log n) rounds

Good starting point for reductions:
• We show: if we can compute O(log4 n)–length random walks in

o(log log n) rounds, then this problem can be solved in o(log n) rounds
• Ω(log n) conditional lower bound for exact bipartiteness

Krzysztof Onak (IBM Research) Walking Randomly, Massively, and Efficiently 16 / 32



Applications to Property Testing

Bipartiteness testing (similar to [Censor-Hillel, Fischer, Schwartzman, Vasudev 2016]):
• [Goldreich Ron 1999]: sampling O(

√
n) random walks from a random

vertex is likely to detect an odd length cycle
• Can as well sample O(1) random walks from all vertices

Testing if a graph is an expander:
• Classic property testing: [Goldrech, Ron 2000] [Czumaj, Sohler 2007] . . .
• Expander: two random walks collide with probability close to 1/n
• Far from expander: higher probability for a random starting vertex
• Tweak the proof of Czumaj and Sohler (2007) to distribute starting

points of random walks over all vertices
Open question: Can this be done for testing clusterability?

Krzysztof Onak (IBM Research) Walking Randomly, Massively, and Efficiently 17 / 32



Applications to Property Testing

Bipartiteness testing (similar to [Censor-Hillel, Fischer, Schwartzman, Vasudev 2016]):
• [Goldreich Ron 1999]: sampling O(

√
n) random walks from a random

vertex is likely to detect an odd length cycle
• Can as well sample O(1) random walks from all vertices

Testing if a graph is an expander:
• Classic property testing: [Goldrech, Ron 2000] [Czumaj, Sohler 2007] . . .
• Expander: two random walks collide with probability close to 1/n
• Far from expander: higher probability for a random starting vertex
• Tweak the proof of Czumaj and Sohler (2007) to distribute starting

points of random walks over all vertices

Open question: Can this be done for testing clusterability?

Krzysztof Onak (IBM Research) Walking Randomly, Massively, and Efficiently 17 / 32



Applications to Property Testing

Bipartiteness testing (similar to [Censor-Hillel, Fischer, Schwartzman, Vasudev 2016]):
• [Goldreich Ron 1999]: sampling O(

√
n) random walks from a random

vertex is likely to detect an odd length cycle
• Can as well sample O(1) random walks from all vertices

Testing if a graph is an expander:
• Classic property testing: [Goldrech, Ron 2000] [Czumaj, Sohler 2007] . . .
• Expander: two random walks collide with probability close to 1/n
• Far from expander: higher probability for a random starting vertex
• Tweak the proof of Czumaj and Sohler (2007) to distribute starting

points of random walks over all vertices
Open question: Can this be done for testing clusterability?

Krzysztof Onak (IBM Research) Walking Randomly, Massively, and Efficiently 17 / 32



How About Directed Graphs?

Difficulties:

• No explicit stationary distribution

• Values can be as low as n−Ω(n)

Krzysztof Onak (IBM Research) Walking Randomly, Massively, and Efficiently 18 / 32



PageRank for Undirected Graphs

Krzysztof Onak (IBM Research) Walking Randomly, Massively, and Efficiently 19 / 32



Definition of PageRank

PageRank: measure of importance of nodes in a graph

• Stationary distribution

• Random walk:
• with probability 1− ε, follow a random outgoing edge
• with probability ε, teleport to uniformly selected vertex in the entire graph

• ε = teleportation probability

Krzysztof Onak (IBM Research) Walking Randomly, Massively, and Efficiently 20 / 32



Alternate Definition

This process gives the same distribution [Breyer 2002]

• Select a vertex v uniformly at random

• Walk on the Markov chain until teleportation from some vertex u

• u distributed according to PageRank

Krzysztof Onak (IBM Research) Walking Randomly, Massively, and Efficiently 21 / 32



Algorithm for Undirected PageRank

Algorithm:
• Know how to generate random walks on the underlying undirected

graph, starting point selected uniformly

• Toss a biased coin at every step to decide if teleportation occurs
• Distribution of vertices right before teleportation is PageRank

• Need at most O(ε−1 log n) random walks from every vertex
• All random walks will teleport whp. after O(ε−1 log n) steps

Important note: This works for directed graphs as long as someone gives
us a collection of random walks with uniformly selected starting points

Krzysztof Onak (IBM Research) Walking Randomly, Massively, and Efficiently 22 / 32



Algorithm for Undirected PageRank

Algorithm:
• Know how to generate random walks on the underlying undirected

graph, starting point selected uniformly

• Toss a biased coin at every step to decide if teleportation occurs
• Distribution of vertices right before teleportation is PageRank

• Need at most O(ε−1 log n) random walks from every vertex
• All random walks will teleport whp. after O(ε−1 log n) steps

Important note: This works for directed graphs as long as someone gives
us a collection of random walks with uniformly selected starting points

Krzysztof Onak (IBM Research) Walking Randomly, Massively, and Efficiently 22 / 32



Algorithm for Undirected PageRank

Algorithm:
• Know how to generate random walks on the underlying undirected

graph, starting point selected uniformly

• Toss a biased coin at every step to decide if teleportation occurs
• Distribution of vertices right before teleportation is PageRank

• Need at most O(ε−1 log n) random walks from every vertex
• All random walks will teleport whp. after O(ε−1 log n) steps

Important note: This works for directed graphs as long as someone gives
us a collection of random walks with uniformly selected starting points

Krzysztof Onak (IBM Research) Walking Randomly, Massively, and Efficiently 22 / 32



PageRank
for Balanced Directed Graphs

Krzysztof Onak (IBM Research) Walking Randomly, Massively, and Efficiently 23 / 32



c-Balanced Directed Graph

• Constant c ∈ (0,1)

• For every vertex vertex v ,

outdeg(v) ≥ c · indeg(b)

• Random incident edge is directed in the correct direction with
non-trivial probability

Krzysztof Onak (IBM Research) Walking Randomly, Massively, and Efficiently 24 / 32



Transformation

G is c-balanced graph

PG = PageRank transition
probability matrix for G

Ḡ = undirected version of G

PḠ = PageRank transition
probability matrix for Ḡ

Sequence: 0 = δ0 < δ1 < . . . < δk−1 < δk = 1.

Intermediate PageRank transition probability matrices:

Pi = δiPG + (1− δi)PḠ

How:
• Know how to compute stationary distribution for P0

• Want to compute stationary distribution for Pk

• We show how to move from Pi to Pi+1 for δi+1 − δi ≈ 1
log log n

Krzysztof Onak (IBM Research) Walking Randomly, Massively, and Efficiently 25 / 32



Transformation

G is c-balanced graph

PG = PageRank transition
probability matrix for G

Ḡ = undirected version of G

PḠ = PageRank transition
probability matrix for Ḡ

Sequence: 0 = δ0 < δ1 < . . . < δk−1 < δk = 1.

Intermediate PageRank transition probability matrices:

Pi = δiPG + (1− δi)PḠ

How:
• Know how to compute stationary distribution for P0

• Want to compute stationary distribution for Pk

• We show how to move from Pi to Pi+1 for δi+1 − δi ≈ 1
log log n

Krzysztof Onak (IBM Research) Walking Randomly, Massively, and Efficiently 25 / 32



Transformation

G is c-balanced graph

PG = PageRank transition
probability matrix for G

Ḡ = undirected version of G

PḠ = PageRank transition
probability matrix for Ḡ

Sequence: 0 = δ0 < δ1 < . . . < δk−1 < δk = 1.

Intermediate PageRank transition probability matrices:

Pi = δiPG + (1− δi)PḠ

How:
• Know how to compute stationary distribution for P0

• Want to compute stationary distribution for Pk

• We show how to move from Pi to Pi+1 for δi+1 − δi ≈ 1
log log n

Krzysztof Onak (IBM Research) Walking Randomly, Massively, and Efficiently 25 / 32



Transition from Pi to Pi+1

1. Use stationary distribution for Pi to generate random walks for Pi

2. Use rejection sampling to adjust probabilities of random walks:
• Every time we take a step in the “wrong” direction, reject the walk with

small probability, so they come from Pi+1

3. Use the surviving random walks to compute PageRank for Pi+1

Krzysztof Onak (IBM Research) Walking Randomly, Massively, and Efficiently 26 / 32



Transition from Pi to Pi+1

1. Use stationary distribution for Pi to generate random walks for Pi

2. Use rejection sampling to adjust probabilities of random walks:
• Every time we take a step in the “wrong” direction, reject the walk with

small probability, so they come from Pi+1

3. Use the surviving random walks to compute PageRank for Pi+1

Krzysztof Onak (IBM Research) Walking Randomly, Massively, and Efficiently 26 / 32



Transition from Pi to Pi+1

1. Use stationary distribution for Pi to generate random walks for Pi

2. Use rejection sampling to adjust probabilities of random walks:
• Every time we take a step in the “wrong” direction, reject the walk with

small probability, so they come from Pi+1

3. Use the surviving random walks to compute PageRank for Pi+1

Krzysztof Onak (IBM Research) Walking Randomly, Massively, and Efficiently 26 / 32



PageRank
for General Directed Graphs

Krzysztof Onak (IBM Research) Walking Randomly, Massively, and Efficiently 27 / 32



Replacing Vertices with Paths

• Previous approach does not work for general graphs: would need a lot
of samples at a vertex with few outgoing edges but lots of coming in

• Replace vertices v with directed O(log n)-paths
• i-th edge: max n/2i , indeg(v) copies

• Correspondingly lower the teleportation probability

• Transition from ε = 1/2 to ε/ log n
(again via series of transitions)

Krzysztof Onak (IBM Research) Walking Randomly, Massively, and Efficiently 28 / 32



Replacing Vertices with Paths

• Previous approach does not work for general graphs: would need a lot
of samples at a vertex with few outgoing edges but lots of coming in

• Replace vertices v with directed O(log n)-paths
• i-th edge: max n/2i , indeg(v) copies

• Correspondingly lower the teleportation probability

• Transition from ε = 1/2 to ε/ log n
(again via series of transitions)

Krzysztof Onak (IBM Research) Walking Randomly, Massively, and Efficiently 28 / 32



Replacing Vertices with Paths

• Previous approach does not work for general graphs: would need a lot
of samples at a vertex with few outgoing edges but lots of coming in

• Replace vertices v with directed O(log n)-paths
• i-th edge: max n/2i , indeg(v) copies

• Correspondingly lower the teleportation probability

• Transition from ε = 1/2 to ε/ log n
(again via series of transitions)

Krzysztof Onak (IBM Research) Walking Randomly, Massively, and Efficiently 28 / 32



Generating Random Walks
in Directed Graphs

Krzysztof Onak (IBM Research) Walking Randomly, Massively, and Efficiently 29 / 32



Generating Random Walks in Directed Graphs

• L = length of desired random walks

• Leverage the fact that we know the associated PageRank

• Set the teleportation probability to 1/L

• Generate random walks from the PageRank Markov Chain

• Throw away those that teleported at least once

• A random walk “survives” with probability Ω(1)

Krzysztof Onak (IBM Research) Walking Randomly, Massively, and Efficiently 30 / 32



Open Questions

Krzysztof Onak (IBM Research) Walking Randomly, Massively, and Efficiently 31 / 32



Open Questions

1 Are the “squares” needed? O(log L) rounds for directed random walks?

2 Testing clusterability?

3 More general study of property testing guarantees in MPC?

Questions?

Krzysztof Onak (IBM Research) Walking Randomly, Massively, and Efficiently 32 / 32



Open Questions

1 Are the “squares” needed? O(log L) rounds for directed random walks?

2 Testing clusterability?

3 More general study of property testing guarantees in MPC?

Questions?

Krzysztof Onak (IBM Research) Walking Randomly, Massively, and Efficiently 32 / 32



Open Questions

1 Are the “squares” needed? O(log L) rounds for directed random walks?

2 Testing clusterability?

3 More general study of property testing guarantees in MPC?

Questions?

Krzysztof Onak (IBM Research) Walking Randomly, Massively, and Efficiently 32 / 32



Open Questions

1 Are the “squares” needed? O(log L) rounds for directed random walks?

2 Testing clusterability?

3 More general study of property testing guarantees in MPC?

Questions?

Krzysztof Onak (IBM Research) Walking Randomly, Massively, and Efficiently 32 / 32


