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Introduction

o Low-rank matrix approximation is the method of compressing a matrix by
reducing its dimension.

o It is the basic component in data analysis including Principal Component
Analysis (PCA) and has applications in machine learning, scientific
computing, etc.
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Given a matrix A € R™*" and a positive integer r, objective is a to find a
matrix B € R™*" of rank at most 7 minimizing some matrix norm ||A — BJ|,.
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We consider LOw RANK MATRIX APPROXIMATION of binary matrices over GF(2).
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A ~ C . D = B
XN
mXn e mxXr
ming ||A — B||,

e Entry-wise {p-norm <Zl > lai; — bi,j]>: Low GF2 RANK APPROXIMATION
e Column-sum norm (||A — B||; =max; ), |a;; — bi7j|)

¢1-RANK-r APPROXIMATION OVER GF(2)
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e NP-hard
[Gillis and Vavasis (2015)], [Dan, Hansen, Jiang, Wang, and Zhou (2015)]

2r
e A PTAS with running time nOlz log ),

e A randomized linear time approximation scheme (Running time f(k,€e)nm).

[Fomin, Golovach, Lokshtanov, Panolan, Saurabh (2019)]
[Ban, Bhattiprolu, Bringmann, Kolev, Woodruff (2019)]




Our Result: ¢1-RANK-r APPROXIMATION OVER GF(2)

Minimize the column-sum norm, max; » . |a;; — bl

A simple reduction from CLOSEST STRING shows that the
problem is NP-hard.

Main result
For every ¢ € (0, 1), there is a randomized (1 -+ ¢)-approximation

algorithm of running time mOWpO@" e,



Proof Overview

The proof has 3 steps.

Step 1:

Reduce the problem to BINARY CONSTRAINED k-CENTER
(BCC)

Step 2:
Using dimension reduction technique reduce BCC to BINARY
CONSTRAINED PARTITION CENTER (BCPC)

Step 3:
Solve BCPC using Integer Linear Programming
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A B, B
Rank of B; =1 (i.e., all non-zero columns of B; are identical).

No. of distinct columns in B is at most 2".

SRUANG

@ Minimize the maximum Hamming distance from red points to closest blue
point.
@ There is a relation between cluster centers.
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Example:

em=2 k=3

o Ry ={(0,0,1),(1,0,0)}, and Ry = {(1,1,1),(1,0,1),(0,0,1)}

Cl_<(1)>702_<8>’c3_<1> satisfies R = { Ry, Ry}



BINARY CONSTRAINED k-CENTER

e Input : X C{0,1}", ke N,and R = {Ry,...,Rp}.
e Output : Among all the sets C' = {cy,..., ¢} satisfying R, find C

minimizing max,cy d(z, C').
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o Find centers for each part s.t. centers are linear span of r vectors minimizing
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Reduction to BINARY CONSTRAINED k-CENTER (BCC)

A=1la; --- a,| andr e N

o Partition columns of A into 2" parts

o Find centers for each part s.t. centers are linear span of r vectors minimizing
maximum distance distance of a column to the closest center.

Reduction for r=2
e X is the the set of columns of A and for all i € [m], R;

{(0,0,0,0),
(0,0,1,1),
(0,1,0,1),
(0,1,1,0)}.
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Step 2: BCC to BCPC

o Input : X C {0,1}"", ke N, R ={Ry,..., Ry}, and a partition X; & ... X}
of X.

e Output : Among all the sets C' = {¢y,..., ¢} satisfying R, find C' minimizing

k
max max d(zx, ¢;) = cost(X; W... W Xy, C).
i=1 xzeX;



Step 2: Proof sketch
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e Dimension reduction [Ostrovsky and Rabani, 2002]. For any
Y C {0,1}" of size n + k, and £ > 0, there is a linear map ¢ from Y to
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’There exits a s.t. (1 —¢)ad(z,y) < dW(z),v¥(y)) < (1 +¢)ad(z,y), Vr,y €Y

o Let Y = X UC, where C' is a hypothetical solution. Then, for any vector
r € X and ¢ € C, the Hamming distance d(¢)(x),1(c)) is relatively preserved
w.h.p.

o Guess ¢/(C') and then partition X into & blocks based on distances between
(X)) and (C). Cost of this guess is n®*/").
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Step 2: Proof sketch

e Let Y = X UC, where C'is a hypothetical solution. Then, for any x € X and
¢ € (', the Hamming distance d(v(x),1(c)) is relatively preserved w.h.p.

The above partition gives us an instance of BCPC. A (1 + ¢)-approx solution C’ to
the instance of BCPC is a (1 + £)?-approx solution for the instance of BCC.



Step 3: Solving BCPC

o We formulate BCPC as Integer Programming formulation

@ We solve it using randomized rounding method. This method is similar to the
method used for PTAS of CLOSEST STRING.
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Step 3: Solving BCPC (Case 1: OPT > m/c for a constant c)

o We formulate BCPC as Integer Programming formulation

e For every j € [m] and tuple ¢ € R;, we have a variable y; ;. Interpretation: if
yj+ = 1, then the row j of center vectors (solution) is same as tuple ¢.

min d
subject to

Z Yjt =1, for all j € [m];
teR;

SN il t) g <d, forallic [k andx € X,
jE[m]teER;

yjt € {0,1}, for all j € [m] and t € R;.

Here, xi(x[j], ) = 0 if x[j] = t[i] and x;(x[j],¢) = 1 if x[j] # t[i]



Step 3: Solving BCPC (Case 1: OPT > m/c for a constant c)

o Solve the LP relaxation of the above IP, and obtain fractional solution y7,
(j € [m] and t € R))

o Now, for each j € [m], independently with probability y7,, we set y;f =1 and
i =0, for any t' € R; \ {t}.

o Then y}, (j € [m] and t € R;) form a solution to IP.

o Claim: g/f]-’t (j € [m] and t € Rj) is a (1 + ¢)- approximate solution.
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Step 3:

Solving BCPC (Case 1: OPT > m/c for a constant c)

Eld(x,c;)] = Z Z Xi(x Y5, t]
jE[m] tER;
= Z Z XZ y] t]

j€[m]teR;

- ZZX" ) yje<d

jE[m] tER;
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Eld(x,c;)]

PSS Y vt o, ]
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j€[m]teR;
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Step 3: Solving BCPC (Case 1: OPT > m/c for a constant c)

Eld(x,c;)] = Z Z Xi(x Y5, t]
jE[m] tER;
= Z Z Xl y] t]
j€[m]teR;
= D D i)y <d
jE[m] tER;

Fix 0 = £. By Chernoff bound,

Prld(x,c;) > d 4+ cOPT] < Prld(x,¢;) > d + dm] =< .
Therefore, by the union bound,

Pr[There exist 7 € [k] and x € X; such that d(x,¢c;) > d+cOPT] <n- e 5mo? < 2

for m = Q(logn)



Step 3: Solving BCPC (Case 1: OPT < m/c)

e We fix some co-ordinates of center vectors and then the remaining will have
large optimum.

e That is, there exist Y7 C Xy, ....Y), € X}, such that |V;| = O(1/¢) and fixing
identical co-ordinates in Y;s will leads a good approximate solution.
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Conclusion

o We gave PTAS for /;-RANK-r APPROXIMATION OVER GF(2). Running time
is

mO1),,0024 ")

e What about a EPTAS, i.e., with running time f(c)(mn)9")?
An adaptation of a result on CLOSEST STRING by Cygan, Lokshtanov,
Pilipczuk, Pilipczuk, and Saurabh (2016) implies that such a result even for
r = 1 is not possible assuming FPT#W][1].

o Also, existence of an algorithm with running time f(g)na(l/ <) even for r = 1
will contradict Exponential Time Hypothesis (ETH).

e But, algorithm with running f(r, )(mn)?°¥(1/%) is open.



Thank You.



