
Low-rank binary matrix approximation in column-sum norm

Fahad Panolan

Department of Computer Science and Engineering

Indian Institute of Technology Hyderabad, India

Joint work with Fedor V. Fomin, Petr Golovach, and Kirill Simonov.



Introduction

Low-rank matrix approximation is the method of compressing a matrix by
reducing its dimension.

It is the basic component in data analysis including Principal Component
Analysis (PCA) and has applications in machine learning, scientific
computing, etc.
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Low Rank Matrix Approximation

Given a matrix A ∈ Rm×n and a positive integer r, objective is a to find a
matrix B ∈ Rm×n of rank at most r minimizing some matrix norm ||A−B||ν .

Frobenius norm, ||A−B||2F =
∑

i,j(ai,j − bi,j)2.

Spectral norm, ‖A−B‖2 = supx6=0
‖(A−B)x‖2
‖x‖2 .

Both the problems are solvable in polynomial time using Singular Value
Decomposition.

We consider Low Rank Matrix Approximation of binary matrices over GF(2).
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Low Rank Matrix Approximation Over GF(2)

A ≈ C · D = B
1 0 1 · · · 0
0 0 0 · · · 1
1 1 0 · · · 0
...

...
...

...
...

0 1 1 · · · 1


m×n

≈


1 · · · 0
0 · · · 1
1 · · · 0
...

...
...

0 · · · 1


m×r

 1 1 0 · · · 1
...

...
...

...
...

0 1 0 · · · 1


r×n

minB ||A−B||ν

Entry-wise `0-norm
(∑

i

∑
j |ai,j − bi,j |

)
: Low GF2 Rank Approximation

Column-sum norm
(
||A−B||1 = maxj

∑
i |ai,j − bi,j |

)
`1-Rank-r Approximation over GF(2)
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Known Results: Low GF2 Rank Approximation

Minimize entry-wise `0-norm,
∑

i

∑
j |ai,j − bi,j |

NP-hard

[Gillis and Vavasis (2015)], [Dan, Hansen, Jiang, Wang, and Zhou (2015)]

A PTAS with running time nO(
22r

ε2
log 1

ε
).

A randomized linear time approximation scheme (Running time f(k, ε)nm).

[Fomin, Golovach, Lokshtanov, Panolan, Saurabh (2019)]
[Ban, Bhattiprolu, Bringmann, Kolev, Woodruff (2019)]
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Our Result: `1-Rank-r Approximation over GF(2)

Minimize the column-sum norm, maxj
∑

j |ai,j − bi,j|

A simple reduction from Closest String shows that the
problem is NP-hard.

Main result

For every ε ∈ (0, 1), there is a randomized (1 + ε)-approximation
algorithm of running time mO(1)nO(24r·ε−4).
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Proof Overview

The proof has 3 steps.

Step 1:

Reduce the problem to Binary Constrained k-Center
(BCC)

Step 2:

Using dimension reduction technique reduce BCC to Binary
Constrained Partition Center (BCPC)

Step 3:

Solve BCPC using Integer Linear Programming
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Step 1

a1 · · · an


A

≈
r∑
i=1

bi1 · · · bin


Bi

=

b1 · · · bn


B

Rank of Bi = 1 (i.e., all non-zero columns of Bi are identical).

No. of distinct columns in B is at most 2r.

• •
•

••

• •

•

•

•

•

••

•
•

•

•

•
•

•

Minimize the maximum Hamming distance from red points to closest blue
point.
There is a relation between cluster centers.
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Binary Constrained k-Center

R1, . . . , Rm – k-ary relations with elements from {0, 1}.

C = {c1, . . . , ck} ⊆ {0, 1}m satisfies R = {R1, . . . , Rm} if :

(c1[i], . . . , ck[i]) ∈ Ri for all i ∈ [m].

Example:

m = 2, k = 3

R1 = {(0, 0, 1), (1, 0, 0)}, and R2 = {(1, 1, 1), (1, 0, 1), (0, 0, 1)}

c1 =

(
0
1

)
, c2 =

(
0
0

)
, c3 =

(
1
1

)
satisfies R = {R1, R2}
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Binary Constrained k-Center

Input : X ⊆ {0, 1}m, k ∈ N, and R = {R1, . . . , Rm}.

Output : Among all the sets C = {c1, . . . , ck} satisfying R, find C

minimizing maxx∈X d(x,C).
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Reduction to Binary Constrained k-Center (BCC)

A =

a1 · · · an

 and r ∈ N

Partition columns of A into 2r parts

Find centers for each part s.t. centers are linear span of r vectors minimizing
maximum distance distance of a column to the closest center.

Reduction for r=2

X is the the set of columns of A and for all i ∈ [m], Ri = {(0, 0, 0, 0),

(0, 0, 1, 1),

(0, 1, 0, 1),

(0, 1, 1, 0)}.
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Step 2: BCC to BCPC

Input : X ⊆ {0, 1}m, k ∈ N, R = {R1, . . . , Rm}, and a partition X1 ] . . . ]Xk

of X.

Output : Among all the sets C = {c1, . . . , ck} satisfying R, find C minimizing

k
max
i=1

max
x∈Xi

d(x, ci) = cost(X1 ] . . . ]Xk, C).
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Step 2: Proof sketch

Dimension reduction [Ostrovsky and Rabani, 2002]. For any
Y ⊆ {0, 1}m of size n+ k, and ε > 0, there is a linear map ψ from Y to

{0, 1}O(
1
ε4

logn) such that the Hamming distances between any two vectors in
ψ(Y ) are relatively preserved w.h.p.

There exits α s.t. (1− ε)αd(x, y) ≤ d(ψ(x), ψ(y)) ≤ (1 + ε)αd(x, y), ∀x, y ∈ Y

Let Y = X ∪ C, where C is a hypothetical solution. Then, for any vector
x ∈ X and c ∈ C, the Hamming distance d(ψ(x), ψ(c)) is relatively preserved
w.h.p.

Guess ψ(C) and then partition X into k blocks based on distances between
ψ(X) and ψ(C). Cost of this guess is nO(k/ε

4).
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Step 2: Proof sketch

Let Y = X ∪ C, where C is a hypothetical solution. Then, for any x ∈ X and
c ∈ C, the Hamming distance d(ψ(x), ψ(c)) is relatively preserved w.h.p.

• •
•

••

• •

•

•

•

••
•

•••

•
•

•
•

• •
•

••

• •

•

•

•

••
•

•••

•
•

•
•

The above partition gives us an instance of BCPC. A (1 + ε)-approx solution C ′ to
the instance of BCPC is a (1 + ε)2-approx solution for the instance of BCC.

13



Step 2: Proof sketch

Let Y = X ∪ C, where C is a hypothetical solution. Then, for any x ∈ X and
c ∈ C, the Hamming distance d(ψ(x), ψ(c)) is relatively preserved w.h.p.

• •
•

••

• •

•

•

•

••
•

•••

•
•

•
•

• •
•

••

• •

•

•

•

••
•

•••

•
•

•
•

The above partition gives us an instance of BCPC. A (1 + ε)-approx solution C ′ to
the instance of BCPC is a (1 + ε)2-approx solution for the instance of BCC.

13



Step 2: Proof sketch

Let Y = X ∪ C, where C is a hypothetical solution. Then, for any x ∈ X and
c ∈ C, the Hamming distance d(ψ(x), ψ(c)) is relatively preserved w.h.p.

• •
•

••

• •

•

•

•

••
•

•••

•
•

•
•

• •
•

••

• •

•

•

•

••
•

•••

•
•

•
•

The above partition gives us an instance of BCPC. A (1 + ε)-approx solution C ′ to
the instance of BCPC is a (1 + ε)2-approx solution for the instance of BCC.

13



Step 2: Proof sketch

Let Y = X ∪ C, where C is a hypothetical solution. Then, for any x ∈ X and
c ∈ C, the Hamming distance d(ψ(x), ψ(c)) is relatively preserved w.h.p.

• •
•

••

• •

•

•

•

••
•

•••

•
•

•
•

• •
•

••

• •

•

•

•

••
•

•••

•
•

•
•

The above partition gives us an instance of BCPC. A (1 + ε)-approx solution C ′ to
the instance of BCPC is a (1 + ε)2-approx solution for the instance of BCC.

13



Step 3: Solving BCPC

We formulate BCPC as Integer Programming formulation

We solve it using randomized rounding method. This method is similar to the
method used for PTAS of Closest String.
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Step 3: Solving BCPC (Case 1: OPT > m/c for a constant c)

We formulate BCPC as Integer Programming formulation

For every j ∈ [m] and tuple t ∈ Rj , we have a variable yj,t. Interpretation: if
yj,t = 1, then the row j of center vectors (solution) is same as tuple t.

min d

subject to∑
t∈Rj

yj,t = 1, for all j ∈ [m];

∑
j∈[m]

∑
t∈Rj

χi(x[j], t) · yj,t ≤ d, for all i ∈ [k] and x ∈ Xi

yj,t ∈ {0, 1}, for all j ∈ [m] and t ∈ Rj .

Here, χi(x[j], t) = 0 if x[j] = t[i] and χi(x[j], t) = 1 if x[j] 6= t[i]
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Step 3: Solving BCPC (Case 1: OPT > m/c for a constant c)

Solve the LP relaxation of the above IP, and obtain fractional solution y?j,t
(j ∈ [m] and t ∈ Rj)

Now, for each j ∈ [m], independently with probability y?j,t, we set y′j,t = 1 and
y′j,t′ = 0, for any t′ ∈ Rj \ {t}.

Then y′j,t (j ∈ [m] and t ∈ Rj) form a solution to IP.

Claim: y′j,t (j ∈ [m] and t ∈ Rj) is a (1 + ε)- approximate solution.
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Step 3: Solving BCPC (Case 1: OPT > m/c for a constant c)

E[d(x, ci)] = E

∑
j∈[m]

∑
t∈Rj

χi(x[j], t) · y′j,t


=

∑
j∈[m]

∑
t∈Rj

χi(x[j], t) · E[y′j,t]

=
∑
j∈[m]

∑
t∈Rj

χi(x[j], t) · y?j,t ≤ d

Fix δ = ε
c . By Chernoff bound,

Pr[d(x, ci) > d+ εOPT ] ≤ Pr[d(x, ci) > d+ δm] =≤ e−
1
3
mδ2 .

Therefore, by the union bound,

Pr[There exist i ∈ [k] and x ∈ Xi such that d(x, ci) > d+ εOPT ] ≤ n · e−
1
3
mδ2 ≤ n−2

for m = Ω(log n)
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Step 3: Solving BCPC (Case 1: OPT ≤ m/c)

We fix some co-ordinates of center vectors and then the remaining will have
large optimum.

That is, there exist Y1 ⊆ X1, . . . , Yk ⊆ Xk such that |Yi| = O(1/ε) and fixing
identical co-ordinates in Yis will leads a good approximate solution.
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Conclusion

We gave PTAS for `1-Rank-r Approximation over GF(2). Running time
is

mO(1)nO(2
4r·ε−4)

What about a EPTAS, i.e., with running time f(ε)(mn)g(r)?
An adaptation of a result on Closest String by Cygan, Lokshtanov,
Pilipczuk, Pilipczuk, and Saurabh (2016) implies that such a result even for
r = 1 is not possible assuming FPT 6=W[1].

Also, existence of an algorithm with running time f(ε)no(1/ε) even for r = 1
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