Introduction Comparing Logics Computational Complexity
000000000 000000000 0000000000

A Computational Perspective on Fragments of
the Dynamic Logic of Propositional Assignments

Abdallah Saffidine
UNSW Sydney, Australia

(joint work with Andreas Herzig)

DIMAP Seminar
June 21, 2021

1/30

A Bird’s eye view

Warm-up with Propositional logic and QBF
DLPA Syntax and Semantics
Modeling problems in DLPA

Propositional logic warm-up.
Known results relating DLPA and QBF.
DLPA is no more succinct than QBF (new).

Propositional logic warm-up.
QBF and the polynomial hierarchy.
Connecting DLPA fragments to the poly. hierarchy (new).

2/30

Introduction Comparing Logics Computational Complexity
900000000 000000000 0000000000

Outline

° Introduction

3/30

Introduction
0@0000000

Interpretation and Models

p=pl-el(eVe)l(eAre)l(e—¢) peP

()

A valuation or model is a subset of P: those p assigned true.

©

A model V C P satisfies ¢ if “it makes ¢ true”. We write V = ¢.

(%)

The interpretation of a formula ¢ is
the set of models ||¢|| € 2F that satisfy ¢.

Yes

No
Yes
{a,b, c} Yes

a

Does the model

—_— = —
o O
Anadi e

satisfy ¢?

4/30

Introduction
00®000000

Quantified Boolean Formulas

Lagr i ¢ = p|T|l-¢leVe|dPy

where p ranges over P and P over the set of finite subsets of P.

Tl = 2%; lpll ={v : pev},
e vl = llell U lIl; ¢l = 2% \ llell;
|I3P¢ll = {v : apartition QT UQ™ =Pst. vUuQ"\Q €l

{c} Yes
{c,d}
{a, b, c} Yes
{a,d} Yes

Does the model satisfy ¢?

5/30

Introduction
000@00000

Language of DL-PA: Syntax

Complex formulas and complex programs:

pi=pl-el(eVve)lme
ni= (pe—@) | ? | (mn) | (rUR) | 7

for p € P (set of propositional variables)

(myp and [r]g] —(m)—¢ are existential/universal modal operators.

() =
[7]e
P =
¢? =
;T2

w1 Umo

sk

T =

“p is true after some execution of n”

“o is true after every execution of 7”

update p to T or L depending on whether ¢ holds
fail if ¢ doesn’t hold, otherwise proceed

execute 1 then execute >

execute w1 or execute >

execute m some number of times

6/30

Introduction
0000®0000

Programs as relations on valuations

@ assignment:

vwvu{p} ifviEe
vES W) ifviE g
@ test:
v vt v=vandv g

sequential composition:

©

7 ks v3 iff there is v» such that vy iR Vo EN V3
nondeterministic composition:

(7]

mUmp ;. e , 2 ,
v -V iffv—Vorv—yv

finite iteration (‘Kleene star’):

(4]

v L v’ iff there is n such that v(=)nv’

7/30

Introduction
0000®0000

©

(7]

(4]

[

Programs as relations on valuations

assignment:
vwvu{p} ifviEe
v W p) ifviE g
test:

@7 .
v— VvV iff v=viandviE g
sequential composition:
1372 . . Tt 2
vy — vs iff thereis vo suchthat vi — vo — v3
nondeterministic composition:
mUmp . e 2
v —- VvV iff v—Vvorv—>V
finite iteration (‘Kleene star’):

v L v’ iff there is n such that v(=)nv’

. . /g
write (v, V") € ||r]| instead of v — v/

7/30

Introduction
00000@000

Semantics of DL-PA: Interpretation

lloll ={v : pev}
lI=ell = 27\ llgll
lle vVl = llgll U [lwll
Kmyell = {v : thereis v/ such that (v.v') < || & v/ € [igll}

llo—ell = {(v. vuip}) : vellgll} U{(v.v\ip}) : v & llgll}
le?ll = {(v.v) = velill
I, 2’|l = el o 1l
e U Il = llll U i

il = (lell)” =) Qi)

€
keNo 8/30

Introduction
000000800

(e = “pis true after some execution of 7"

p—yp = update p to T or L depending on whether ¢ holds
p? = fail if ¢ doesn’t hold, otherwise proceed

;T2 = execute 1 then execute 7o

miUme = execute my or execute mo

" = execute 7 some number of times

Does the model

Satisfy the formula {} {a} {b} {a,b}
(a——aUb«bva)-anb) X x / v
(ae—a;b<b Vv a)(-a A b) X X X v
((ae—a;b—bvVva))(-anb) v v V/ v

9/30

Introduction

0000000 e0

Expressivity of DL-PA: writing programs
@ captures the standard programming language primitives:
skip o
fail & 17
if ¢ then 71 else 7> oo (@7 1) U (m?; m2)
while ¢ do « %ef (7,)" —g?

repeat 7 until ¢ ®r .

@ example: sequential program incrementing an n-bit counter
(Pt pn)
. def .
incr(pr.....pn) = izt n(pie (Pi © (it A+ A pn)))

10/30

11/30

Introduction Comparing Logics Computational Complexity
000000000 000000000 0000000000

Outline

e Comparing Logics

12/30

Comparing Logics
0®0000000

Comparing Languages

PROP is no more expressive than CNF.
There is a transformation D : PROP — CNF s.t. [l¢]| = [|D(¢)]
e.g. De Morgan’s laws and distributivity

D(gn) = (X1 V- VX)) A(X1 VooV Xy V) Ao Ay VeV)

2" clauses

PROP-sat is no more complex than CNF-sat.
There is a polynomial transformation T : PROP — CNF such that
¢ is Satisfiable iff T(y) is Satisfiable. e.g. Tseytin transformation

T(¢n)=(Z1V“'VZn)/\(“Z1 vX1)/\(—|z1Vy1)/\---/\(—|ZnVyn)

PRORP is strictly more succinct than CNF.
There is no poly transf. S : PROP — CNF s.t. [l¢|l = [|S(¢)l|

Consider o = (X1 Ay1) V(X2 Ay2) V-V (Xn A Yn)
13/30

Comparing Logics
00@000000

Comparing DLPA and QBF

@ QBF is no more succinct than DLPA: (next slide)
@ QBF is no more expressive (follows from succinctness)
@ QBF-sat is no more complex (follows from succinctness)

()

DLPA is no more expressive than QBF [2013]

DLPA-sat is no more complex than QBF-sat
DLPA-sat —— PSPACE Turing m. ——— QBF-sat

()

[2014]: [1973]:
DLPA-sat QBF is
in PSPACE PSPACE-h

@ DLPA is no more succinct than QBF [new]

14/30

Comparing Logics
000@00000

Succinctness: from QBF to DL-PA

Example:

S(@avb(b & c)vd) =(aTUa—L)beTUbe«1]|(bec)Vvd

For any QBF ¢, |IS(¢)Il = ll¢ll and S(y) is linearly bigger than ¢.
Therefore, QBF is no more succinct than DLPA.

15/30

Comparing Logics
0000@0000

Succinctness: from DL-PA to QBF

In the other direction, things are not so easy!

T((p<=T)p) =3p.(p A T(¢))

T((p—L)p) = Tp.(=p A T(¢))

T((p—p)¢') = ' (P" © T(¢) A T(#p)))
T((p—¢; p—¢")¢") = 3p' (p" & T(p)A

FP%(P* © T(hsp,) A T(epzp)))

How will we deal with the Kleene star?

16/30

Comparing Logics
000008000

From DLPA to QBF

o idea: f(p, v)= “p true at v
@ base case: f(p,v) = p" (propositional var. indexed by valuation name)
@ recursive definition of f:

flo.v) =p

f(=p, v) = ~f(g, V)

f(@1Ve2, v) = f(e1,v) V (g2, v)
f((mhp, v) = "Iw” (g(v, w,x) A f(p, w))

v

where:
o “Iw”=3p}---Apy
® {p1,--+,pn} =P, (variables of ¢)
e “wis fresh” no p occurs in ¢
e g(v,w,n) = "“v accesses w via "
@ recursive definition of g(v, w,7): ...

17/30

Comparing Logics
000000800

From DLPA to QBF

gv.w.p—g) = (p* o fev)A /\ (@ oq)
qeP,.q#p
g(v, w,¢?) = fle.v) A N\ (0" & p")
PEPy,
g(v,w,m;) = “u"(g(v,u,m) A g(u, w,n"))
g(v,w,run’) = g(v,w,m) Vv g(v,w,n")

= how can we define g(v, w,7*)?
' =skipunuUmnru...ux"U...

.]
:sklpUﬂUﬂ;ﬂU...Uzr2

— how can we define alv w 7*) in 3 non-explocive wav?

18/30

Comparing Logics
000000080

From DLPA to QBF

@ problem: define g(v, w, 7*) in a non-explosive way
@ solution: divide and conquer [Saviich / Chandra et al., J. / Sipser]
e h(v,w,n, n)="vaccesses w via r in 2" steps”
g(v,w, ") = h(v, w,r, card(P,))
@ recursive definition:

h(v,w,n,0) = g(v, w,)
h(v,w, 7, n+1) = “3u” (h(v, u,7,n) A h(u, w, 7, n)) (... but explosive)

=“Qu" VX “Dvy” “Iwy” (h(v1, Wi, mt,n) A

(X A\ (P op") A (p" op)) v

PEFy,

(XA /\ (" op*) A (0" "))

PGPm

19/30

Comparing Logics
00000000@

From DLPA to QBF

The length of f(yo, v) is quadratic in the length of ¢q.

vV E g iffvE (f((PO’ v))[{p"/p}pepwo]-

For every DL-PA formula there is an equivalent QBF
of polynomial length.

DL-PA and QBF are equally expressive.
DL-PA satisfiability checking and DL-PA model checking
are both PSPACE complete.

20/30

Introduction Comparing Logics Computational Complexity
000000000 000000000 9000000000

Outline

e Computational Complexity

21/30

Computational Complexity
0®00000000

o Satisfiability: given ¢, is [l¢l| # 07
o Validity: given ¢, is |l¢|| = 252
@ Model Checking: given V C P and ¢, do we have V | ¢?

Language Problem
Satisfiability Validity ~Model Checking
PROP NP-c coNP-c in P
CNF NP-c in P in P
DNF in P coNP-c in P
x=pl-plxVvxy pi=ploplunp

pi=xleAe pi=puleVe

22/30

PSPACE

Computational Complexity
0000000000

Complexity of the acceptance
problem for Turing M. with
oracles:

o =10y = Aj =P
P, = NP
M7 = coNP>i
AIF:H =PY
@iF:m =¥

23/30

®© 6 6 6 o

Computational Complexity
000@000000

The Polynomial Hierarchy

P: Does this circuit evaluate to true on this given input?

NP: CIRCUIT Sat, SAT, Sudoku

coNP: Validity for DNF

Z;: Is there a small circuit that does x? Contingent planning.
PSPACE: Games (generalized tictactoe), QBF, Planning

24/30

Introduction Comparing Logics Computational Complexity
000000000 000000000 0000e00000

Deterministic DLPA

Lim : ¢ = plTl-¢leVel|{ne
Logm = 7 skip | p—¢ | ;7 | 7"

25/30

Computational Complexity
0000080000

Operator Depth

p.T 0

i u(¥)

01V g2 max (u(¢1), ()
(6hw max ((6). u(v))
(W 1+ max (u(m), u(y))
p—g ()

51: 62 max (u(51),,u(52))
6” (o]

s u(9)

my; w2 mpUme max (,U(7T1),,U(772))
o7 u(e)

JT* o0

Py 1+ p(y)

26/30

Computational Complexity
0000008000

DL-PA

/ detDL-PA

star-free DL-PA

Single Loop DL-PA

QBF STRIPS

27/30

//_\ Full

lteration

Free
pe
\w\ IF & Simple

Assignments

depth k
PE—
H SA depth k
depth 1
L PE
depth 0 SA depth 1
pe=
SA depth 0
{mhe

Prop

Computational Complexity
0000000800

anUm, x?

Single Loop

SA det

28/30

Computational Complexity
0000000080

Bounded alternation logic

Depth Satisfiability Validity Model Checking

DLPA i yP nP AP

i+1 i+1 i+1
DLPA-SA | NP nt, ©ef,
QBF i y7 ne o

i+1 i+1 i+1

29/30

e o

Conclusion

Succinctness
Naturally captures the variety of PSPACE
Fruitful correspondance with Polynomial Hierarchy

Domains (From planning, from games)
Solvers (via QBF + direct)
Grounding

Computational Complexity
0000000008

30/30

	Introduction
	Comparing Logics
	Computational Complexity

